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Abstract

Image reenactment is a task where the target object in the
source image imitates the motion represented in the driv-
ing image. One of the most common reenactment tasks is
face image animation. The major challenge in the current
face reenactment approaches is to distinguish between fa-
cial motion and identity. For this reason, the previous mod-
els struggle to produce high-quality animations if the driv-
ing and source identities are different (cross-person reen-
actment). We propose a new (face) reenactment model
that learns shape-independent motion features in a self-
supervised setup. The motion is represented using a set of
paired feature points extracted from the source and driving
images simultaneously. The model is generalised to multi-
ple reenactment tasks including faces and non-face objects
using only a single source image. The extensive experiments
show that the model faithfully transfers the driving motion
to the source while retaining the source identity intact.

1. Introduction

General image reenactment and particularly facial reen-
actment have received plenty of attention in recent years
due to numerous applications in game design, movie pro-
duction, virtual reality, and interactive system design. The
current state of the art models [17, 6, 30, 3, 28, 21, 11] can
produce realistic talking heads of a source from a single im-
age by imitating the facial movements from another simi-
lar looking talking video, commonly known as the driver.
Impressive results often require careful selection of source
and driving pairs with closely matching identities. For ex-
ample, models like [30, 11, 26, 29] generate high-quality
talking heads for a person who drives his own face (self-
reenactment) or a face with a comparable head structure.
Other models [28, 20, 21, 6, 19] require facial identity and
motion representations in terms of 3D models or pretrained
representation like landmarks, head poses or Action Units
(AUs) [5]. These pretrained models usually require costly
annotations and often fail to handle occlusions or extreme
head poses.

Some of these issues are tackled in [16, 17] using unsu-
pervisedly learned motion representation defined as a func-
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tion of key points. Although the keypoint detector is ob-
tained without explicit annotations, the learning process is
driven by objective functions like equivariance loss, which
encourage landmark like locations (e.g. lip corners). Figure
1 illustrates examples of detected keypoints [17], which are
mostly located on facial contours. The design choice is rea-
sonable as most of the state of the art reenactment models
[30, 6, 11, 21, 27] use landmark-based motion representa-
tions. However, the landmark and contour-driven locations
are prone to contain substantial shape information. One im-
portant advantage in the unsupervisedly learned keypoints
is the fact that they are object agnostic and can be used to
animate other objects than faces.

Face landmarks or keypoint based models generate high-
quality talking heads for self reenactment, but often fail in
cross-person reenactment where the source and driving im-
age have different identities. The main reason is that land-
marks are person-specific and carry facial shape informa-
tion in terms of pose independent head geometry [3, 21].
Any differences of shape between source and driving heads
are reflected in the facial motion (through landmarks or key-
points) and lead to a talking head that can not faithfully re-
tain the identity of the source’s person. This effect can be
seen in Figure 1 for faces and in Figure 5 for non-face ob-
jects using a keypoint based reenactment model [17]. Fur-
thermore, these models use each keypoint independently to
affect the motion of its neighborhood pixels which makes
the output highly dependent on the quality of the keypoints
or landmarks. Any noisy keypoint prediction may severely
distort the facial shape and thereby generate low-quality
talking heads of the source as shown in Figure 1.

Considering the aforementioned issues in the existing
reenactment models, we propose two important improve-
ments. First, we propose a new paired feature point de-
tector that predicts anchors on the source and driving im-
ages that best describe the motion between them without
imitating the landmarks. Due to lack of the physical sig-
nificance like landmarks, we refer to the detected locations
as feature points instead of keypoints. In previous works
[17, 30, 11], the keypoint predictions (supervised and self-
supervised) are extracted independently from the source and
driving images. Such setup prevents optimising the loca-
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tions for a specific source and driving identities leading to
landmark like keypoints. In contrast, we predict the fea-
ture points using source and driving images jointly using
a multi-headed co-attention layer. Hence, we call them
as paired-feature-points instead of keypoints throughout the
paper. The paired-feature-points encourage the detector to
predict different features for different pairs without encod-
ing the facial shapes.

Second, we propose a new motion model that predicts
the motion for each source pixel using all the paired-feature-
points. Here we use the Moving Least Square [15] formu-
lation where each pixel’s motion depends on all the paired-
feature-points, unlike the first-order-model [17] where each
corresponding keypoint is only responsible for the motion
of its neighborhood pixels. Our model is less dependent
on the correctness of any individual keypoint and unlikely
to fail in conditions where some of the keypoints’ positions
are wrong due to the occlusions or changing head poses. We
use a simple and robust formulation to express the motion
with paired feature points. Our model is applicable to both
face and non-face objects similarly to [17, 16].

We show that our paired-feature-point detector and mo-
tion model can be used to effectively reenact a face from
a single image without any strong priors on the identi-
ties, initial pose, or representations (like landmarks, action
units) unlike any other state-of-the-art model. In the fa-
cial cross-person reenactment, we show experimentally that
our model preserves the identity better than other one-shot
reenactment models. In addition, we compare the proposed
model with few-shot learning based models and demon-

Reenactment-1
Figure 1. Ilustration of drawbacks in keypoints/landmarks based reenactment models. In both cases, the reenactment is performed using
FOM [17] and the keypoints are drawn on the source and driving images. In Reenactment-1, the head structure difference between the
source and driving is reflected in the output (bottom image) as the source’s facial structure and identity are distorted. In the Reenactment-
2, one of the key points (in the red box) is slightly displaced manually from its original position to show its effect on the output. The
degradation in the output quality shows the overall system performance is highly dependant on the keypoint detectors.

Reenactment-2

strate improvements in pose and expression similarity. We
also show qualitatively that our model works on objects
other than faces, similarly to [17]. Finally, we analyze the
robustness of our reenactment model with respect to the fea-
ture point locations. The results indicate that our model tol-
erates imperfections significantly better compared to previ-
ous works.

2. Related Work

Face reenactment has seen a lot of interest from the re-
search community in the last few years and it led to photo-
realistic talking heads in [30, 29, 24, 23, 18, 11] where the
source and driving identities are the same. Representation
of the pose and emotion from the driving images is a key
step to achieve higher quality talking faces and landmarks
are used as that representation in these cases. However,
the landmarks are person-specific and transfers the iden-
tity information along with the pose and expression which
leads to poor cross identity reenactment. To address this
MarioNETte [6, 31] uses a landmark transformer to re-
move person-specific information but it requires separate
hand-crafted data and model design. A few other models
[20, 21, 13] use action units for reenactment as they are not
person-specific. However, obtaining action units and gen-
erating photorealistic images from them with varying head
poses are challenging tasks.

In X2Face[26], as an alternative to the landmark-based
models, the pose and expression are unsupervisedly learned
from the driving images in the form of latent codes of an
encoder-decoder architecture. This approach alllows to use
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other modalities, like audio, as the driver for the reenact-
ment models. However, these latent codes are difficult to
be disentangled from identity-like landmarks and suffer in
the cross reenactment case. In [17, 16, 7], similar unsuper-
vised learning is used to obtain keypoints from the driving
and source images from which the motion can be obtained.
However, these keypoints are similar to the landmarks and
don’t perform well in the cross-reenactment case. In [17],
they proposed to utilize the difference of keypoints between
two consecutive driving frames as the motion cue for the
source. Although it cancels out the shape of the driving
face, it only works if the source has the same pose and ex-
pression as the first frame of the driving video. Unfortu-
nately, such conditions put a restriction on the choice of
source and driving pairs for the reenactment. A similar
unsupervised model is proposed in [3] that uses few-shot
learning at the inference time to train the model for each
identity and requires several images of the source to have
better quality results.

Apart from the data-driven models, face reenactment has
also been performed using classical 3D face models like
3DMM [2] in [19]. A combination of both 3D models and
learning-based models are also used as in [8, 28, 12] to cre-
ate talking heads. These reenactment models require 3D
model parameters as training data which is expensive and
limits its application to a larger number of identities.

3. Method

The high-level architecture of our reenactment model is
inspired by [17]. That is, we first use encoded images to
predict the paired feature points and the dense warping field.
The warping field is subsequently applied to the source fea-
tures, which are then used to generate the output image.
The most important differences to [17] are the following:
1) the motion is represented using paired-feature-points in-
stead of keypoints extracted from individual images, and
2) the dense warping field is constructed by weighted dense
motion module where the motion for each pixel is estimated
by considering all paired feature points at once. These com-
ponents along with the complete model are presented in the
following subsections.

3.1. Overview of our model

Given a face image I, of a source identity .S, our model
aims to animate it by copying the facial motion from a driver
image I; with identity D. The animated image generated
from our model is called as reenacted image I,.. This pro-
cess of animation involves two major steps: 1. represen-
tation of the motion difference between the source and the
driving faces, and 2. applying this motion on to the source
and creating a photo-realistic animation of it. In our model,
the representation of this motion is obtained by understand-
ing the motion of the feature points from the driving to the

corresponding feature points of the source images. Then
we use this motion to backward warp the source face in the
feature space and reconstruct it using a generator with ad-
versarial loss.

The complete block diagram of our model is presented
in Figure 2. The overall steps of our models can be summa-
rized as, 1. representing the source and driving images as a
latent vector using an embedder network, 2. extracting the
motion features by combining both the latent codes using
attention mechanism, 3. estimating pixel-wise motion using
a weighted point transformation, 4. creating a warping field
from motion using an encoder-decoder architecture, and 5.
finally reenacting the image using an occlusion-aware gen-
erator network.

3.2. Image Embedder

The first block of our model is an image embedder that is
used to transform I, and I, to latent vector representations.
A single encoder network is applied to both the I, and I
independently to map them to a common space. The goal
is to use the global representations for each image that has
only relevant information in obtaining the motion points. It
has a series of convolution, batch norm, and average pool-
ing layers to embed the images into vectors [, € RV *x1024
and [; € RV*1024 \where N is the number of user-defined
motion features. We use NV = 10 in all our experiments.

3.3. Paired-feature-point Estimation Module

Our aim is to learn feature points from [/, and [ that can
be used to express the motion between I and I;. The state-
of-the-art models like [17, 16] extract landmarks such as N
keypoints from each image individually to capture the struc-
ture of each object (the face region in our case). Then the
motion is expressed as a function of the changes in the struc-
tures between the source and driving images. The model
is trained to predict the structure from each images inde-
pendently without considering the connection between the
source and driving pairs as in the reenactment.

Our motivation is to change the feature points depend-
ing on the particularities of the I, and I; together rather
than considering them independently. For example, if one
of the faces in the source-driving pair has occlusion then
the feature points for should be adjusted in both the images
rather than predicting keypoints in individual faces which
are highly erroneous in the occluded images. The module
is implemented using a transformer network 7" that maps
T(ls,14) and T(14, 1) to embedding vectors [; € RN x1024
and lg; € RV*1024 regpectively. In reality, the transformer
predicts the changes in the [ and [; such that

lst = ls + T(lsa ld), ldt = ld + T(ldals) (1)

The transformer network consists of one layer of encoder
and decoder as shown in the bottom half of the Figure 2.
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Figure 2. The complete block diagram of the proposed reenactment model. It processes the source and driving images in five steps as
1. Encoding the images using image embedder, 2. Extracting paired-feature-points using a transformer, 3. Estimating the motion from
paired-feature-points, 4. Converting the motion to the warping field and 5. Using the source image with the warping field in the generator
to produce the final output. The transformer module is expanded at the bottom to showcase its building blocks in detail.

Each of the encoder and decoder layer consists of a self
attention layer and position-wise feed forward network to
map the latent codes to an intermediate representation. The
decoder consists of an additional attention layer that is re-
sponsible to combine the intermediate representations from
both the latent codes to predict the final embedding vec-
tor. As an example, the prediction of [y involves the self-
attention of [, from encoder, the self attention of [; from
decoder and additional co-attention on the output of the en-
coder to the output of first two layers of decoder. Due to this
co-attention layer, each embedding vector l¢; or [4; is pre-
dicted by utilizing the latent codes [ and l; from both the
images. For all the attention layers we have used a scaled-
dot-product attention (A) [22] where for the given query
(@), key (K) and value (V'), the A can be written as,

P(Q)P(K)"
V/(dr)

P is the function to calculate the sinusoidal positional en-
coding of the embedding vectors. For the self-attention

A(Q, K, V) = softmax( YP(V) (2)

layer, the respective latent code I, or /4 are reused as the
Q, K, and V pairs whereas for the co-attention, the output at
the end of the second layer of the decoder is considered as
Q and the output of the encoder is reused as K and V. We ex-
tended this attention layer to the multi-headed attention by
projecting the key, query, and value 4 times with different
feed-forward networks. We concatenate the attention from
each of them to jointly attend the information from different
projections as suggested in [22].

Finally, we reshape the predicted embeddings into
RN*32x32 and pass through a softmax layer to obtain N
heat-maps which are then converted to IV points as ks and
kq by extracting the mean of the heat-maps. This conver-
sion of the embeddings to N points serve as a bottleneck
and provides essential feature points for the motion calcu-
lation. The feature points learned from our model and key-
points from FOM [17] are shown in Figure 3. It is clear
that our model does not imitate the landmark points like
FOM [17]. One interesting aspect to note is that our source
landmarks adjust themselves according to the driving im-
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age unlike FOM [17] where they are fixed. We note that in
[6] the attention layers are utilized for reenactment but they
are used to draw a spatial correspondence between source
features and driving features to effectively transfer the style
of source on to the driver’s pose. Our motivation and the
design structure of the attention layers are completely dif-
ferent from their counterparts. Our transformer architecture
has similarities with the point cloud registration model in
[25]. However, our model is designed for fundamentally
different data and tasks.

3.4. Motion Estimation

Given the discrete motion points k4 and kg on the I, and
1, respectively, our goal is to predict the transformation f
per each pixel z in the driving image such that it minimises

an|fm(kdn) - ksn|2 (3)
n
where for a constant o < 1, the weight w,, has the form
1
= 4
wn |kdn _ x‘Qa ( )

The n is a counter on number of feature points and ranges
from 1 to N. The equations (3) and (4) together constitutes
the Moving Least Squares (MLS) [15] formulation where
each point x has its own transformation f, depending on its
distance from all other feature points. Following the deriva-
tion from [15] the final form of the f is,

fo=(@x—k)M+ K @)
where M is the linear transformation matrix, k% = %

and k} = % In [15], the feature points are hand-
picked on the edges of the object. By considering different
classes of transformation matrix M (affine, rigid and simi-
larity transformation) a closed-form solution can be derived
for f,, which gives reasonable deformations. In our case, the
feature points are self-supervised and applying this closed-
form, the solution can drive the feature point detector to
learn the points similar to landmarks. Moreover, in the ini-
tial iterations, this closed-form solution can completely de-
form the images as the keypoints are not stable and can
break the training of the whole network. To avoid such
problems, we employed a single convolution layer to pre-
dict the transformation matrix from the weight matrix w and
the heatmap representations of the ks and ky. We predicted
fx for each pixel only once using all feature points rather
than learning multiple f, for each pixels using each key-
points individually like FOM [17]. Our pixel-level transfor-
mations are much stable due to the moving weight matrix
unlike the [17] where each pixel’s motion is highly depen-
dant on the nearest keypoints motion. Experimentally we

Source
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.--.DriVing

Keypoints from FOM Model

Figure 3. Illustration of keypoints predicted from FOM[17] and
paired-feature-points predicted from our model. During the reen-
actment, the position of the paired-feature-points are adjusted on
both source and driving images depending on the pose and expres-
sion of driving image. In FOM[17], the points are predicted in-
dependently so source keypoints remain fixed throughout the pro-
cess.

have shown that our motion model handles small errors in
the prediction of feature points, unlike the counterparts.

3.5. Generation Module

After predicting the motion f, we utilized this to pre-
dict a warping function that realigns the source features in
the generator network. To detect the occluded parts of the
source face an occlusion mask is predicted during this pro-
cess to indicate in-painting region for the generator. Along
with the knowledge of the occlusion, the realigned features
are finally converted to the reenacted source images by the
generator. The warping function is generated by a U-Net ar-
chitecture which is similar to the local motion aggregation
block of FOM [17] but we only consider two motions i.e for
f and the background instead of N + 1 motions in FOM.

3.6. Training Loss

We generate the training material using videos of mov-
ing objects (faces and other shapes). We randomly sample
source and driving pairs from each video, which enables
us to use the driving frame as pixel-wise ground truth of
the intended animation of the source image. We train our
model end-to-end using the perceptual loss [24] in multiple
resolution of I,. and I;. The mathematical expression for
perceptual loss in each resolution can be written as

Ly =3 IVGGi(L) = VGGl (©)
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Figure 4. Qualitative comparision of proposed model with FSGAN[11], FOM[17] and LPD[3]. Our model better reproduces the source
identity, facial shape and driving motion at the output. More results can be seen in the supplementary material.

Where VGG, (.) stands for i*" channel response of pre-
trained VGG-19 network.

Along with the perceptual loss, we apply a loss function
to the transformation function f. We apply equation (5)
to equation (3) and after simplifying we express our loss
function as

Ly = an|k;nM - k;n|2 @)

where k(;n = kqn, — k; and k;n = ksn, — kI. The loss L,
helps in predicting the transformation matrix M which in-
turn predicts the per pixel motion function f,. In order to
encourage the paired-feature-points to be spread out in the
image, a feature point spreading loss Ly is applied where
the distances between the feature-points are penalised if
they fall below a threshold value. Finally the adversarial
loss L4, is applied to the output image to maintain the
photo realism of the reenacted image. The final loss func-
tion can be written as an weighted sum

‘Ctotal = )\pEp + )\m‘Cm + >\f£f + )\advﬁadv (8)

4. Experiments

In this section, we assess our model in the face and non-
face reenactment tasks. Moreover, we evaluate the robust-
ness of the reenactment models with respect to the feature
point (or keypoint) locations. We compare the proposed ap-
proach with the following recent works:

* FSGAN [11] uses direct landmarks from the driving im-
age to reenact the source face from a single image.

e FACEGAN [21] is a one-shot reenactment model that
utilises a combination of source landmarks and driving
AU s to reenact the source image.

* FOM [17] learns keypoints in a self-supervised fashion
from the source and driving images. The reenactment is
done using the motion extracted from these keypoints. We
have also performed two more experiments by replacing
1. FOM’s key points with proposed paired feature points
and 2. FOM’s motion model with proposed weighted
motion. These additional experiments provide insights
into the contribution of each proposed component in our
model.
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Model Few-| ISIM1| PSIM{| ESIM1| FID]
shot

LPD33 [3] v 0.80 | 0.67 0.92 -

LPD [3] v 0.78 0.61 0.92 -

FSGAN [11] X 0.39 | 0.78 091 192.01

FACEGAN [21] X 049 | 0.84 | 0.88 198.75

FOM [17] X 0.57 0.90 | 0.93 127.79

FOM + Paired- | X 059 | 086 | 093 132.34

feature-points

FOM + Weighted | x 0.68 0.65 0.92 162.01

Motion

Proposed X 0.70 0.80 0.93 115.54

Table 1. Quantitative comparison of our model with the state-of-
the-arts. The FID scores of LPD models [3] are not calculated
becasue they generate faces without the background unlike other
models. We have used facial mask for our model to compare the
FID with LPD models in the supplementary material.

e LPD [3] learns identity and pose descriptors in a self-
supervised way from videos and then combines identity
of source and pose descriptors of driving image for the
reenactment. They use a few-shot learning framework
to finetune the model for each source identity at the test
phase. Although this is different from other methods,
which are identity agnostic, we include this method as a
reference to our experiments. Furthermore, we use LPD
with one and 32 samples of the source identity.

The baselines cover various popular features and
techniques such as landmarks, AUs, keypoints, pose-
descriptors, and few-shot learnings presented in the reen-
actment literature. We note that our model uses only one
source image at the test phase and generates output without
any person-specific finetuning (unlike few-shot works). All
the output images have a final resolution of 256 x 256.

4.1. Face-reenactment

The face reenactment models are trained using talking
head videos from Voxceleb [10]. All the videos are prepro-
cessed as in [17] to obtain the source and driving frames at
a resolution of 256 x 256. For the evaluation, we randomly
sampled 40 identities (different from those in training) from
Voxceleb and FaceForensic++ [14] datasets, and generated
80k reenacted images by taking the source and driving as
different identity (cross-person setting).

Qualitative comparison of our model with its counter-
parts are shown in the cross-person setting in the Figure
4. Tt is clear that the landmark and keypoint-based mod-
els like FSGAN [11] and FOM [17] leak the driving facial
structure to the source face in the final image. It makes
the reenacted image lose the source identity. In LPD [3],
there is no shape leaking between source and driving but
they fail to replicate the facial motion effectively as can
be seen from Figure 4 (row 1 and 2). Moreover, they re-

quire multiple source images and a source-specific training
step to generate good quality final images. In our method,
the paired-feature-points are less sensitive to facial struc-
ture, and together with our motion model, it reproduces the
source identity with driving motion at the output better than
its counterparts. Additional qualitative examples are pro-
vided in the supplementary material.

Quantitative comparison of reenactment model is dif-
ficult in the cross-person setting due to lack of the exact
ground truth. Nevertheless, several indirect measurements
have been applied in the reenactment literature. In our ex-
periments, we use the following metrics:

e Identity Cosine Similarity between IMage embeddings
(ISIM): Tt measures the identity similarities between
source and reenacted faces by comparing the embeddings
vectors from a pretrained face recognition network[4].
The higher ISIM score signifies better identity reproduc-
tion ability at the output [6, 30, 3].

* Pose Cosine Similarities between IMages (PSIM): It mea-
sures the cosine similarity of head pose angles of driving
and reenacted faces using a pretrained model [1]

» Expression Cosine Similarities between IMages (ESIM):
To measure the expression retention capability of the
model, the embedding vectors from a pretrained action
unit detector [9] is used for the similarity calculation.

» Frechet-inception distance (FID): It measures the percep-
tual similarities of the generated images and training im-
ages. A lower score signifies better photo-realism of the
reenacted images.

The quantitative comparisons are shown in Table 1. Our
model achieves the highest ISIM score among all one-shot
models, which illustrates the ability to retain the source
identity at the output. The key to this performance are the
pairwise-feature-points and the weighted motions as can be
seen from the two abalation studies performed on FOM [17]
in Table 1 using these proposed components. Unlike the
landmark like features in FOM [17] and FSGAN [11], our
proposed components encourage the shape independency
in features which lead to better ISIM scores in our model.
Only the LPD models [3] achieve higher ISIM, which is
understandable as they are trained with source identity at the
test phase. The pose vectors for PSIM scores are calculated
using an external pretrained network. The network utilises
landmarks to obtain the poses, which makes it highly sen-
sitive to facial contours. In terms of PSIM, FOM [17] and
FACEGAN [21] achieve higher scores as they aim to match
the landmarks between the output and the driving images.
However, in this process, they hamper the image quality
and identity as can be seen from the other metrics. Our
model achieves a better balance between identity, pose, ex-
pression, and image quality in comparison to other models
with a single source image.
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Figure 5. Qualitative comparison of proposed model with FOM[17] on a. Tai-chi-HD [17], and b. MGif[16] datasets. Our model keeps
the source shape and driver’s motion intact at the output unlike FOM[17]. More results can be seen in the supplementary material.

Model Without Noise | With Noise | Change
FOM [17] | 1.11 2.19 97.3%
Proposed 1.31 1.61 22.9%

Table 2. Mean landmark difference scores in self-reenactment be-
tween FOM [17] and our model. Uniform noise is added to a sin-
gle keypoint of driving images to analyze the stability of feature-
points of our model

4.2. Stability of paired-feature-points

We have argued and qualitatively shown in Figure 3 that
the proposed paired feature points are different from key-
points used in FOM [17]. To assess this, we randomly se-
lect one feature point (or keypoint) from each driving image
and added uniform random noise between 0.05 to 0.5 to its
location before the reenactment (point locations normalized
between 0 to 1). We hypothesize that if the keypoints en-
code landmarks like facial structures then any distortion to
it will severely distort the final image. To verify that we per-
form a self-reenactment experiment using 30 identities from
the test set and calculate the mean landmark difference be-
tween output images and the driving images as shown in
Table 2. The 97% increase in the landmark error shows that
FOM [17] is highly dependant on the correctness of key-
points and less robust than our paired-feature-points in the
reenactment tasks. We provide qualitative examples of the
output images for both methods in the supplementary mate-
rial.

4.3. Reenacting non-face objects

The proposed formulation does not make any assump-
tions on the reenacted object type. Therefore, the same
model can be also trained without modifications to reenact
other objects besides faces. To this end, we train our method
using MGif [16] and Tai-chi-HD datasets [17]. We provide
a few qualitative reenactment examples in Figure 5, where
we compare it to FOM [17]. The proposed model is better
in preserving the source object identity compared to FOM.
We provide additional examples in the supplementary ma-
terial.

5. Conclusion

We have proposed a novel paired-feature-point detec-
tor and motion model to unsupervisedly extract the mo-
tion from the driver to reenact the source face. Our fea-
ture points are shape/identity independent and represent the
motion based on the source-driving pairs, unlike its con-
temporaries. Our motion model predicts the motion of each
source pixel based on all the feature points instead of the
closest one which makes it more stable to any errors in fea-
ture point prediction. We have shown experimentally that
our model produces high-quality reenactment output from a
single image by keeping the desired identity, pose, expres-
sion, and photo-realism intact.
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