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Abstract

3D face reconstruction from a monocular face image is a
mathematically ill-posed problem. Recently, we observed a
surge of interest in deep learning-based approaches to ad-
dress the issue. These methods possess extreme sensitivity
towards occlusions. Thus, in this paper, we present a novel
context-learning-based distillation approach to tackle the
occlusions in the face images. Our training pipeline focuses
on distilling the knowledge from a pre-trained occlusion-
sensitive deep network. The proposed model learns the
context of the target occluded face image. Hence our ap-
proach uses a weak model (unsuitable for occluded face im-
ages) to train a highly robust network towards partially and
fully-occluded face images. We obtain a landmark accu-
racy of 0.77 against 5.84 of recent state-of-the-art-method
for real-life challenging facial occlusions. Also, we pro-
pose a novel end-to-end training pipeline to reconstruct 3D
faces from multiple variations of the target image per iden-
tity to emphasize the significance of visible facial features
during learning. For this purpose, we leverage a novel com-
posite multi-occlusion loss function. Our multi-occlusion
per identity model shows a dip in the landmark error by
a large margin of 6.67 in comparison to a recent state-of-
the-art method. We deploy the occluded variations of the
CelebA validation dataset and AFLW2000-3D face dataset:
naturally-occluded and artificially occluded, for the com-
parisons. We comprehensively compare our results with
the other approaches concerning the accuracy of the recon-
structed 3D face mesh for occluded face images.

1. Introduction
3D face reconstruction has been a longstanding prob-

lem in the field of computer vision and computer graphics.
However, in this work, we focus on addressing the problem
of occlusions in monocular face images. The problem of
3D face reconstruction from occluded face images has nu-
merous applications viz, dimension reduction of the search
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space for the face recognition models and interactions in the
virtual environments.
In the literature, one category of approaches [24, 4, 47,
20, 2] matches the 3D face with the monocular face im-
age by optimizing pose, texture, shape, and illumination
coefficients. Another category exploits Convolution Neu-
ral Network (CNN) and Generative Adversarial Network
(GAN) [17] based approaches [27, 19, 30, 35, 18, 10, 16,
36, 39, 40, 42, 44, 8, 26, 9, 15, 25, 38] rather than the
optimization-based method due to the implicated complex-
ities of optimization approach. These methods perform
poorly with the artificially and naturally occluded face im-
ages and monocular face images with unusual lighting. Fur-
ther, they adapt occlusions as facial features thus lead to
ghost-like 3D face reconstruction from occluded face im-
ages.
We address the discussed issues using two training frame-
works. We refer to the first model as the Single-Occlusion
per Identity model. This model exploits one occluded im-
age per person to learn the deep 3D face representation. The
optimization and deep network-based regression methods
depend upon learning 3D faces via facial features in 2D im-
ages. However, in our case, the input monocular face im-
ages to the model are completely (or partially) occluded.
Thus, the proposed framework learns from the global con-
text and local context of the images [45]. We distill the
knowledge [21] of RNet [10] for unoccluded face images
to train our model on the occluded images. Hence, the
proposed Single-Occlusion per Identity method relies upon
context-based distillation learning during the training.
Further, we propose a novel method to predict 3D face mesh
from the multiple variations with regards to shape, color,
and spatial location of the occlusions of face image per per-
son. We refer to the framework as the Multi-Occlusion per
Identity model. The model enables higher accuracy of the
reconstructed 3D face mesh from occluded face images.
We evaluate our approaches on the validation dataset of
CelebA [28] (released by Tensorflow) and AFLW2000-3D
dataset [46]. For this purpose, we occlude the face im-
ages in the datasets. We compare the proposed models with
other state-of-the-art methods. By exploiting the Single-
Occlusion per Identity model, our approach outperforms
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the current state-of-the-art methods by large margins. We
deploy the CelebA validation dataset [28] and AFLW-2000
3D dataset [46] for the evaluation of the proposed model.
For the naturally occluded face images (real-life facial oc-
clusions), the landmark inaccuracy falls to 0.77, as against
to 5.84 of a recent state-of the-art method. Further, the pro-
posed Multi-Occlusion per Identity model significantly
improves the network performance for occluded face im-
ages. The landmark error for our multi-occlusion per iden-
tity model reduces by a factor of 5.59 as compared to
a recent state-of-the-art method on the CelebA validation
dataset.
We summarize our contributions in this paper below.

1. Single-Occlusion per Identity Network for Occlusion
Robust 3D Face Reconstruction: We reconstruct the
3D faces from the heavily occluded 2D face images. Our
model exploits RNet from [10] to predict 3D faces from
a purely or partially occluded 2D face images. Thus,
facilitating the learning of the proposed model through
context in the target images.

2. Multi-Occlusions per Identity Network for Improved
Occlusion Robust 3D Face Reconstruction Accuracy:
We propose a method to learn 3D faces from multiple ar-
tificially occluded face images per person to improve the
accuracy of the reconstructed 3D face meshes from the
occluded images. Our model learns a dense representa-
tion of 3D faces using a novel composite multi-occlusion
loss.

3. Artificial Occlusions based Dataset: We synthesize a
large-scale artificial occlusion-based dataset from unoc-
cluded and naturally occluded in-the-wild face images.
The artificial occlusion-based dataset facilitates the oc-
clusion robust training of the proposed models. We refer
to goggles, facial hair, noise, etc., as natural (real-life)
occlusions.

2. Related Work
3D face reconstruction from a monocular face image is

a challenging research problem. Blanz and Vetter in [5]
introduce a morphable model, referred to as the 3DMM,
to reconstruct 3D face mesh from the monocular face im-
ages. The 3DMM plays a crucial role in addressing the
problem. In 3DMM, a set of parameters accredits the recon-
struction of a 3D face mesh. One can acquire the set of pa-
rameters accrediting a 3D face mesh using two approaches:
optimization-based and deep network-based.
Optimization-based Methods: The approaches in [3, 5,
13] utilize optimization-based methods to fit the 3DMM
model to an image, collection of images, or video data [14,
31, 32] by iteratively optimizing the alignment between the
projected 3D face and the input face image. These methods

adapt mild occlusions (such as hair) as facial features thus,
leading to wrong results. The performance of these meth-
ods further drop for strong occlusions such as dense beard.
Deep Network-based Methods: The methods by Chen et
al. [8], Deng et al. [10, 9], Gecer et al. [15], Genova et
al. [16], Guo et al. [18, 19], Lin et al. [25, 26], Liu et
al. [27], Richardson et al. [30], Sela et al. [35], Sengupta et
al. [36], Tewari et al. [40, 39, 38], Tran et al. [42] and Zhang
et al. [44] use CNN and GAN-based regression methods
due to the intricacies with the optimization-based approach.
Among these, the supervised approaches [12, 18, 19, 27,
30, 35, 37] suffer from the lack of training data. Numerous
CNN-based training methods [1, 11, 30, 40, 43, 16] empha-
size on directly using the predicted coefficients of 3DMM,
while others [30, 39, 41, 19] add corrections (or details) on
coarse 3DMM predictions or focus on model-free recon-
struction [12, 35, 36, 42].
Lin et al. [26, 25], Deng et al. [9, 10], Gecer et al. [15],
Chen et al. [8], Tewari et al. [38, 39, 40], and Zhang et
al. [44] address the problem of insufficiency of the train-
ing data. These methods rely on weak labels for tackling
the inconsistency between the input image and the projected
3D face to train their respective GAN or CNN-based mod-
els. Further, the mentioned weakly supervised and (or) self-
supervised approaches depend upon VGGFace2 [7] and
FaceNet [34] to reconstruct a perceptually precise 3D face
mesh. These models are heavily sensitive towards image
occlusions. Thus leading to non-human like faces for heav-
ily occluded target face images.
In the proposed work, we do not exploit any formerly dis-
cussed methods for solving the problem. Instead, we use a
context-learning-based distillation approach using the pre-
trained occlusion sensitive RNet model in [10] for training
the Single-Occlusion per Identity model. We also present a
novel training pipeline facilitating model learning with mul-
tiple occluded (various artificial occlusion patterns) images
per person. For the training, we use the novel composite
multi-occlusion loss. We refer to the network as the Multi-
Occlusion per Identity model. The latter model ensures
higher accuracy of the reconstructed 3D face meshes than
the former. On the contrary, the latter puts constraints over
the data requirement. It requires multiple occluded face im-
ages per identity for the training.
Our findings in this work are multitudinous: 1) the context-
based distillation approach opens a new dimension of re-
search for improving the model performance (in terms of
the robustness towards occlusion) with simple twists and
tricks, 2) distribution-based loss functions are unsuitable
for the training the model under discussion, and 3) the mul-
tiple occlusion patterns per identity for training the model
ensures higher accuracy of the reconstructed 3D faces from
the occluded face images.
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Figure 1: a) An overview of the training frameworks of the proposed occlusion robust 3D face reconstruction models. We
deploy context-learning-based distillation approach to train Single-Occlusion Per Identity (SOPI) Model (left). The trainer
gets an unoccluded face image at the input, whereas we feed the trainee with partial/fully/unoccluded face data on a random
basis. b) Besides, we also train a novel Multi-Occlusion Per Identity (MOPI) Model (right). The model takes multiple
images of the same identity. Each image is occluded with a random occlusion pattern.

3. Proposed Model Description
In this section, we discuss the proposed training archi-

tectures. We refer to our training frameworks as Single-
Occlusion Per Identity (SOPI) (refer Sec. 3.1) and Multi-
Occlusion Per Identity (MOPI) (refer Sec. 3.2) depending
upon the input data. We also present the losses exploited to
train the models under discussion.

3.1. Single-Occlusion per Identity Network

In Fig. 1a, we present our training model. The details of
our network are discussed below.

3.1.1 Trainee Network
Our trainee framework (see Fig. 1a) uses the ResNet-50
model as backbone architecture. It takes input image I (par-
tially (or fully) occluded or unoccluded) and returns the
coefficients of 3DMM. We use popular Base Face Model
(BFM) [29] as 3DMM. We exploit RNet from [10] to train
our model. Further, we modify the fully-connected classifi-
cation layer of ResNet-50 with 257 nodes for obtaining the
coefficients denoted by v ∈ R257.

v(θ) = Single-Occlusion per Identity(I, θ). (1)

In Eq. (1), θ represents network weights.

3.1.2 Trainer Network
We use pre-trained RNet occlusion-sensitive model
from [10] as the trainer network (see Fig. 1a). We freeze the
weights of the RNet model during the training of the trainee
model. RNet utilizes the ResNet-50 model as a backbone
with the fully-connected layer of 257 nodes. The trainer
model takes an unoccluded input image Iu and returns the
coefficients (vu) of 3D morphable BFM. We use these la-
bels to regress the trainee model over the coefficients of
BFM. Eq. (2) depicts the input-output relationship of RNet

model.

vu = RNet(Iu). (2)

RNet depends upon weak labels such as skin attention mask
and 68 landmark coordinates of a face image for its training.
It also requires a mesh-renderer, landmark detector, and the
basis from BFM to perform the training of the model. RNet
takes Iu to produce vector vu ∈ R257 containing shape
(s), expression (e), texture (k), illumination (γ) and pose
(R, t) coefficients. The coefficients thus obtained serves
as the input to the mesh-renderer after undergoing through
mathematical analysis (see Eq. (3) for shape, expression and
texture, Eq. (4) for illumination and Eq. (5) for pose).

S = S+ sBs + eBe, K = K+ kBk. (3)

In Eq. (3), S ∈ R3N and K ∈ R3N indicate mean face
shape and skin reflectance (or texture) whereas, Bs and Bk

are the subsets of Principal Component Analysis (PCA) ba-
sis for shape and texture respectively from the BFM. The
expression basis Be are acquired from the Facewarehouse
model [6]. Further, RNet exploits the shape coefficient vec-
tor s ∈ R80, expression vector e ∈ R64 and texture co-
efficient vector k ∈ R80 for the reconstruction of 3D face
mesh.
RNet assumes a Lambertian surface reflectance for 3D face
mesh, and represent the illumination using Spherical Har-
monics (SH). Eq. (4) establishes the relationship between
radiosity (C) of vertex xi with normal ni and skin texture
Ki.

C(Ki,ni, γ) = Ki ·
B2∑
b=1

γbψb(ni). (4)

In Eq. (4), the coefficient γb ∈ R3 (B = 3 bands) rep-
resents the red, green, and blue channels for illuminating
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the 3D face mesh corresponding to SH basis coefficients
ψb : R3 → R. We assume white lights thus, γ ∈ R9.
To project a 3D face onto a 2D image, RNet uses a pin-
hole camera under full perspective projection (using mesh-
renderer). Eq. (5) describes the pose of a 3D face mesh pa-
rameterized by rotation matrix R ∈ SO(3) and translation
vector t ∈ R3.

Iu
′ = ζ(R−1(x− t)). (5)

In Eq. (5), Iu′ represents the image formed by projecting
a 3D face mesh, ζ : R3 → R2 maps world coordinates to
the screen, and x is the collection of coordinates for mesh
vertices.
RNet relies upon reducing the discrepancies between Iu
and Iu

′ using image-level losses such as photometric (using
skin attention mask) and landmark losses, and feature-level
losses.

3.1.3 Learning Context from the Trainer
The trainer produces coefficients of 3DMM for a given un-
occluded face image while forcing the trainee to reproduce
the same coefficients for the same input face image with
occlusion. To learn the 3D face image of a given input 2D
face, the trainee has to be consistent with the trainer irre-
spective of the occlusion in the input face image. The ap-
proach under discussion facilitates the trainee to improve
robustness using the knowledge distillation for occluded in-
put. The consistency with the trainer criteria enforces the
trainee model to learn the context from occluded and chal-
lenging input. It also facilitates trainee to enhance its self-
learning capability. We use SE loss to minimize the differ-
ence between the predicted coefficients of trainer and the
trainee models.

3.1.4 Squared Error Loss
The SE loss function enforces the trainee coefficients to be
close to the trainer coefficients for an image. We provide an
occluded (or unoccluded) image as the input to our trainee
model. Further, we compare these coefficients with the la-
bels for the corresponding unoccluded image acquired from
the trainer model. Eq. (6) depicts the SE loss LSE .

c = (vu − v)2,

LSE =
1

M

M∑
m=1

cm.
(6)

In Eq. (6), vu and v denote the labels predicted by the
trainer and the trainee models respectively. Further, cm rep-
resents the elements of the vector c ∈ R257. It should be
noted that M indicates the number of elements in c (for our
case, M = 257).

3.2. Multi-Occlusion per Identity Network
In Fig. 1b, we present a novel end-to-end training

pipeline. The details of our network are discussed below.

3.2.1 Network Architecture
Our training framework (see Fig. 1b) uses the ResNet-50
model as backbone architecture. The model takes 7 im-
ages per person (partially (or fully) occluded) with ran-
dom patterns and returns 7 vectors of 3DMM coefficients
with the dimension of 257. We exploit face recognition
FaceNet [34], labels from Single-Occluded per Identity
model from Sec. 3.1.1 to train the proposed model. Fur-
ther, we modify the fully-connected classification layer of
ResNet-50 with 7 fully-connected layers with 257 nodes for
obtaining the coefficients denoted by vm ∈ R257×7.

3.2.2 Losses
In this section, we detail the losses for training the model
under discussion.
• Perceptual Loss: We introduce a perceptual loss to

ensure the visual similarity between projected 3D face
meshes (I ′m) obtained from multi-occlusion images of
each identity. The loss serves as a weak-supervision sig-
nal from a pre-trained deep face recognition network [34].
Notably, we extract the deep features of the projected 3D
face meshes and compute the perceptual loss between the
projected faces of each identity:

Lperc =

∑w1

q′=1

∑w2

q=1 χχ
ᵀ

||χ||2,1||χᵀ||2,1
. (7)

In Eq. 7, χ is the deep feature matrix (containing fea-
ture vectors for 7 projected 3D faces) obtained from face
recognition network. Also, q and q′ represent rows and
columns of a matrix respectively whereas w1 = w2 = 7.

• Label Loss: We exploit labels from the SOPI for the set
of images Im to the train the proposed model. We choose
the SOPI label for the training such that the perceptual er-
ror of corresponding rendered image (obtained from the
SOPI model) is minimum with the unoccluded face im-
age. The loss enforces the model to restrict the search in
3DMM space and learn a single deep representation for
the 3D face meshes obtained from multiple variations of
the same face image.

Llabel =

7∑
j=1

||vs
i − vm

j ||2, where

vs
i : min

(
1− 〈fsi, f〉
||fsi||||f ||

)
.

(8)

In Eq. 8, fs and f are the deep-features derived from
FaceNet model [34] corresponding to rendered images
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obtained from SOPI and the unoccluded face image re-
spectively. We choose i-th coefficient derived from SOPI
(vs

i) such that the cosine distance (〈·, ·〉) between i-th
feature fs

i and f is minimum. Therefore, Llabel (label
loss) is derived between the 7 predicted labels vm and the
label vs

i .

Composite Multi-Occlusion Loss: To enforce the learning
of the proposed model, we use Eqs. 7 and 8 to propose the
novel composite loss function.

L = x1 × Lperc + x2 × Llabel. (9)

Here, we use x1 = 0.2 and x2 = 0.8 are the weights corre-
sponding to the respective losses.

4. Datasets and Results
We gather in-the-wild face images from the training and

testing datasets of CelebA released by Tensorflow [28].
Thus a major proportion of the dataset contains naturally
occluded face images. Moreover, the dataset also includes
face images of individuals under distinct illumination con-
ditions and poses. It contains images of prominent per-
sons from different races. Hence, we choose this equitable
dataset with ∼181K images for training our model. We ex-
tract a quarter of the images from the dataset. We partially
or fully (artificially) occlude these face images with arbi-
trary pixel values. We use ∼45K occluded face images for
training our Single-Occlusion per Identity model. Besides,
we use 7 random occlusion patterns to occluded each face
image in the dataset to train the Multi-Occlusion per Iden-
tity model. The varying pixel values of the occluded re-
gion force the proposed models to learn without developing
pixel-value bias.
Further, we provide the input images of size 224 × 224 to
both models under discussion (see Fig. 1). We initialize
our models with Imagenet weights [33]. Our models use
Adam [23] optimizer with an initial learning rate as 10−5,
batch size of 5. The Single-Occlusion per Identity model
requires 400K iterations, whereas the Multi-Occlusion per
Identity model uses 500K iterations for the training.
4.1. Qualitative Results

Using the proposed approaches, we obtain the 3D faces
for various comparisons. Our Single-Occlusion per Iden-
tity method exploits RNet from [10] to train the respective
framework. Hence, we rigorously compare our 3D faces for
occluded images with the outputs of RNet.
We also compare the performance of the Multi-Occlusion
per Identity model with the Single-Occlusion per Identity
approach, MoFA, and RNet.

4.1.1 Single-Occlusion per Identity
We use square-shaped occlusion patterns for the compar-
ison as the area of a square is more than any other stan-
dard pattern. Thus square-shaped patterns enable larger

area to be occluded in an image. We divide the occlu-
sions into several levels to establish the efficacy of the pro-
posed model. The face images with two occluded areas,
covering a smaller region of the face in the image (see
Fig. 2a, row 2), we refer to as Double Slightly Occluded
Face Images (DSOFI). Besides, face images with double
(see Fig. 2b, row 2) and single (see Fig. 2c, row 2) heav-
ily occluded area(s) are Double Heavily Occluded Face Im-
ages (DHOFI) and Single Heavily Occluded Face Images
(SHOFI) respectively. We perform the analysis on square-
shaped (and/or rectangular) occlusion patterns for DSOFI,
DHOFI and SHOFI to obtain a common ground for com-
parison of the network performance on various levels of oc-
clusion in a face image.
Comparison for DSOFI: We compare the results for the
DSOFI with the output of RNet. In Fig. 2a, our model pro-
duces a highly reliable output. Besides, RNet reconstructs
3D faces with random poses, shapes, expressions, and tex-
tures.
Comparison for DHOFI: Further, we compare our output
for DHOFI with the 3D faces obtained using RNet. Fig. 2b
shows that RNet reconstructs the ghost-like 3D face with
generally no similarity with human faces. In contrast, our
model produces output with a high similarity towards the
corresponding unoccluded input image.
Comparison for SHOFI: We compare our output for
SHOFI images with the results of RNet. We observe that
(see Fig. 2c) RNet reconstructs the same ghost-like 3D face
for all the heavily occluded input images. On the other
hand, our model produces output with a likeness towards
the corresponding 2D unoccluded face image. Note that we
estimate the probable face shape and texture behind the oc-
clusion. Thus reducing the dimension of the search space of
3D face recognition systems.
Impact of Occlusion Color on 3D Faces: We compare the

impact of occlusions with different pixel-values on the 3D
reconstructed face mesh with RNet. In Fig. 3, we observe
that the skin tone of ghost-like faces in row 3 changes with
the change in the pixel-value of occlusion. Contrarily, our
model (see row 2 of Fig. 3) is resistant to the color of occlu-
sion. We can infer that our model possesses differentiation
ability between skin tone and occlusion color.
Impact of Real-life Occlusions on 3D Faces: To illus-
trate the efficacy of the proposed method for tackling the
real-life occlusions, we perform a qualitative comparison of
our method with RNet and MofA [40]. Fig. 4 shows that
the proposed model performs better than the state-of-the-art
methods.

4.1.2 Multiple-Occlusion per Identity
We also perform qualitative analysis on the multi-occlusion
per identity model. We show the impact of various patterns
of occlusions on the 3D reconstructed face mesh obtained
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(a) DSOFI. (b) DHOFI. (c) SHOFI.

Figure 2: A quantitative analysis on the 7 images from the MoFA dataset [40].

Figure 3: A qualitative illustration of the ability of our
model to differentiate between the skin tone and the occlu-
sion color. We obtained the images from MoFA-test dataset.

Figure 4: Our model to reconstructs reliable 3D faces from
real-life occlusions on the face images.

using the RNet, Multi-Occlusion per Identity, and Single-
Occlusion per Identity models. Fig. 5 emphasizes that our
Multi-Occlusion per Identity model possesses the highest
3D face reconstruction accuracy for arbitrary (patterns) oc-
cluded face images. The proposed model is restricted to
reconstruct 3D faces from artificially occluded face images
only (due to the dataset limitation). Thus we compare our
results for the same category of occlusion.

4.2. Quantitative Analysis

We quantitatively evaluate our results on two publicly
available datasets: validation dataset of CelebA released
by Tensorflow [28] and 34 images of AFLW2000-3D
dataset [46]. Thus, we validate our models using∼ 19K im-
ages for face occlusions. Note that we do not use validation
dataset of CelebA for training the model. Hence the dataset
is suitable for performing the quantitative analysis of our
models. We compare the landmark accuracy between our
results and RNet in Sec. 4.2.1 and 4.2.2. Further, we also
compare the texture accuracy of our results with the out-
puts of the RNet model in Secs. 4.2.1 and 4.2.2. We use
histogram dissimilarity metric for the comparison.

4.2.1 Single-Occlusion per Identity
In this section, we compare the results of the Single-
Occlusion per Identity model with RNet. Note that we per-
form a comparison for landmark accuracy and histogram
dissimilarity of the results.
Comparison on the Landmark Accuracy: We compare
the landmark accuracy of our model with RNet. We use
dlib landmark detector [22] to evaluate 68 facial landmarks.
In Fig. 2a, we observe that RNet fails to reconstruct reli-
able face poses. Thus, landmark accuracy is in jeopardy.
Moreover, in Fig. 2b and 2c, RNet reconstructs ghost-like
faces. Thus, we compare the landmark accuracy of RNet
for unoccluded images only. We evaluate the landmark ac-
curacy of our model under several occlusions in Tables 1
and 3. We compare the averages of the difference in the eu-
clidean distance (ME) and the squared mean of the differ-
ence between landmark coordinates of the input image and
the reconstructed 3D face (MSE) for the validation dataset
of CelebA. Further, we evaluate normalized (landmark co-
ordinate divided by 224) euclidean (normalized ME) and
MSE landmark errors (normalized MSE) for AFLW2000-
3D dataset (see Table 1). Note that the landmark accu-
racy of our model is comparable to the RNet for the un-
occluded images. Moreover, the landmark accuracy for
DSOFI, DHOFI, and SHOFI is as precise as the landmark
accuracy for the unoccluded faces. In the Table 1, −− im-
plies no reliable results obtained.
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Figure 5: Our Multi-Occlusion per Identity model reconstructs reliable 3D faces from arbitrary patterns of occlusions. The
top row contains occluded face images.

Occlusion CelebA AFLW2000-3D

ME (↓) MSE (↓) Normalized ME (↓) Normalized MSE (↓)
Ours RNet Ours RNet Ours RNet Ours RNet

Unoccluded 1.24 1.24 (3.25, 1.66) (3.23, 1.69) 0.68 0.68 (0.26, 0.43) (0.26, 0.43)
DSOFI 1.25 −− (3.27, 1.68) −− 0.68 −− (0.26, 0.43) −−
DHOFI 1.24 −− (3.20, 1.66) −− 0.68 −− (0.26, 0.43) −−
SHOFI 1.26 −− (3.26, 1.70) −− 0.69 −− (0.26, 0.44) −−

Table 1: A comparison of the landmark errors of our model with RNet on validation dataset of CelebA released by Tensorflow
and AFLW2000-3D dataset. We compare the landmarks on two criteria: 1) average of differences in euclidean distances
between facial landmarks of input images and the obtained meshes, and 2) average mean square error separately for x and y
coordinates of landmark points between input face images and the corresponding meshes. We performed the comparison for
unoccluded images, DSOFI, DHOFI, and SHOFI.

Occlusion CelebA AFLW2000-3D

Ours RNet Ours RNet

Unoccluded 4.76 4.74 3.82 3.81
DSOFI 4.77 4.90 3.82 4.02
DHOFI 4.79 7.98 3.84 5.36
SHOFI 4.83 −− 3.88 −−

Table 2: A comparison of histogram dissimilarity (↓) of our
model with RNet on validation dataset of CelebA released
by Tensorflow and AFLW2000-3D dataset.

Comparison of Histogram Dissimilarity: In this section,
we compare the histogram dissimilarity (texture-based anal-
ysis) of our results with the outputs of the RNet model. In
Tables 2 and 4, we observe that our model performs better

than the RNet model for various proposed categories of oc-
clusions viz, DSOFI, DHOFI and SHOFI, and natural cases.
Note that the RNet performs poorly for SHOFI. Hence we
do not provide the histogram similarity for the SHOFI.

Method Landmark Inaccuracy (ME ↓)
RNet 5.84
Ours 0.77

Table 3: A comparison of landmark inaccuracy (ME) of our
model with RNet on 54 naturally occluded images from the
validation dataset of CelebA released by Tensorflow.
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Method Histogram Dissimilarity (↓)
RNet 5.01
Ours 4.76

Table 4: A comparison of histogram dissimilarity (↓) of our
model with RNet on 54 naturally occluded images from the
validation dataset of CelebA released by Tensorflow.

4.2.2 Multi-Occlusion per Identity
We compare the results of the Multi-Occlusion per Identity
model with the RNet. Following Sec. 4.2.1, we perform
comparisons on the landmark accuracy and histogram dis-
similarity metric. Note that unlike the evaluation of single-
occlusion per identity, we do not fix the occlusion patterns
viz, SHOFI, DHOFI, and DSOFI. Instead, we use random
patterns of occlusions across the evaluation dataset.
Comparison on the Landmark Accuracy: We compare
the landmark accuracy for random patterns on the images.
Our results in Table 5 demonstrates superior performance
than the RNet.

Method CelebA AFLW2000-3D

ME (↓) MSE (↓) Normalized ME (↓) Normalized MSE (↓)
RNet 7.91 (5.65, 3.94) 0.87 (0.64, 0.93)
Ours 1.24 (3.21, 1.67) 0.68 (0.26, 0.44)

Table 5: A comparison of landmark errors of our Multi
Occlusion per Identity model with the RNet on validation
dataset of CelebA released by Tensorflow and AFLW2000-
3D dataset. We compare the accuracy on random patterns
such as stars, crown (no specific standard shape).

Method CelebA AFLW2000-3D

RNet 6.93 4.74
Ours 4.76 3.82

Table 6: A comparison of histogram dissimilarity (↓) of
our model with RNet on validation dataset of CelebA and
AFLW2000-3D dataset.

Comparison of Histogram Dissimilarity: In this section,
we compare our results with the RNet using the histogram
similarity metric. In Table 6, we demonstrate the superior
performance of our model than the RNet for random pat-
terns of occlusions.

4.3. Ablation Study
In this section, we validate the efficacy of the SE loss

function for training our Single-Occlusion per Identity
model. Further, we demonstrate the effectiveness of vari-
ous components of the proposed composite multi-occlusion
loss in training the Multi-Occlusion per Identity model.

4.3.1 Ablations on Single-Occlusion per Identity
In this section, we perform ablations on the various poten-
tial losses for training Single-Occlusion per Identity model.

Figure 6: Impact of various losses on the training of pro-
posed SOPI model. The original images are obtained from
the CelebA dataset.

We qualitatively examine the outputs of the models thus
obtained. Fig. 6 demonstrates the preliminary results em-
phasizing on the efficacy of SE and L1 loss function for
training the proposed SOPI model.

4.3.2 Ablation study Multi-Occlusion per Identity
We perform an ablation study on various losses of the pro-
posed novel composite multi-occlusion loss. We compare
the performance of the model based on landmark accuracy.
Table 7 demonstrates the effectiveness of the components
of various losses in the proposed loss function.

Lperc Llabel CelebA AFLW2000-3D

ME (↓) MSE (↓) Normalized ME (↓) Normalized MSE (↓)
X 41.0 (32.84, 23.97) 0.94 (0.75, 0.88)

X 2.11 (3.10, 2.23) 0.71 (0.32, 0.46)
X X 1.24 (3.21, 1.67) 0.68 (0.26, 0.44)

Table 7: An ablation study on Multi-Occlusion per Iden-
tity model. We compare the landmark accuracy on random
patterns such as stars, crown (no specific shape).

5. Conclusion

We have shown that our Single-Occlusion Per Identity
(SOPI) model reconstructs accurate 3D faces from oc-
cluded face images. We demonstrated the efficacy of the
proposed method using three variations of artificially oc-
cluded face data: SHOFI, DSOFI, and DHOFI. Further, we
showed that the proposed model is invariant towards the
color of the occlusions in the face images. Our SOPI model
obtained a landmark accuracy of 0.77 against 5.84 of recent
state-of-the-art-method for real-life challenging facial oc-
clusions. Also, we presented a novel Multi-Occlusion Per
Identity (MOPI) model to emphasize the significance of
visible facial features during learning. Our model demon-
strated a reduction in the landmark error by a margin of 6.67
compared to the state-of-the-art method for artificial occlu-
sions. We have shown superior performance of the MOPI
model towards face occlusions than the SOPI network. Be-
sides, we have illustrated the lesser data requirement and
training simplicity of SOPI model over MOPI approach.
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