


makes their use in training to generate defenses compu-
tationally very intensive. For instance, the adversarially
trained feature denoising model proposed by [57] takes 38
hours on 128 Nvidia V100 GPUs to train a baseline ResNet-
101 with ImageNet. While we leverage this observation
of noise amplification over the layers, our proposed ap-
proach avoids any training or fine-tuning of the model. In-
stead, we use a representative subset of training samples
and their layer-wise pre-activation responses to construct
mixture density based generative classifiers, which are then
combined in an ensemble using ranking preferences.

Generative classifiers have achieved varying degrees of
success as defense strategies against adversarial attacks.
Recently, [18] studied the class-conditional generative clas-
sifiers and concluded that it is impossible to guarantee ro-
bustness of such models. More importantly, they high-
light the challenges in training generative classifiers using
maximum likelihood based objective and their limitations
w.r.t. discriminative ability and identification of out-of-
distribution samples. While we propose to use generative
classifiers, we avoid using likelihood based measures for
making classification decisions. Instead, we use rank-order
preferences of these classifiers which are then combined us-
ing a Borda count-based voting scheme. Borda counts have
been used in collective decision making and are known to
be robust to various manipulative attacks [43].

In this paper, we present our defense against adversarial
attacks on deep networks, referred to as Rank-aggregating
Ensemble of Generative classifiers for robust predictions
(REGroup). At inference time, our defense requires white-
box access to a pre-trained model to collect the pre-
activation responses at intermediate layers to make the fi-
nal prediction. We use the training data to build our gen-
erative classifier models. Nonetheless, our strategy is sim-
ple, network-agnostic, does not require any training or fine-
tuning of the network, and works well for a variety of adver-
sarial attacks, even with varying degress of hardness. Con-
sistent with recent trends, we focus only on the ImageNet
dataset to evaluate the robustness of our defense and report
performance superior to defenses that rely on adversarial
training [28] and random input transformation [41] based
approaches. Finally, we present extensive analysis of our
defense with two different architectures (ResNet and VGG)
on different targeted and untargeted attacks. Our primary
contributions are summarized below:

• We present REGroup, a retraining free, model-
agnostic defense strategy that leverages an ensemble
of generative classifiers over intermediate layers of the
model.

• We model each layer-wise generative classifier as a
simple mixture distribution of neural responses ob-
tained from a subset of training samples. We discover

that both positive and negative pre-activation values
contain information that can help correctly classify ad-
versarially perturbed samples.

• We leverage the robustness inherent in Borda-count
based consensus over the generative classifiers.

• We show extensive comparisons and analysis on the
ImageNet dataset spanning a variety of adversarial at-
tacks.

2. Related Work
Several defense techniques have been proposed to make

neural networks robust to adversarial attacks. Broadly, we
can categorize them into two approaches that: 1. Modify
training procedure or modify input before testing; 2. Mod-
ify network or change hyper-parameters and optimization
procedure.

2.1. Modify Training/Inputs During Testing

Some approaches of defenses in this category are men-
tioned below. Adversarial training [62, 34, 54, 45]. Data
compression [4] suppresses the high-frequency components
and presents an ensemble-based defense approach. Data
randomization [53, 56] based approaches apply random
transformations to the input to defend against adversarial
examples by reducing their effectiveness.

PixelDefend [47] sets out to find the image with the high-
est probability within an ϵ- neighbourhood of the original
image, thereby moving the image back towards distribution
seen in training data. Defense-GAN [44] tries to model the
distribution of unperturbed images and at inference, it gen-
erates an image close to what was provided but without ad-
versarial perturbations. These two methods use techniques
to generate a clean version of the input and pass to the clas-
sifier.

2.2. Modify Network/Network Add-ons

Defenses under this category address the detection of ad-
versarial attacks or cater to both detection and correction of
prediction. The aim of detection only defenses is to high-
light if an example is adversarial and prevent it from further
processing. These approaches include employing a detector
sub-network [33], training the main classifier with an outlier
class [19], using convolution filter statistics [29], or apply-
ing feature squeezing [58] to detect adversarial examples.
However, all of these methods have shown to be ineffective
against strong adversarial attacks [9][46]. Full defense ap-
proaches include applying defensive distillation [39][37] to
use the knowledge from the output of the network to re-train
the original model and improve the resilience of a network
to small perturbations. Another approach is to augment the
network with a sub-network called Perturbation Rectifying
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Network (PRN) [1] to detect the perturbations; if the per-
turbation is detected, then PRN is used to classify the input
image. However, later it was shown that the Carlini Wagner
(C&W) attack successfully defeated the defensive distilla-
tion approach.

2.3. ImageNet Focused Defense Approaches

A few approaches have been evaluated on the ImageNet
dataset, most of which are based on input transformations or
image denoising. Nearly all these defenses designed for Im-
ageNet have failed a thorough evaluation, with a regularly
updated list maintained at [31]. The approaches in [40] and
[30] claimed 81% and 75% accuracy respectively under ad-
versarial attacks. But after a thorough evaluation [2] and
accounting for obfuscated gradients [3], the accuracy for
both was reduced to 0%. Similarly, [55] and [20] claimed
86% and 75% respectively, but these were also reduced to
0% [3]. A different approach proposed in [25] claimed an
accuracy 27.9% but later it was also reduced to 0.1% [16].
For a comprehensive related work on attacks and defenses,
we suggest reader to refer [11].

3. REGroup Methodology
Well-trained deep neural networks have a hierarchical

structure, where the early layers transform inputs to fea-
ture spaces capturing local or more generic patterns, while
later layers aggregate this local information to learn more
semantically relevant representations. In REGroup, we use
many of the higher layers and learn class-conditional gen-
erative classifiers, which are simple mixture-distributions
estimated from the pre-activation neural responses at each
layer from a subset of training samples. An ensemble
of these layer-wise generative classifiers is used to make
the final prediction by performing a Borda count-based
rank-aggregation. Ranking preferences have been used
extensively in robust fitting problems in computer vision
[12, 23, 49], and we show its effectiveness in introducing
robustness in DNNs against adversarial attacks.

Fig. 1 illustrates the overall working of REGroup.
The approach has three main components: First, we use
each layer as a generative classifier that produces a rank-
ing preference over all classes. Second, each of these
class-conditional generative classifiers are modeled using a
mixture-distribution over the neural responses of the corre-
sponding layer. Finally, the individual layer’s class ranking
preferences are aggregated using Borda count-based scor-
ing to make the final predictions. We introduce the notation
below and discuss each of these steps in detail in the sub-
sections that follow.
Notation. In this paper, we will always use ℓ, i and j for
indexing the ℓth layer, ith feature map and the jth input
sample respectively. The true and predicted class label will
be denoted by y and ŷ respectively. A classifier can be rep-

resented in a functional form as ŷ = F(x), it takes an in-
put x and predicts its class label ŷ . We define ϕℓi as the
ℓth layer’s ith pre-activation feature map, i.e., the neural
responses before they pass through the activation function.
For convolutional layers, this feature map ϕℓi is a 2D array,
while for a fully connected layer, it is a scalar value.

3.1. DNN Layers as Generative Classifiers

We use the highest k layers of a DNN as generative clas-
sifiers that use the pre-activation neural responses to pro-
duce a ranking preference1 over all classes. The layer-wise
generative classifiers are modeled as a class-conditional
mixture distribution, which is estimated using only a pre-
trained network and a small subset S of the training data.
Let S contain only correctly classified training samples2,
which we can further divide into M subsets, one for each
class i.e S = {∪My=1Sy}, where Sy is the subset containing
samples that have labels y.

3.1.1 Layerwise Neural Response Distributions

Our preliminary observations indicated that while the ReLU
activations truncate the negative pre-activations during the
forward pass, these values still contain semantically mean-
ingful information. Our ablative studies in Fig. 5 confirm
this observation and additionally, on occasion, we find that
the negative pre-activations are complementary to the posi-
tive ones. Since the pre-activation features are real-valued,
we compute the features ϕℓi

j for the jth sample xj , and de-
fine its positive (P ℓi

j ) and negative (N ℓi
j ) response accumu-

lators as P ℓi
j =

∑
max(0,ϕℓi

j ), N
ℓi
j =

∑
max(0,−ϕℓi

j ).
For convolutional layers, these accumulators represent

the overall strength of positive and negative pre-activation
responses respectively, when aggregated over the spatial di-
mensions of the ith feature map of the ℓth layer. On the
other hand, for the linear layers, the accumulation becomes
trivial with each neuron having a scalar response ϕℓi

j . We
can now represent the ℓth layer by the positive and nega-
tive response accumulator vectors denoted by P ℓ

j and N ℓ
j

respectively. We normalize these vectors and define the
layer-wise probability mass function (PMF) for the positive

and negative responses as Pℓ
j =

P ℓ
j

||P ℓ
j ||1

and Nℓ
j =

Nℓ
j

||Nℓ
j ||1

respectively.
Our interpretation of Pℓ

j and Nℓ
j as a PMF could be jus-

tified by drawing an analogy to the softmax output, which
is also interpreted as a PMF. However, it is worth empha-
sizing that we chose the linear rescaling of the accumulator

1A rank is assigned to each class based on a score. In the case of Im-
ageNet dataset, the class with rank-1 is most preferred/likely class, while
rank-1000 is the least preferred/likely class

2We took 50,000 out of ∼ 1.2 millions training images from ImageNet
dataset, 50 per class.
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vectors rather than directly applying a softmax normaliza-
tion. By separating out the positive and negative accumu-
lators, we obtain two independent representations for each
layer, which is beneficial to our rank-aggregating ensemble
discussed in the following sections. A softmax normaliza-
tion over a feature map comprising of positive and negative
responses would have entirely suppressed the negative re-
sponses, discarding all its constituent semantic information.
An additional benefit of the linear scaling is its simple com-
putation. Algorithm 1 summarizes the computation of the
layer-wise PMFs for a given training sample.

Algorithm 1: Layerwise PMF of neural responses.
H × W represents the spatial dimensions of pre-
activation features. For ℓth convolutional layer the
dimensions of feature maps H ×W = rℓ× sℓ, and
for linear layers the dimensions of neuron output
H ×W = 1× 1.

Input: xj pre-activation features ϕℓi
j ∈ RH×W

for ℓ ∈ [1..n] do
P ℓi
j =

∑
max(0,ϕℓi

j ), ∀ i (sum over H,
W)
N ℓi

j =
∑

max(0,−ϕℓi
j ), ∀ i (sum over H,

W)
end
P ℓ
j ← P ℓ

j + δ, N ℓ
j ← N ℓ

j + δ

Pℓi
j ←

P ℓi
j∑
i Pℓi

j

, Nℓi
j ←

Nℓi
j∑

i Nℓi
j

(PMFs)

3.1.2 Layerwise Generative Classifiers

We model the layerwise generative classifiers for class y as
a class-conditional mixture of distributions, with each mix-
ture component as the PMFs Pℓ

j and Nℓ
j for a given training

sample xj ∈ Sy . The generative classifiers corresponding
to the positive and negative neural responses are then de-
fined as the following mixture of PMFs

C+ℓ
y =

∑
j:xj∈Sy

λjPℓ
j , C−ℓ

y =
∑

j:xj∈Sy

λjNℓ
j (1)

where the weights λj are nonnegative and add up to one
in the respective equations. Here, λj is proportional to the
softmax probability of the sample xj , and δ is the small con-
stant used for numerical stability. We choose the weights
to be proportional to the softmax probability value as pre-
dicted by the network given the input xj . Using the subset
of training samples S , we construct the class-conditional
mixture distributions, C+ℓ

y and C−ℓ
y at each layer ℓ only

once. At inference time, we input a test sample xj , from
the test set T , to the network and compute the PMFs Pℓ

j

and Nℓ
j using Algorithm 1. As our test input is a PMF and

the generative classifier is also a mixture distribution, we
simply use the KL-Divergence between the classifier model
C+ℓ and the test sample Pℓ

j as a classification score as

PKL(ℓ, y) =
∑
i

C+ℓi
y log

(
C+ℓi

y

Pℓi

)
,∀y ∈ {1,. . . ,M}

(2)
and similarly for the negative PMFs

NKL(ℓ, y) =
∑
i

C−ℓi
y log

(
C−ℓi

y

Nℓi

)
,∀y ∈ {1,. . . ,M}

(3)
We use a simple classification rule and select the pre-

dicted class ŷ as the one with the smallest KL-Divergence
with the test sample PMF. However, rather than identify-
ing ŷ , at this stage we are only interested in rank-ordering
the classes, which we simply achieve by sorting the KL-
Divergences (Eqns. (2) and (3)) in ascending order. The
resulting ranking preferences of classes for the ℓth layer are
given below in Eqns. (4) and (5) respectively. Where, Rℓy

+

is the rank (position of yth class in the ascending order of
KL-Divergences in PKL) of yth class in the ℓth layer pref-
erence list Rℓ

+.

Rℓ
+ = [Rℓ1

+ , Rℓ2
+ , ..., Rℓy

+ , ..., RℓM
+ ] (4)

Rℓ
− = [Rℓ1

− , Rℓ2
− , ..., Rℓy

− , ..., RℓM
− ] (5)

3.2. Robust Predictions with Rank Aggregation

Rank aggregation based preferential voting for making
group decisions is widely used in selecting a winner in a
democratic setup [43]. The basic premise of preferential
voting is that n voters are allowed to rank m candidates in
the order of their preferences. The rankings of all n voters
are then aggregated to make a final prediction.

Borda count [6] is one of the approaches for preferential
voting that relies on aggregating the rankings of all the vot-
ers to make a collective decision [43, 24]. The other popular
voting strategies to find a winner out of m different choices
include Plurality voting [52], and Condorcet winner [60]. In
Plurality voting, the winner would be the one who gets the
maximum fraction of votes, while Condorcet winner is the
one who gets the majority votes.

3.2.1 Rank Aggregation Using Borda Count

Borda count is a generalization of the majority voting. In
a two-candidates case it is equivalent to majority vote. The
Borda count for a candidate is the sum of the number of
candidates ranked below it by each voter. In our setting,
while processing a test sample xj ∈ T , every layer acts as
two independent voters based on Pℓand Nℓ. The number
of classes i.e M is the number of candidates. The Borda
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