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Figure 1: Cross-site adaptation of the proposed one-shot segmentation vs. Fully Supervised segmentation. Our method
uses volumetric self-supervised learning for style transfer by leveraging unlabeled data. Zoom in for the best view.

Abstract

In medical image segmentation, supervised deep net-
works’ success comes at the cost of requiring abundant
labeled data. While asking domain experts to annotate only
one or a few of the cohort’s images is feasible, annotating
all available images is impractical. This issue is further
exacerbated when pre-trained deep networks are exposed to
a new image dataset from an unfamiliar distribution. Using
available open-source data for ad-hoc transfer learning or
hand-tuned techniques for data augmentation only provides
suboptimal solutions. Motivated by atlas-based segmenta-
tion, we propose a novel volumetric self-supervised learning
for data augmentation capable of synthesizing volumetric
image-segmentation pairs via learning transformations from
a single labeled atlas to the unlabeled data. Our work’s
central tenet benefits from a combined view of one-shot gen-
erative learning and the proposed self-supervised training
strategy that cluster unlabeled volumetric images with sim-
ilar styles together. Unlike previous methods, our method
does not require input volumes at inference time to synthesize
new images. Instead, it can generate diversified volumetric
image-segmentation pairs from a prior distribution given a
single or multi-site dataset. Augmented data generated by

our method used to train the segmentation network provide
significant improvements over state-of-the-art deep one-shot
learning methods on the task of brain MRI segmentation.
Ablation studies further exemplified that the proposed ap-
pearance model and joint training are crucial to synthesize
realistic examples compared to existing medical registra-
tion methods. The code, data, and models are available at
https://github.com/devavratTomar/SST/.

1. Introduction

Automated medical image segmentation, for example, to
localize anatomical structures, is of great importance for dis-
ease diagnosis or treatment planning. Fully supervised deep
neural networks (DNNs) [31, 38] achieve state-of-the-art
results when trained on large amounts of labeled data. How-
ever, acquiring abundant labeled data is often not feasible,
as manual labeling is tedious and costly. Using available
open-source data for domain adaptation [41, 5, 4] or hand-
tuned approaches for augmentation only provides suboptimal
solutions. Furthermore, the cross-modality adaptation meth-
ods [41, 42, 6] usually rely on fully labeled source datasets.
Medical images can vary significantly from institution to
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institution in terms of vendor and acquisition protocols [25].
As a result, the pre-trained deep networks often fail to gen-
eralize to new test data that are not distributed identically
to the training data. Furthermore, although hand-tuned data
augmentation (DA) techniques [1, 32] caused improvement
in segmentation accuracy [37] partially, manual refinements
are not sustainable, and augmented images have limited
capacities to cover real variations and complex structural
differences found in different images. Therefore, few-shot
learning [35, 40] or self-supervised learning [10, 18] based
approaches that alleviate the need for large labeled data
would be of crucial importance. However, these approaches
have not been explored much for low labeled data regime
medical image segmentation, e.g., one-shot scenarios. An-
other classical medical imaging approach often used to re-
duce the need for labeled data for synthesis and segmentation
purposes is an atlas-based approach [7, 2, 26]. In this ap-
proach, an atlas is used to register each image and warp
one into another (labels undergo the same transformation).
One atlas (with its label) is enough for the procedure; how-
ever, one can utilize more if available to improve accuracy.
Nevertheless, heterogeneity of medical images causes inac-
curate warping and, consequently, erroneous segmentation.
This heterogeneity issue is even more pronounced for the
multi-site medical dataset. Recently, atlas-based approaches
empowered by deep convolutional neural networks (CNNs)
[50, 14, 49] enable the development of one-shot learning
segmentation models.

Among recent one-shot learning methods, two are the
most relevant to ours [50, 44]. In the first work, Zhao et al.
[50] proposed a learning framework to synthesize labeled
samples using CNN to warp images based on atlas. However,
[50] only recreates exact styles/deformations presented in
the dataset without inducing diversity. Furthermore, train-
ing includes two separate steps for spatial and appearance
transformations bringing extra computational overhead. In
the second work [44], a one-shot segmentation method has
been proposed based on the forward-backward consistency
strategy to stabilize the training process. Nonetheless, since
the atlas’ style does not match the unlabeled image style, this
results in imprecise registration and imperfect segmentation.
In summary, our main contributions are as follows:

• We propose a novel volumetric self-supervised con-
trastive learning to learn style representation from un-
labeled data facilitating registration and consequently
segmentation task in the presence of intra-site and inter-
site heterogeneity of MR images (see Fig. 1);

• Unlike current state-of-the-art methods, our method
does not require input volumes at inference time to
synthesize new images. Instead, it can generate diver-
sified and unlimited image-segmentation pairs by just
sampling from a prior distribution;

• Previous methods train the spatial and appearance mod-
els separately, resulting in sub-optimal solutions com-
pared to our joint optimization of all modules. Our
method achieved state-of-the-art one-shot segmentation
performance on two brain T1-weighted MRI datasets
and improved the generalization ability for cross-site
adaptation scenarios.

2. Related Work
Data Augmentation. Various data augmentation tech-

niques have been developed to compensate for the extreme
scarcity of labeled data encountered in medical image seg-
mentation [9, 34, 50]. Augmentation approaches range from
geometric transformations [31, 33] to data-driven augmen-
tation methods [17, 27]. While former methods are often
difficult to tune as they have limited capacities to cover
real variations and complex structural differences found in
images, latter approaches often learn generative models to
synthesize images to combine with real images and train
the segmentation model. However, variations in shape and
anatomical structures can negatively impact their perfor-
mance, especially when little training data is available. In
this regard, image registration has been effective in approxi-
mating deformations between unlabeled images so that the
augmented images with plausible deformations can be ob-
tained [50, 48, 8]. The augmented images then allow training
deep segmentation models with few labeled examples in a
semi-supervised manner. Disappointingly, heterogeneity of
medical images often yields inaccurate warping between
the moving image and the fixed image and, consequently,
inaccurate segmentation. Olut et al. [34] proposed an aug-
mentation method to leverage statistical deformation models
from unlabeled data via principal component analysis. Shen
et al. [39] proposed a geometric based image augmentation
method that generates realistic images via interpolation from
the geodesic subspace to estimate the space of anatomical
variability. He et al. [19] proposed a Deep Complementary
Joint Model (DeepRS) for medical image registration and
segmentation.

Image Segmentation in Low Data Regimes. Self-
supervised learning and few-shot learning are two facets
of the same problem: training a deep model in low labeled
data regime. These approaches have been used for sparsely
annotated images for segmentation but without much success.
The former often rely on many training classes to avoid over-
fitting [43, 40], while the latter requires fine-tuning on suffi-
cient labeled data before testing [16, 45]. Deep atlas-based
models [3, 50, 44, 13, 2, 26] using a single atlas or multi-
atlas tackled weakly-supervised medical image segmentation.
Balakrishnan et al. [3] developed VoxelMorph, which aims
to estimate pairwise 3D image registration through a learned
CNN-based spatial transformation function. In a one-shot
learning context, it learns to register a labeled atlas to any
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Figure 2: Schematic description of the training phase. The Appearance Model applies the target image’s style to the
source image using its style code predicted by the Style Encoder, which is trained in parallel using self-supervised volumetric
contrastive loss. Then, the Flow Model non-linearly warps the style translated source image to the target image. This allows
backpropagation of supervision signals to all three models. Independently, Flow AAE maps the flow fields corresponding
to the base image generated by using the trained Flow model and Appearance model to a normally distributed latent space.
Dstyle and Dflow are trained in an adversarial manner to ensure that the style codes and the flow codes are normally distributed.

other unlabeled volume. This model suffers from variance
in voxel intensity confusing the spatial transformer. In this
regard, a similar unsupervised method [13] has been pro-
posed that combines a conventional probabilistic atlas-based
segmentation with deep learning for MRI scan segmentation.
More recently, few deep models [50, 44] explore the one-
shot setting for medical image segmentation. Nevertheless,
these methods either use samples from a single site (hospi-
tal) [44] or aggregate data from multiple sites [50] without
cross-dataset transfer learning capability.

3. Method

We first recap the concept of our proposed one-shot atlas-
based medical image segmentation. We formulate the syn-
thesis of novel volumetric images and their corresponding
segmentation labels as a learned random spatial and style de-
formation of the given single labeled volumetric atlas image
(referred to as base image) from learned latent space. We
employ a Style Encoder (Sec. 3.1) that learns to cluster sim-
ilar styled images together in a self-supervised manner using
volumetric contrastive loss by adapting Momentum Contrast
[18] while imposing a normal distribution prior on the latent
style codes using adversarial training [28]. The Appearance
Model (Sec. 3.2) is trained to generate different styles of
the base image without changing its spatial structure. For
learning the spatial deformation correspondences (referred
to as flow) between the base image and the target image, we
employ Flow Model (Sec. 3.3) that is trained on the task of

registering two different image volumes with the same style.
This is achieved by first changing the style of moving image
(referred to as source image) to match the target image’s
style (as obtained by Style Encoder) using the Appearance
Model, followed by morphing it into the target image. As
discussed later in Sec 4.1, matching the source image’s style
to the target image improves the registration accuracy. We
employ an additional adversarial autoencoder [28] that en-
codes the Flow model’s output for the base image into a
Gaussian prior flow latent space to learn the distribution
of the spatial deformation fields corresponding to the base
image. At test time, we sample flow latent code and style
latent code from Gaussian prior to generate new deformation
fields and style appearances for the base image, respectively.
Fig. 2 and Fig. 3 show an overview of the training procedure
and the data generation at test time, respectively. To quantify
the images’ quality and their corresponding segmentation
labels generated using our approach, we train a separate
3D U-Net [12] on them. We test our model on the real im-
age/segmentation pairs and compare it with the performance
of a fully supervised model trained using real data. The loss
terms used for training Style Encoder, Appearance Model,
and Flow Model, described in the subsequent subsections.

3.1. Style Encoder

Style Encoder aims to incentivize content-invariant image-
level representation that brings together similar styled im-
ages and pushes apart dissimilar styled images. To do so, we
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propose a new volumetric contrastive learning [10, 18, 11]
based strategy for training. In particular, we adapt Momen-
tum Contrast [18] for volumetric medical images for clus-
tering task of images’ styles as opposed to the original clas-
sification task [18]. More importantly, we use the learned
spatial transformer [3] to generate the positive keys (preserv-
ing the styles) instead of standard augmentation, e.g., random
cropping used in the original formulation. Without loss of
generality, we keep a dictionary of keys {k1, k2, ..., kK} that
represents different styles. During a training step, we sample
a volumetric image q (called query) from the training set and
generate its corresponding positive key volumetric image k+

by warping q to a randomly selected volumetric image from
the training set using a pre-trained spatial transformer T .
This ensures that q and k+ have the same style (with differ-
ent structural geometries) that is different from the style keys
in the dictionary. The dictionary’s style keys are generated
by a separate model (key-Style Encoder) whose weights
are updated as a moving average of the weights of the Style
Encoder with momentum m = 0.99. The volumetric con-
trastive loss is computed as below:

Lvol cl = − log
exp(q.k+/τ)∑K
i=0 exp(q.ki/τ)

(1)

where k+ = T (q) and τ is a temperature hyper-parameter
[47]. The sum is over one positive and K negative samples.

3.2. Appearance Model

The Appearance Model is responsible for translating the
style of the source image (s) to that of the target image (t),
given the style latent code as predicted by the Style Encoder.
We feed the target image’s style code to the adaptive instance
normalization (AdaIN) layers [20] of the model to perform
style transfer. Thus, the target styled source image (s̃) is
obtained as:

s̃ = A(s, Estyle(t)) (2)

where A denotes the Appearance model, and Estyle repre-
sents the Style Encoder. The Appearance Model loss Lapp

consists of two components: Lapp = Lstyle
cycle + Lstyle

id , where

Lstyle
cycle and Lstyle

id denote the style consistency loss and style
identity loss, respectively that are described below.

Style Consistency Loss. We include a style consistency
loss that guides the Appearance model to generate images
with the same spatial structure as the source image but with a
different style in a consistent cyclic manner. Given the style
codes of the source and target images, the following style
consistency loss is computed as:

Lstyle
cycle = LSSIM-L1

(s,A(s̃, Estyle(s))) (3)

where LSSIM-L1 computes multi-scale structural similarity
index [46] and L1 distance between the two images as:

LSSIM-L1
(u, v) =

∥∥u− v
∥∥
1
+ (1− SSIM(u, v)) (4)

Style Identity Loss. We also include a regularization loss
term, called style identity, that enforces the Appearance
Model to generate the same image using its own style.

Lstyle
id = LSSIM-L1(s,A(s, Estyle(s))) (5)

3.3. Flow Model

The Flow Model builds upon a spatial transformer net-
work that warps a moving image (Im) to the fixed image (If ).
The spatial transformer (F ) generates a correspondence map
δp, referred to as flow, which is used to register Im onto If .
This warping operation is defined as:

δp = F(Im, If )

y = δp⊙ Im
(6)

where ⊙ denotes the warping operator, and y is the predicted
image. Once we know the correspondence map δp between
the base image (b) and the target image (t), we can transfer
the segmentation label of the base image (bseg) onto the target
image using the same warping operation.

tseg = F(b, t)⊙ bseg (7)

To learn the distribution of deformation fields correspond-
ing to the base image predicted by the Flow Model, we
train a separate adversarial autoencoder [28] on its out-
put. This allows us to encode the flow δp in the latent
space, which can be used later to generate novel volumetric
images and corresponding segmentation labels (Sec. 3.6).
The Flow Model loss Lflow consists of two components:
Lflow = Lflow

recon +λregLflow
reg , where Lflow

recon and Lflow
reg denote the

reconstruction loss and the flow regularization loss that are
described below.

Reconstruction Loss. In contrast to the Normalized
Cross-Correlation loss [3] commonly used for the voxel
registration, we include pixel similarity based reconstruction
loss between the target image (t) and the spatially warped
target styled source image (referred to as predicted image)
obtained by Flow Model. Using the pixel-wise similarity
loss is justified as the Appearance Model changes the source
image’s style to match the style of the target image, thus
allowing adequate registration of the two images.

Lflow
recon = LSSIM-L1

(t,F(s̃, t)⊙ s̃) (8)
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Flow Regularization. We regularize the flow δp by penal-
izing its spatial gradient, thus ensuring smoothness of the
correspondence map generated by our spatial transformer.

Lflow
reg =

∥∥∇F(s̃, t)
∥∥
1

(9)

We prefer the L1 norm as it helps to stabilize training and
results in less noisy flow compared to the L2 norm.

3.4. Adversarial Loss

We introduce two latent discriminators, called Dstyle and
Dflow, for enforcing a prior distribution on the latent style
codes and the flow codes generated during training, respec-
tively. We use the adversarial loss function described in
LS-GAN [29] for training the two discriminators along with
Style Encoder and Flow Encoder in an adversarial manner,
as shown in Fig. 2.

Lstyle
adv = Et∼Xdata

[(
Dstyle(Estyle(t))− 1

)2]
+ En∼N

[
Dstyle(n)

2
]

(10)

where t is sampled from the training images Xdata, and N is
the normal distribution. Similarly, we train the adversarial
autoencoder (AAE) [28] on flow fields generated by Flow
Model (Sec. 3.3) using LS-GAN and l1 reconstruction loss.

3.5. Training Objective

Finally, the proposed training loss Ltotal joins the loss
terms used to train Style Encoder, Appearance Model, and
Flow Model:

Ltotal = Lvol cl + λ1Lapp + λ2Lflow + λ3Lstyle
adv (11)

where λ’s are the weights of different losses. We observed
that pre-training the Style Encoder alone using the loss:
Lvol cl + λ3Lstyle

adv improves the overall convergence rate and
reduces the optimization’s complexity. After pre-training the
Style Encoder, we jointly optimize it along with Appearance
Model and Flow Model by minimizing Ltotal.

3.6. Generation Phase

As shown in Fig. 3, we can sample new volumetric images
and their segmentation maps by mapping Gaussian noise to
novel style codes and flow fields using the trained Appear-
ance Model (A) and Flow Decoder (Gflow). The Appearance
Model performs style deformation of the base image while
the Flow Decoder produces random flow field which is used
to warp the styled base image and its segmentation, thus
generating new image-segmentation pairs.

X = Gflow(nflow)⊙A(b, nstyle) (12)
Y = Gflow(nflow)⊙ bseg

Generated 
image,  

segmentation 

Base seg. 
Random styled 

base image 

Base image 

Appearance 
Model 

Flow field 

Flow 
Decoder 

Warp 

N(0,I) N(0,I) 

Figure 3: Data Generation phase. We use the learned Ap-
pearance Model and Flow Decoder to generate new images
and segmentation labels from the normal distribution.

where b and bseg are the base image and base segmentation
and nflow, nstyle ∼ N . X and Y are the generated image-
segmentation pairs.

4. Experiments

This section introduces the implementation details, ex-
perimental settings, dataset, results, and ablation studies.

Dataset, Preprocessing and Evaluation Metric. We
evaluate our method and other baselines on multi-study
datasets from publicly available datasets: CANDI [23] and
a large-scale dataset, OASIS [30], each contains 3D T1-
weighted MRI volumes. CANDI dataset consists of scans
from 103 patients with manual anatomical segmentation
labels, whereas the OASIS dataset has 2044 scans with seg-
mentation labels obtained by the FreeSurfer [15] pipeline.
As in VoxelMorph [3] and LT-Net [44], 28 anatomical struc-
tures are used in our experiments. All the dataset images
are first prepossessed by removing the brain’s skull region,
followed by center cropping the volumes to 128×160×160.
We set aside 20% brain images and their segmentation as
a test set, which was untouched during training. The re-
maining 80% brain images are then used for training and
validation, with a split of 90%-10%, in which there is no
patient ID overlap among the subsets. For each dataset, there
are different acquisition details and health conditions. The
most similar image to the anatomical average is selected as
the only annotated atlas (base image) used for the training.
We only use validation set labels for choosing the best model
and hyper-parameters. For the OASIS dataset, the model
is trained with a mixture of healthy subjects and diseased
patients and is then evaluated on test cases constitutes of
both sets. We assess our method’s efficiency by training a
3D U-Net-based segmentation model on the generated volu-
metric image-segmentation pairs and evaluating its perfor-
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Mean±std

(CANDI)
MABMIS 86.3 90.5 86.1 75.9 90.2 84.2 79.2 79.5 67.6 66.7 79.8 90.8 73.4 64.8 60.4 77.0 78.3±2.9
VoxelMorph 81.1 87.3 83.7 69.9 82.4 85.9 82.6 81.0 74.7 64.3 73.4 89.2 66.2 66.7 59.4 81.1 76.9±3.2
Bayesian 89.5 84.5 85.3 84.9 82.4 82.1 83.7 83.0 77.2 57.5 75.7 84.1 74.3 72.8 48.6 75.9 77.7±2.3
DataAug 84.8 89.0 77.4 72.3 86.8 89.0 84.6 86.3 79.8 71.2 78.7 91.3 76.0 72.3 63.3 82.7 80.4±3.2
LT-Net** 85.8 90.9 83.1 80.1 91.6 87.9 85.5 88.4 80.5 68.4 79.7 92.4 71.6 71.6 67.1 82.3 81.7±8.0
Ours 90.9 94.3 89.2 83.4 89.5 89.2 88.3 86.7 81.1 71.3 81.9 92.2 76.0 70.9 67.6 82.2 83.5±3.0

3D U-Net* 94.1 97.0 93.8 89.6 96.8 91.5 90.4 90.8 83.0 74.4 87.0 94.9 84.1 79.0 79.6 88.1 88.1±1.5

(OASIS)
MABMIS 79.4 62.1 84.4 77.1 82.6 85.3 77.5 78.9 66.5 81.5 62.3 88.4 72.5 72.9 63.6 78.3 75.8±6.9
VoxelMorph 75.2 63.1 85.3 77.9 83.4 85.0 79.1 81.3 72.3 81.0 58.8 90.5 70.3 72.8 67.6 79.4 76.4±4.3
Bayesian 90.0 45.8 64.7 82.4 72.9 84.1 70.1 70.7 40.6 33.4 18.8 87.8 48.3 56.9 33.0 62.1 59.5±3.0
DataAug 74.8 69.0 69.2 67.2 80.1 78.0 61.8 66.2 50.4 70.5 50.6 83.2 64.8 56.8 56.8 69.2 66.8±5.7
Ours 89.4 89.2 89.2 86.3 91.7 84.8 80.5 80.1 65.1 82.0 70.3 91.5 74.7 69.4 65.4 77.9 80.5±3.9

3D U-Net* 94.2 95.6 94.6 92.0 97.5 91.8 89.1 89.5 79.7 90.9 89.8 96.9 89.3 85.1 86.3 87.9 90.6±1.4

(OASIS→CANDI)
w/o Style Adap. 84.9 88.4 58.9 75.3 90.6 78.8 55.5 47.9 40.6 55.5 65.5 83.3 55.2 44.8 44.6 60.9 64.4±3.5
w/ Style Adap. 85.0 90.0 77.0 74.7 89.8 83.3 78.1 75.8 68.6 66.3 73.6 88.1 58.8 52.3 52.4 69.2 74.0±3.2

(CANDI→OASIS)
w/o Style Adap. 80.2 83.1 58.1 32.4 71.4 37.2 39.6 20.6 6.2 3.8 7.6 12.5 12.0 17.9 2.3 12.6 31.1±11.7
w/ Style Adap. 85.4 85.4 81.6 45.3 67.8 67.6 51.9 29.0 6.6 30.5 14.2 67.7 31.8 45.0 32.2 44.2 49.1±10.2

Table 1: Comparison of segmentation performance (mean Dice score in %) of MABMIS (2 atlas) [22], VoxelMorph [3],
Bayesian [13], DataAug [50], LT-Net** [44], and Ours across various brain structures on CANDI and OASIS datasets.
Abbreviations used: white matter (WM), cortex (CX), ventricle (Vent), and cerebrospinal fluid (CSF). ** as reported in the
published paper. * fully supervised model. The last four rows (OASIS→CANDI and CANDI→OASIS) indicate the results of
our method with (w/) and without (w/o) cross-site style adaptation.

MABMIS VoxelMorph Bayesian DataAug Ours
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Figure 4: Comparison of volume-wise segmentation accu-
racy (Dice score %) of our method with MABMIS (2 at-
las) [22], VoxelMorph [3], Bayesian [13] and DataAug [50].
We outperform the second best baseline by a margin of
3.1% on CANDI and 4.1% on OASIS dataset (p-value of
5.8× 10−4, 3.2× 10−16 respectively using paired t-test).

mance on the untouched test data. We use the Dice similarity
coefficient between the ground truth segmentation and the
predicted result in assessing the segmentation accuracy.

Experimental Settings. All our models are based on 3D
CNNs [21]. The Appearance model has 3 AdaIN [20] layers
for performing style transfer using the style codes. Flow

Model is a lighter version of VoxelMorph [3], while AAE
Model has a 3D convolutional encoder-decoder architecture.
We implement all the models in PyTorch [36]. For training
Style Encoder, Appearance Model, Flow Model, and Flow
Autoencoder, we used Adam [24] optimizer with a learning
rate of 2 × 10−4 and (β1 = 0.9, β2 = 0.999). We use the
same optimizer with the same learning rate for training the
latent style code and flow code’s discriminators but with
(β1 = 0.5, β2 = 0.999). A hyper-parameter search was con-
ducted to find the optimal values. We choose the loss term
weights as λ1 = 5.0, λ2 = 1.0, λ3 = 0.1 and λreg = 0.1.
The temperature coefficient τ for volumetric contrastive loss
is set to 0.7. We use a batch size of 32 for pre-training the
Style Encoder and 4 when all the models are trained end-to-
end. We utilize the same experimental setup for all baseline
experiments for a fair comparison.

Comparison with SOTA Methods. Our method sur-
passes the state-of-the-art methods in most semantic classes
and, on average, on both CANDI and OASIS datasets (see
Fig. 4). A qualitative comparison of our method with several
baselines on coronal brain slices’ segmentation task is shown
in Fig. 5. MAMBIS [22] and VoxelMorph [3] produce visi-
bly noisy and inaccurate boundaries compared to other meth-
ods. Bayesian [13] and DataAug [50] struggle with outer
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Figure 5: Qualitative comparison of our method with other baselines on the segmentation task of Brain MRI volumetric
images from CANDI and OASIS dataset. Left to right: (a) Ground Truth, the segmentation results from (b) MABMIS [22], (c)
VoxelMorph [3], (d) Bayesian [13], (e) DataAug [50], (f) Fully Supervised 3D U-Net, (g) Ours. Best visualized in color.

contours, where one crops it unnecessarily, and another in-
cludes background. Furthermore, VoxelMorph and DataAug
encounter difficulties in identifying small segmentation re-
gions, whereas Bayesian overproduces them. Instead, our
method handles outer/inner regions and smaller anatomi-
cal regions well and compares closely to supervised/ground
truth results. The qualitative observations are backed by
quantitative metrics (see Table 1).

4.1. Ablations

Ablation Study on Appearance Model. The Appear-
ance Model plays a crucial role in generating diversified
styled images and improving the Flow Model’s image regis-
tration efficiency during training. Table 2 shows the effect of
including-excluding the Appearance Model (Lapp) on the reg-
istration accuracy of segmentation labels predicted by flow
model and supervised segmentation accuracy of the 3D U-
Net using the generated images. For both these scenarios, the
average Dice score improves after the Appearance Model’s
inclusion. This is expected as registering two images with
similar intensity distributions is easier than registering im-
ages with different intensities. We can only generate similar
styled images without the Appearance model for the genera-
tion phase, which leads to a poor generalization of 3D U-Net

Figure 6: Qualitative comparison of registration accuracy
evaluated on segmentation for different methods. Left to
Right: Ground-truth, VoxelMorph[3], MABMIS[22], Ours.

on the test set. A qualitative evaluation of registration on the
CANDI test set is shown in Fig. 6.

Ablation Study on Joint Training. We observed that
training our model end-to-end is critical for improved reg-
istration accuracy (Table 2). We experimented with the pre-
training Appearance model, Flow Model, and Style encoder
separately using the losses defined in Sec. 3 followed by fine-
tuning and found significant improvement when Appearance
Model and Flow Model are trained end-to-end. However,
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Figure 7: Ablation for segmentation accuracy of 3D U-Net
using different sizes of generated data on CANDI and OASIS
datasets. 100% implies 1850 generated image-segmentation
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Figure 8: Manipulating style and flow codes. Left to right:
Images generated using the same style code with different
flow codes. Bottom to top: Images generated using the same
flow code and distinct style.

a pre-training Style encoder using volumetric contrastive
loss improves the overall model convergence (10× faster)
without qualifying the performance as compared to training
it jointly.

Cross-Site One-Shot Adaptation. To evaluate the Ap-
pearance model’s efficacy in generating the unlabeled target
dataset styles, we experimented with replacing the Appear-
ance Model trained on CANDI (OASIS) with the one trained
on OASIS (CANDI) to generate images in the style of the
target domain. The volumetric image-segmentation pairs
generated are then used to train 3D U-Net, which is further
evaluated on the target domain’s test samples. As shown in

Ablation Type Method Mean±std
CANDI OASIS

w/o Lapp Reg. (a) 71.6±3.2 68.5±3.8

w/o Joint opt. Reg. (a) 73.6±3.3 69.9±3.7

w/ Joint opt., Lapp Reg. (a) 78.9±2.4 73.3±3.1

w/o Lapp Sup. (b) 54.9±20.4 41.2±22.7
w/ Lapp Sup. (b) 83.5±3.0 80.5±3.9

Table 2: Effect of style transfer and joint training. Mean
Dice score of the segmentation task with and without Ap-
pearance Model and joint training using the method as (a)
registration of the base image to the target image (b) 3D
U-Net trained on generated images-segmentation pairs.

Table 1, the domain gap between the two data sites would
severely impede the generalization ability of the trained
supervised model on the source data site (w/o style adapta-
tion) while performing style adaptation between OASIS and
CANDI dataset provides substantial improvements. We use
the same test samples from CANDI and OASIS datasets for
evaluation.

Exploring Diversity of the Generated Data. We evalu-
ate 3D U-Net’s performance on the segmentation task using
different data sizes generated by our approach. For the
best performing 3D U-Net, we report the accuracy obtained
by training it on 1850 generated image-segmentation pairs.
Fig. 7 shows a box-plot of the Dice score (%) of the seg-
mentation accuracy of 3D U-Net trained on different sizes
of samples generated using our proposed method trained
on CANDI and OASIS. This suggests that our method has
learned to generate more diverse and realistic data. Besides,
the effects of different flow codes and styles on generated
images can be observed in Fig. 8.

5. Conclusion and Future Work

We proposed the novel volumetric contrastive loss used
for style transfer by leveraging unlabeled data for one-
shot medical image segmentation. We presented a generic
method adapted for cross-site one-shot segmentation sce-
narios to generate arbitrarily diversified volumetric image-
segmentation pairs using trained appearance models from
one data site and a flow model from another data site. We
demonstrated state-of-the-art one-shot segmentation perfor-
mance on two T1-weighted brain MRI datasets under various
settings and ablations. We shed light on our method’s effi-
cacy in closing the gap with a fully-supervised segmentation
model in the extreme case of only one labeled atlas. Our
method uses neither tissue nor modality-specific information
and can be adjusted to other modalities or anatomy. As future
work, our method can be easily extended for the few-shot
scenario using several atlases.

2005



References
[1] Zeynettin Akkus, Alfiia Galimzianova, Assaf Hoogi, Daniel L

Rubin, and Bradley J Erickson. Deep learning for brain mri
segmentation: state of the art and future directions. Journal
of digital imaging, 30(4):449–459, 2017.

[2] Hossein Arabi, Nikolaos Koutsouvelis, Michel Rouzaud, Ray-
mond Miralbell, and Habib Zaidi. Atlas-guided generation
of pseudo-ct images for mri-only and hybrid pet–mri-guided
radiotherapy treatment planning. Physics in Medicine & Biol-
ogy, 61(17):6531, 2016.

[3] Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag,
and Adrian V Dalca. Voxelmorph: a learning framework for
deformable medical image registration. IEEE transactions on
medical imaging, 38(8):1788–1800, 2019.

[4] Behzad Bozorgtabar, Mohammad Saeed Rad, Hazım Kemal
Ekenel, and Jean-Philippe Thiran. Learn to synthesize and
synthesize to learn. Computer Vision and Image Understand-
ing, 185:1–11, 2019.

[5] Behzad Bozorgtabar, Mohammad Saeed Rad, Hazım Kemal
Ekenel, and Jean-Philippe Thiran. Using photorealistic face
synthesis and domain adaptation to improve facial expression
analysis. In 2019 14th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2019), pages 1–8.
IEEE, 2019.

[6] Behzad Bozorgtabar, Mohammad Saeed Rad, Dwarikanath
Mahapatra, and Jean-Philippe Thiran. Syndemo: Synergis-
tic deep feature alignment for joint learning of depth and
ego-motion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4210–4219, 2019.

[7] Ciprian Catana, Andre van der Kouwe, Thomas Benner, Chris-
tian J Michel, Michael Hamm, Matthias Fenchel, Bruce
Fischl, Bruce Rosen, Matthias Schmand, and A Gregory
Sorensen. Toward implementing an mri-based pet attenuation-
correction method for neurologic studies on the mr-pet brain
prototype. Journal of Nuclear Medicine, 51(9):1431–1438,
2010.

[8] Krishna Chaitanya, Neerav Karani, Christian F Baumgart-
ner, Anton Becker, Olivio Donati, and Ender Konukoglu.
Semi-supervised and task-driven data augmentation. In In-
ternational conference on information processing in medical
imaging, pages 29–41. Springer, 2019.

[9] Chen Chen, Chen Qin, Huaqi Qiu, Cheng Ouyang, Shuo
Wang, Liang Chen, Giacomo Tarroni, Wenjia Bai, and Daniel
Rueckert. Realistic adversarial data augmentation for mr
image segmentation. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages
667–677. Springer, 2020.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020.

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.
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