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Abstract

Convolutional neural networks typically perform poorly
when the test (target domain) and training (source do-
main) data have significantly different distributions. While
this problem can be mitigated by using the target domain
data to align the source and target domain feature rep-
resentations, the target domain data may be unavailable
due to privacy concerns. Consequently, there is a need
for methods that generalize well despite restricted access
to target domain data during training. In this work, we
propose an adversarial semantic hallucination approach
(ASH), which combines a class-conditioned hallucination
module and a semantic segmentation module. Since the
segmentation performance varies across different classes,
we design a semantic-conditioned style hallucination mod-
ule to generate affine transformation parameters from se-
mantic information in the segmentation probability maps of
the source domain image. Unlike previous adaptation ap-
proaches, which treat all classes equally, ASH considers the
class-wise differences. The segmentation module and the
hallucination module compete adversarially, with the hal-
lucination module generating increasingly “difficult” styl-
ized images to challenge the segmentation module. In re-
sponse, the segmentation module improves as it is trained
with generated samples at an appropriate class-wise dif-
ficulty level. Our results on the Cityscapes and Mapil-
lary benchmark datasets show that our method is compet-
itive with state of the art work. Code is made available at
https://github.com/gabriel—t jio/ASH,

1. Introduction

Semantic segmentation [2] involves classifying image
pixels into a given category. While deep learning has vastly
improved semantic segmentation performance, it requires
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Figure 1: Illustrated summary of our proposed Adversarial
Semantic Hallucination approach (ASH). Previous domain
adaptation works require target domain data during training.
Since target domain data are unavailable in our problem set-
ting, we generate additional data with randomized styles via
style transfer with ASH.

large amounts of pixel-level annotated data. Pixel-level
annotation is time-consuming and error-prone, making it
impractical for real-life applications. For training vision
systems in autonomous vehicles, synthetic data are read-
ily available and easily labeled. However, synthetic data
(source domain data) differ visually from real-world driv-
ing data (target domain data). As a result of this domain
gap, models that are trained solely on synthetic data per-
form poorly on real-world data.

Domain adaptation methods [T}, [8] 30, [36]
seek to minimize the domain gap between the source do-
main and target domain by utilizing unlabeled target do-
main data. Unfortunately, in Domain Generalization (DG)
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scenarios [37, 26l (S| 4], target domain data are not acces-
sible during training. With limited access to target data,
it becomes quite difficult, if not impossible, to apply pre-
vious unsupervised domain adaptation methods [} 8 12,
19,30} 122} 36]. To solve this problem, hallucination-based
approaches [16} 37, 20] have been proposed. These meth-
ods generate augmented images by varying texture infor-
mation in the source domain images. By randomizing these
domain variant features, the trained model becomes more
sensitive to domain invariant features, such as shape infor-
mation. The increased sensitivity to domain invariant fea-
tures helps the model generalize better to the unseen target
domain data. For example, Adversarial Style Mining [20]
(ASM) uses a single target domain image to hallucinate ad-
ditional training images. The global statistics of the sin-
gle target domain image are used to adaptively stylize the
source domain images. The “difficulty” of the stylized im-
ages is progressively increased via adversarial training.

Most prior works [16, [37, 20] conduct hallucination in
a global manner and fail to consider the statistical differ-
ences between different classes. In real scenarios, datasets
might be imbalanced because of collection and/or annota-
tion difficulties. Consequently, classes with fewer examples
are more difficult to predict accurately. For example, in the
driving datasets [27, 128\ 6], a larger proportion of pixels cor-
respond to “road”, “building”, or “sky” classes compared to
minority classes such as “pole” or “light”. We argue that
uniformly stylizing all classes without considering their dif-
ferent characteristics may lead to a sub-optimal result.

Prior works, such as [18], (7], tried to address this prob-
lem by leveraging focal loss [[18] or class balanced loss [7].
However, these approaches still have their limitations. Class
balancing methods like focal loss [18] assume that source
and target domain distributions are similar, which does not
always hold true [14]. Additionally, hyperparameter selec-
tion for these methods [18| 7] is nontrivial and the hyperpa-
rameters may not be transferable between datasets.

To address these limitations, we propose a new method,
Adversarial Semantic Hallucination (ASH), for domain
generalized semantic segmentation. Inspired by ASM [20],
we further extend it by using semantic information to guide
adversarial hallucination and improve generalizability. The
semantic information from the segmentation probability
map is used to differentiate between classes based on their
segmentation difficulty and generate transformation param-
eters for the style features. ASH stylizes the source domain
images with these transformation parameters. Next, ASH
collaborates with a discriminator in an adversarial manner
by adaptively generating challenging data for training the
segmentation network. With our method, the segmentation
network not only becomes better at differentiating between
classes, but also demonstrates good generalizability across
different domains.

Our main contributions are summarized as follows:

1) We present ASH for domain generalized semantic
segmentation. ASH leverages semantic information to con-
duct a class-conditioned stylization for source domain im-
ages, making the trained model generalize better. Unlike
previous work such as ASM [20] which utilizes stylization,
our method does not need any target domain data during
training and thus is more practical. Additionally, our ap-
proach also considers the different characteristics between
classes instead of treating them equally.

2) We conduct extensive domain generalized semantic
segmentation experiments to test the efficacy of ASH, in-
cluding domain generalization from GTAS [27]] or SYN-
THIA datasets [28] — the Cityscapes [6] or Mapillary
benchmark datasets [23]. The experimental results demon-
strate the efficacy of ASH even when target data are not
available during training.

2. Related Work

In this section, we briefly survey previous works that are
most related to ours, including unsupervised domain adap-
tation and generative adversarial networks.

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) is a subset of
transfer learning. Given labeled source data and unlabeled
target data, UDA aims to train a network to achieve sat-
isfactory performance on target domain data. Previous
works [30, 18] align the feature representations of the source
and target domains by minimizing the discrepancy between
the two domains. Following this alignment approach, the
knowledge learned from the source domain can be ap-
plied to the target domain. UDA methods can be gener-
ally divided into three categories, namely pixel-level align-
ment, feature-level alignment, and output-level alignment.
Pixel-level domain adaptation [1] transforms the source do-
main images to visually mimic the target domain images.
The transformed source domain images are included dur-
ing training. Alternatively, target-to-source image trans-
lation has also been explored [36l]. Different from these
approaches, our method reduces overfitting to textural fea-
tures in the source domain data instead of generating data
that mimics either domain. Feature-level domain adapta-
tion [8} 12, [19] aligns the feature representations across do-
mains, making the feature representations extracted from
the source and target domain indistinguishable. This ap-
proach has been studied for image classification [8] and se-
mantic segmentation [19]. Output-level domain adaptation
[30} 22]] maximises the similarity between domains at the
output level. Tsai et al. [31] and Luo et al. [21] demon-
strated that output-level alignment performs better com-
pared to feature-level alignment for semantic segmentation.
Recently, source-free adaptation methods such as [[17] adapt
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a model pretrained on source domain data to the target do-
main. The problem setting for such work restricts access
to source domain data instead of target domain data after
pretraining the model. In contrast, our method does not use
target domain data during training. The work most related
to our approach is ASM [20]. Luo et al. [20] aim to solve
unsupervised domain adaptive semantic segmentation when
limited unlabeled target data are available. Both ASM [20]
and our approach utilize a style transfer strategy to generate
augmented data. However, there are significant differences
between the two works: (1) ASM requires target data (one
single target domain image) for domain alignment. Con-
versely, our approach does not need any target data for train-
ing, making it more applicable for real-life scenarios. (2)
ASM uses a global stylization approach. The stylized im-
age is globally updated with the target task prediction loss
on the stylized data. Consequently, pixels from different
classes are uniformly stylized, which could reduce perfor-
mance for the ‘harder’ classes on target domain data. In
contrast, we consider the class-wise differences and utilize
the semantic information for a class-conditioned process.
The experimental results reported in Tables[T|and 2] demon-
strate the advantages of ASH compared to ASM.

2.2. Generative Adversarial Networks (GANSs)

GANSs have garnered much attention since their intro-
duction [9] and have been used in a wide range of applica-
tions, such as image generation [[15] and image translation
[38]. GAN architecture typically comprises of a generator-
discriminator pair optimized in a min-max fashion. The
generator is trained to synthesize realistic images while the
discriminator is trained to distinguish between the synthe-
sized images and the real images. Though GANs have been
used for unsupervised domain adaptation [22}[1]], the lack of
target domain data for the domain generalization problem
setting means that some modifications are required. There-
fore, we train the discriminator to distinguish between seg-
mented output from the source domain images and the ran-
domly stylized source domain images.

Next, we apply the principle behind conditional GANs
[33]] for greater control over the stylization extent of the
source domain image. Conditional GANs give the user ad-
ditional control over the generated output via prior infor-
mation to the generator. We were also further inspired by
recent works [24} 134] which demonstrate prior information
improves synthesized image quality. Wang et al. [34] lever-
age semantic information to improve output image quality
during super- resolution. The probability map serves as a
prior and is used as an input for spatial transformation of
the image features. Similarly, Park et al. [24] condition the
synthesized GAN output with semantic information during
feature transformation. This enables their approach to gen-
erate realistic images, while also allowing the user to deter-

mine the content of the generated images.

We extend existing domain adaptation work by incorpo-
rating semantic information as a prior. Our ASH module
is lightweight and only consists of a few convolutional lay-
ers to: 1) map the semantic information to latent space, and
2) compute the transformation coefficients for the style fea-
tures. Furthermore, ASH is required only during training
and therefore does not increase computation cost during in-
ference.

3. Method

In this section, we firstly discuss our problem setting and
preliminary background. We then provide the technical de-
tails for ASH.

3.1. Problem Setting

The problem setting for domain generalization is de-
fined as follows: We have source domain data Xg,.. with
labels Yg,. during training, but we cannot access target
domain data X¢grget- The source domain and target do-
main have different data distributions (i.e P(X gp¢, Yare) 7
P(Xtarget,Ytarget)). Our goal is to develop a model G
that correctly predicts the target domain labels after train-
ing.

3.2. Preliminary background

Our method can be divided into 2 stages. In the first
stage, our approach incorporates the style transfer method
[L3]. We augment the source domain data X s,. by stylizing
it with images from a paintings dataset X s¢,, i.e., Painter
by Numbers. The style features are conditioned with se-
mantic information obtained from the segmentation output
of source domain data. In the second stage, we separately
train the different components: an ASH module, a segmen-
tation network and a discriminator.

Similar to [13]], we use a pretrained VGG19 network to
extract features from the source domain images and style
images. We then use adaptive instance normalization [13]:

fs’r'c - ,U(fsrc)

AdaIN(fsrm fsty) = U(fSt’y) ( O'(f )

> + p(Foty)
(1)

which re-normalizes the channel-wise mean y(.) and vari-
ance o(.) of the content features (i.e source features fs;,c)
to match that of the style features fsy,,.

Firstly, we aim to improve the generalizability of the
trained segmentation model by introducing randomized tex-
ture variations during training. At each iteration, we ran-
domly select a style image to stylize the source image. By
stylizing the source image with randomized style informa-
tion, the model learns to disregard texture information.

Next, we increase the diversity of the style features by
introducing orthogonal noise [35]. Orthogonal noise allows
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Figure 2: Illustrated workflow for generating stylized source domain images with Adversarial Semantic Hallucination (ASH).
A pretrained VGG encoder extracts features from the source and style images. ASH conditions the style features with
semantic information from the segmented source domain image. The semantic information is used to generate the element-
wise scale and shift parameters v and 3. These transformation parameters adjust the style features based on the predicted
class in the segmentation output. Since the transformation parameters are only intended to perturb the style features, we
include a non-zero constant §. The content features are re-normalized with the transformed style features via Adaptive
Instance Normalization (AdaIN). The merged features are then decoded to output stylized source images.

us to preserve the inner product of the style features, or its
“inherent style information”, while simultaneously increas-
ing the diversity of the style features [35]. We regularize
the segmentation output with label smoothing before condi-
tioning the style features with the ASH module.

3.3. Adversarial Semantic Hallucination

As shown in Figure [2] our framework comprises a seg-
mentation network, a discriminator and an ASH module.
The ASH module conditions the style features with seman-
tic information from the source data segmentation output.

Prior hallucination works such as [20] conduct the styl-
ization without considering class-wise differences, which
might be sub-optimal. We take a different approach by con-
ducting the hallucination conditioned on semantic informa-
tion. The semantic information is used to compute the scale
~ and shift B8 transformation parameters. These parame-
ters transform the style features in latent space. Depend-
ing on the predicted class for each pixel, ASH is trained to
maximize adversarial loss by assigning different scale and
shift transformation parameters. We use adaptive instance
normalization to merge the content features with the
transformed style features.

We generate the scale vy and shift 8 coefficients from the
segmentation output G(Xs,c), as shown in the following
equation:

v,8 = ASH(G(Xsre)) 2)
We then perturb the style features fs¢, to generate per-
turbed style features f;ty:

Fory =2 fory (Y +06)+B 3)

where § is a constant perturbation Valueﬂ We use a nonzero
value to preserve the style features during stylization. Z
is the orthogonal noise. We generate the stylized source
domain images X s¢y1i2eq With the following equation:

Xstylized = Dec(0~5fsrc + 0~5AdaIN(fsrc‘7 f;ty)))) 4)

where Dec is a pretrained decoder, AdalN is the adaptive
instance normalization equation defined in equation[T} Ad-
versarial loss is given by the following equation:

Ladav (G, D,ASH) = — E[log(D(G(Xsre)))] )
— Eflog(1 — D(G(Xstytized)))]

where G is the segmentation network and D is the discrim-
inator. We optimize the ASH module by minimizing the
following loss function:

Lasi (G, D, fare, Fatyte) =

— Lodv (G, D, ASH)

— Lo(fares AdAN(fare, fary)) ©)
+ L1 (Farys AdAN(Farc, fory)

— Loo(Fsrc, AdaIN(fore, Fary))

We use the formula for content £, and style L loss as de-
fined in [13]]. L., L41 and L4, are described as:

Le= ‘ fsrc - AdaIN(fS"‘Cv f.;ty)

)

‘ 2

Ls1= Hﬂ(f;tyte) — u(AdaIN(fsre, f;t'y))H2 (8)

Twe setitas 1
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Algorithm 1 Adversarial approach for domain generalization

Input: Source domain data X,.., Source domain label Y., Style image X s¢,, Segmentation network G, Discriminator
D, Encoder Enc, Decoder Dec, Adversarial Semantic Hallucination ASH, Adaptive Instance Normalization (AdalN),

Number of iterations Iter,um

Output: Optimized segmentation network for domain generalization

1: for O, ..., Iter,ym do

2:  Generate source features fsr. with pretrained encoder Enc(Xspc).

’

Generate perturbed style features fy,,

R AN O

Generate style features fseye With pretrained encoder Enc(X sy ).

Multiply style features fg¢,, with an orthogonal noise matrix Z sampled from a normal distribution
Obtain scale 4 and shift B coefficients from segmentation output G (X g;c)

from fs, with scale v and shift B coefficients.

Derive merged source features frmerged = AdaIN(fsre, f;ty) .
Generate stylized source image Xstytized = Dec(0.5 fmerged + 0.5 Fsrc)-
Train ASH by maximizing the loss function Lssy (G, D, fsre, f;ty).

10:  Train G with source domain data by minimizing segmentation 10ss Lscq(G, Xgre, Yere)-
11:  Train G with stylized source domain data by minimizing adversarial loss. L,q, (G, D, X stytized, ASH).
12:  Train D by minimizing adversarial loss L4, (G, D, Xstytized; Xsrc, ASH).

13: end for

Loz = [i(Fire) = (AGIN(Fare Fi )|, )

L. is minimized to preserve content information from the
source image. We minimize £,; to maximize the style in-
formation retained from the style images. £ is maximized
to minimize the style information retained from the source
image.

The segmentation network G [22] is trained to minimize
segmentation loss L., and adversarial loss L,q,. The dis-
criminator network D is trained to maximize adversarial
loss L,4.. Both loss functions are based on the formulation
from [22]. Segmentation loss L. is derived from comput-
ing the cross entropy loss for the segmentation output.

The training workflow is summarized in Algorithm [I}
The weights for the pretrained encoder and decoder that are
used during stylization are not updated during training. We
only need the segmentation network for evaluation, neither
the ASH module nor discriminator are required after train-

ing.

4. Experiments

In this section, we discuss the experimental details. We
first describe the datasets utilized in this work in Section.
M1 Secondly, we provide implementation details in Sec-
tion[.2] We provide details for all experimental results in
Section 4.3]- A.5] Section 3] presents the performance of
our approach on the benchmark datasets and compares it
with the state of the art unsupervised domain adaptation and
domain generalization methods. Section {f.4] shows the ef-
fect of the hyperparameters on segmentation performance.
Section 4.5 shows the ablation studies.

4.1. Datasets

We use the synthetic datasets GTAS [27], SYNTHIA
[28] as source domains, the real-world driving datasets
Cityscapes [6] and Mapillary [23] as the target domain.
GTAS [27] has 24,966 images with resolution 1914 x 1052
pixels, while SYNTHIA [28]] has 9,400 images with 1280 x
760 pixels. Models are trained on the labeled source do-
main images and evaluated on the Cityscapes and Mapillary
validation set. Similar to [13], we use a paintings dataset
(Painter by Numbers, which is derived from WikiArt) to
provide 45,203 style images.

4.2. Implementation details

We implement our approach with the PyTorch library
[25] on a single 16GB Quadro RTX 5000. The GTAS im-
ages are resized to 1280 x 720 pixels and the SYNTHIA im-
ages are resized to 1280 x 760 pixels. We use the Deeplab-
v2 segmentation network [2]] with ResNet-101 [10]] back-
bone pretrained on the ImageNet dataset [29]. The discrim-
inator network architecture is similar to the one used in [22].

We use stochastic gradient descent (SGD) to optimize
the segmentation network (Deeplab-v2) and ASH module.
Adam is used to optimize the discriminator network. All
optimizers have a momentum of 0.9. The initial learning
rate for the segmentation network and the discriminator net-
work is 2.5 x 10™% and 1.0 x 10~%. We train the network
for 100,000 iterations.

4.3. Experimental studies

We compare our method with 5 representative methods
(3 22) 32} 120, [37] and present the results in Tables E] and
2l 13,122, 32] are UDA approaches where target domain
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GTAS — Cityscapes

] < k=] 5 = = 51 %) = o o % 5 3 - K § ) %
Advent [32] 2019 | R 8300 180 72.00 820 3.60 1620 2290 9.80 7930 17.10 7570 35.10 15.80 70.90 30.90 3530 0.00 1640 24.90 | 32.60
MaxSquare 2019 | R 7680 1420 77.00 18.80 14.10 1450 3030 18.00 79.30 11.70 70.50 53.00 2420 68.70 2530 14.00 130 20.60 25.50 | 34.60
3
CLAN [22] 2019 | R 8720 20.10 77.90 2560 19.70 23.00 3040 2250 76.80 2520 7620 55.10 28.10 8270 30.70 36.90 0.80 26.00 17.10 | 40.10
ASMI20. 2020 | R 5620 000 7.00 060 100 030 070 060 1380 0.10 001 008 004 120 050 070 020 000 000 | 4.40
Domain 2019 | R - - - - - - - - - - - 42.53
Rand.[37
ASH (Ours) 2021 | R 8830 19.80 78.80 23.60 19.50 24.40 3030 2470 79.10 27.00 7440 5640 2790 8340 3640 3840 0.80 2250 29.80 | 41.30
ASH 2021 | R 8740 17.00 77.70 20.60 17.80 22.80 30.10 24.50 7870 24.60 7270 55.60 26.50 81.50 3220 37.70 1.10 21.70 20.50 | 39.50
(Uni.Sem.Info.

GTAS5 — Mapillary

ASH 2021 | R 8147 2122 7437 21.78 2497 32.82 343 2818 73.02 38.14 90.68 56.21 38.64 73.63 3739 3727 751 359 36.79 | 44.44
Domain 2019 | R - - - - - - - - - - - - - - - - - - - 38.05
Rand.[37

Table 1: Segmentation performance of Deeplab-v2 with Resnet-101 backbone trained on GTAS, tested on Cityscapes and
Mapillary. “ASH Uni.Sem.Info”- ASH with uniform class-wise probability map (identical values across all classes and

pixels).
SYNTHIA — Cityscapes
s 3
. =
= | ; _ = < 4 I 2
Advent [32 2019 | R 7230  30.70 6520 4.10 5.40 5820 7720 5040 10.10 ~ 70.00 13.20 4.00 27.90 | 37.60  31.80
MaxSquare [3 2019 | R 57.80 23.19 73.63 8.37 11.66 ~ 73.84 8192 56.68 20.73 = 52.18 14.71 8.37 39.18 | 40.17 3496
CLAN [22] 2019 | R 6390 2590 72.10 1430 12.00 7250 7870 = 52.70 1450 6220 25.10 1040 26.50 | 40.90  34.90
ASM [20] 2020 | R 7540 1850  66.60 0.10 0.80 67.00 77.80  15.60 0.50 11.40 1.30 0.03 0.20 25.80  21.60
Domain Rand.[37] 2019 R - - - - - - - - - - - - - - 37.58
ASH 2021 R 7020 2790 7540 16.00 1520 7420 80.10 5500 2040 71.10 29.60 1090 3820 | 4490  38.69
ASH (Segmentation | 2021 R 6810 2543 7498 1293 1298 7329 7881 5536 2213  69.77 3045 9.60 36.75 | 43.89  37.88
Loss)
ASH (Ground truth) | 2021 R 6337 2393 7.30 1458 11.09 7792 80.60 5477 1342 6834 2649 1271 2473 | 4225  36.29

Table 2: Segmentation performance of Deeplab-v2 with Resnet-101 backbone SYNTHIA—Cityscapes. ASH (Ground truth)
refers to stylized images conditioned with ground truth labels. “ASH (segmentation loss)” refers to ASH trained with seg-

mentation loss for the stylized images Lqcq (G, Xsty, Yore)

Method Venue mloU16
Advent [32] CVPR 2019 29.33
CLAN [22] CVPR 2019 36.91
Domain Rand.[37] ICCV 2019 34.12
ASH - 38.34
ASH (segmentation loss) - 38.54
ASH (6=0) - 37.61

Table 3: Mean IoU (16 classes) for the segmentation net-
work (Deeplab-v2 with Resnet-101 backbone) SYNTHIA
—Mapillary.

data are available during training; [20] aims to align do-
mains with limited target domain data and [37] is a domain
generalization approach. Maximum Squares Loss [3] im-
proves upon semi-supervised learning by preventing easier
classes from dominating training, CLAN [22] seeks to re-
duce the difference between learned feature representations
from the source and target domain, while ADVENT [32]
aims to reduce the prediction uncertainty for target domain
data. ASM [20] generates additional training data from a
target domain image under one shot UDA approach. Do-

main randomization [37] stylizes multiple instances of a
source domain image with style images obtained from Ima-
geNet [29] for each iteration and performs pyramidal pool-
ing on the extracted features to maintain feature consistency
between the different stylized instances.

We also compare ASH with Domain Randomization
(DR) [37], and report the results in Tables[I} [2]and 3] ASH
outperformed DR on SYNTHIA—Cityscapes and SYN-
THIA/GTAS5—Mapillary. There exist key differences be-
tween ASH and DR. DR generates 15 stylized images for
each source domain image, while ASH only stylizes a single
source domain image once per training iteration. Further-
more, DR performs spatial pyramid pooling on the extracted
features. All these aspects increase computational require-
ments. With much less computational cost, our approach
still achieves comparable results for GTA5—Cityscapes
and superior performance for GTA5—Mapillary (Table [T).
For a direct comparison with SFTGAN [34] we show results
for ASH (6 = 0) (Table EI) In contrast with our approach,
Wang et al. [|34] did not include a nonzero value during fea-
ture transformation in their work on super-resolution. We
observe that performance decreases when 6 = 0. The de-
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Figure 3: Qualitative comparison of segmentation output for SYNTHIA — Cityscapes. For each target domain image, we
show the corresponding results for “Source only”, “ASM” Adversarial Style Mining [20]], “ASH”(our proposed method) and

the ground truth labels.
A 0.1 0.01 0.001 0.0001 Baseline  Stylization  Orthogonal ASH mloU
mloU 33.33 3541 38.69 37.53 Noise
v 36.6
Table 4: Segmentation performance for the segmentation v v 40.1
task SYNTHIA—Cityscapes with varying adversarial loss v v v 40.8
hyperparameter magnitudes. v v v v 41.3

creased performance may be caused by loss of some style
features when scale perturbation v = 0. Furthermore, Fig-
ure 4] shows that v = 0 for some classes. The lack of styl-
ization for these classes may have worsened performance,
indicating the necessity of a nonzero § value during styliza-
tion.

We also trained ASH with additional supervision (ASH seg-
mentation loss) and show the results in Tables [2] and [3]
We observe comparable performance with ASH. Next, we
trained a ASH model that receives uniform semantic infor-
mation across all classes (ASH Uni.Sem.Info) (Table [I).
The reduced performance highlight the importance of se-
mantic information. Finally, we conditioned the stylization
with ground truth instead of segmentation output (Table [2).
Segmentation performance was lowered, suggesting that the
segmentation output contains useful information absent in
the ground truth, which is unsurprising given the regulariz-
ing effect of soft labels during model distillation .

4.4. Hyperparameter evaluation

In Table[d] we evaluate the effect of varying the adversar-
ial loss weights on segmentation performance. Our results
show that performance decreases much more when weights
are increased than when the weights are decreased.

4.5. Ablation study

In Table 5] we compare our methods with CLAN as the
baseline method. Training with stylized images improves
segmentation performance on target domain data. Since

Table 5: Ablation study for GTAS—Cityscapes. The base-
line approach is the CLAN method trained on source
domain data. Stylization refers to the model trained with
additional stylized data, ASH is our proposed method.

Lc L:sl ESQ mloU

36.91
v 37.13
v v 38.27
v v v 38.69

Table 6: Ablation study for the ASH sublosses from equa-
tion[6] SYNTHIA—Cityscapes

stylization varies texture information, there is less overfit-
ting to these domain variant features. This improves the
generalizability of the trained model. Adding orthogonal
noise to the style features improves performance, which
could be caused by the increased diversity of the style fea-
tures. In Table [6] we evaluate the effect of the different
adversarial sublosses. While omitting any of the sublosses
worsens performance, L¢; appears to have the greatest ef-
fect. Since L determines the amount of style information
retained from X, this suggests that the degree of styliza-
tion greatly influences generalization performance.
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Figure 4: Plots of L1 norm of shift 3 and scale ~y coefficients versus number of iterations during training. a) Plot of L1 shift
coefficients 3; b) Plot of L1 shift coefficients with class-wise normalization 3; ¢) Plot of L1 scale coefficients ~y; d) Plot of
L1 scale coefficients v with class-wise normalization. Corresponding semantic label image(inset).

5. Discussion
5.1. Scale and shift coefficients

We further investigate the scale and shift coefficients by
class (Figure ). We calculate the L1 norm of all the scale
and shift coefficients for each class in a single source image.
This was obtained from the change in the L1 norm after ze-
roing the contribution of that class.

As expected, majority classes contribute more to the scale
and shift coefficients than minority classes. In particular,
“road” and “sky” classes have a larger effect on scale and
shift coefficients compared to other classes such as “pole”
and “light” (Figured]a,c). Since larger scale and shift coef-
ficients are proportionate to the change in the style features,
this suggests that “road” and “sky” classes undergo a larger
degree of stylization compared to “pole” and “light” classes.
These observations lead us to suggest that the ASH module
selectively stylizes classes that occupy a large proportion
of pixels in the predicted segmentation output for a given
image (e.g “road”, “sky”). Since the ASH module is opti-
mized to generate stylized images that maximize adversarial
loss, it appears that the network stylizes majority class pix-
els more than minority class pixels to maximize adversarial
loss by increasing task difficulty.

Furthermore, several classes have negligible scale and shift
coefficients.  Although these classes (e.g “vegetation”,
“pole”) are present in the segmentation output, regions cor-
responding to these classes do not undergo significant styl-
ization compared to the majority classes. Classes such as
“vegetation” and “pole” do not vary considerably in terms
of colour information or texture. Consequently, stylizing
these classes does not significantly affect the adversarial
loss, which might explain the small variations in scale and
shift coefficients.

5.2. Normalized scale and shift coefficients

We normalize the class-wise change in scale and shift
coefficients by the number of pixels predicted for each
class. This was done to provide greater clarity on the styl-
ization for minority classes, since minority classes (e.g.

“pole”, “light”) have much fewer pixels compared to ma-
jority classes (e.g. “road”, “building”).

While it may not be apparent from the plots in Figure 4]
a and c, classes that occupy a smaller area in the image also
undergo stylization. We observe that “road” and “building”
classes have smaller absolute normalized shift and scale co-
efficients, while “terrain” , “light” and “sign” classes have
much larger absolute normalized L1 coefficients (Figure []
b,d). These results show that almost all classes, with the
exception of classes such as ’vegetation’, do undergo styl-
ization, though majority classes are generally stylized to a
greater extent compared to miniority classes.

6. Conclusions

In this paper, we introduce the adversarial style halluci-
nation network, which addresses the problem of adapting to
an unseen target domain. By using an adversarial approach
conditioned on semantic information, ASH can adaptively
stylize the source domain images. Additionally, using se-
mantic information allows ASH to account for class-wise
differences during stylization instead of treating all classes
equally. Experimental results demonstrate the efficacy of
our proposed method, showing it to be competitive with
state-of-the-art work.
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