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Abstract

Unsupervised representation learning has been proven
to be effective for the challenging anomaly detection and
segmentation tasks. In this paper, we propose a multi-scale
patch-based representation learning method to extract crit-
ical and representative information from normal images.
By taking the relative feature similarity between patches
of different local distances into account, we can achieve
better representation learning. Moreover, we propose a
refined way to improve the self-supervised learning strat-
egy, thus allowing our model to learn better geometric re-
lationship between neighboring patches. Through sliding
patches of different scales all over an image, our model
extracts representative features from each patch and com-
pares them with those in the training set of normal images
to detect the anomalous regions. Our experimental results
on MVTec AD dataset and BTAD dataset demonstrate the
proposed method achieves the state-of-the-art accuracy for
both anomaly detection and segmentation.

1. Introduction
Anomaly detection has been a critical and common prob-

lem for the manufacturing industries. Due to the limita-
tion of human attention span, consistently maintaining high
quality for the manufactured products through human visual
inspection is almost impossible and infeasible. Thus, auto-
matic anomaly detection is highly demanded for intelligent
manufacturing.

In computer vision, anomaly detection aims to decide
whether an image is a normal or an abnormal sample, usu-
ally providing an anomaly score as a reference for the
anomaly decision. Since anomalous data is either inacces-
sible or insufficient and anomalies may contain unexpected
patterns, the anomaly detection problem is usually formu-

Figure 1. Examples of challenging defects in MVTec AD dataset.
From top row to bottom row are Grid, Wood, Capsule and Screw
respectively. Our predicted masks compared with those by Patch
SVDD [27] and PaDiM [7] show that our model outperforms those
methods on detecting these challenging defects.

lated as a one-class learning setting [4], [19], [27], i.e., only
normal data is available for training.

To further strengthen the confidence of trusting the re-
sults of anomaly detection, localizing the anomalous re-
gions, which are called defects, in the images at pixel level
is helpful to provide more precise and interpretable results.
This task is known as anomaly localization, or anomaly seg-
mentation. However, to achieve high-precision anomaly de-
tection and localization without using labeled training data
is still a challenging task.

Anomaly detection and segmentation aim to distinguish
between normal images and anomalous images on image-
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level and pixel-level, respectively. Since the anomalous re-
gions are usually tiny in the whole image, anomaly segmen-
tation, often solved by splitting images into small patches,
is very challenging especially when the anomalous regions
are very small or the anomalous appearance is not very
clear. If the model is trained with focus on small anoma-
lies [6], [8], [25], small anomalous regions may be more ac-
curately segmented but it could possibly increase the chance
of mis-classifying normal regions to anomalous regions at
the same time, thus making FPR (False Positive Rate) in-
creased. Therefore, we need to have a very powerful feature
representation learned from normal images only for both the
anomaly detection and anomaly segmentation tasks .

A good feature representation learning method can not
only provide excellent performance on anomaly segmenta-
tion but also make the model robust against unseen anoma-
lies. In this work, we aim to develop a novel feature rep-
resentative learning framework for anomaly detection and
segmentation to extract representative features from multi-
scale patches, thereby obtaining the global and local context
of an image at the same time for better representation learn-
ing.

Our main contributions are listed as follows:
1. We propose a multi-scale patch-based architecture for

different levels of representation learning. We show that
considering the global and local context of an image at the
same time leads to better representation learning. Further-
more, our model is scalable for different sizes of patches,
which makes it adaptable to various application scenarios.

2. We introduce K-means clustering and cosine similar-
ity to develop a new loss function for better feature rep-
resentation learning from normal samples, which is evi-
dent from visualization of concentrated distribution of the
learned features computed from normal images.

3. The improved feature representation learning method
leads to superior performance for image anomaly detection
and segmentation on MVTec AD dataset and BTAD dataset
compared to the state-of-the-art methods.

2. Related Work

2.1. Reconstruction-based methods

Previous deep learning methods for anomaly detec-
tion and segmentation are usually based on reconstruction-
based neural network architectures, such as autoencoders
(AE) [3], [5], [11], [15], [17], variational autoencoders
(VAE) [14], [23], and generative adversarial networks
(GAN) [1], [20]. These architectures are trained to recon-
struct normal training images accurately. If an anomalous
image comes as an input, then it is supposed to output a
bad reconstructed image. The anomaly score is calculated
from the reconstruction error between the input image and
its reconstruction. This idea is intuitive and interpretable.

However, AE can sometimes yield good reconstruction
for anomalous images unexpectedly due to the generaliza-
tion ability of machine learning models. [11] proposed
a memory-augmented autoencoder (MemAE) to suppress
the generalization ability of AE by encouraging the mem-
ory contents to represent the prototypical elements of the
normal data. Yet MemAE is unfavorable to anomaly seg-
mentation owing to the low resolution of its reconstructed
images. [17] improved this drawback by introducing fea-
ture compactness loss and feature separateness loss. But
still, the resolution of reconstructed images is not enough to
achieve anomaly segmentation for high-resolution images,
which is vital for many industrial applications.

2.2. Feature-based methods

Recently, more and more feature-based anomaly detec-
tion methods have been proposed. The main idea of feature-
based methods is to extract meaningful feature vectors for
describing the entire image [2], [19] or the patches of the
image [4], [6], [24], [27]. The anomaly score will then be
calculated by the distance between the representing feature
vectors of the normal training data and the embedding vec-
tors of a testing image. Because the appearances of normal
and anomalous images are usually very different, the dis-
tance between the corresponding features is supposed to be
large especially when the testing image is anomalous.

Deep SVDD [19] used a deep neural network in place of
the kernel function in SVDD [22], a classical one-class clas-
sification method. [27] extended deep SVDD to a patch-
level anomaly detection, and proposed the Patch SVDD
method, which is also the baseline method of our work.
Patch SVDD enables SVDD to do anomaly segmentation
and at the same time improves the anomaly detection per-
formance significantly. It uses SVDD loss to train an en-
coder to gather semantically similar patches and makes the
embeddings of adjacent patches still distinguishable enough
by adopting the self-supervised learning method proposed
by [10], which trains an encoder and classifier pair to predict
the relative position of two patches. Nevertheless, the idea
of mapping the features of adjacent patches together bene-
fits the cases of patches with similar structures. Moreover,
predicting relative position of two patches can be confusing
by cases with texture images. To overcome the above two
problems, [27] proposed to increase the weight of SVDD
loss for texture images and decrease it for object images.
Unfortunately, information extracted from the images tends
to be insufficient by only adjusting the weights of losses.

3. Proposed Method
Inspired by Patch SVDD in [27], this work aims to learn

more representative features from normal images. Based
on a multi-scale patch architecture, our model is trained to
extract representative patch features from normal images.
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Figure 2. Our framework uses multi-scale patches for feature extraction from encoders Enc64, Enc32, and Enc16, which are pretrained
on ImageNet with VGG16 architecture. The features extracted from each of these encoders will be clustered by using K-means clustering
method. Meanwhile, they will be sent into a classifier C for predicting relative positions between patches. Note that the patch sizes are 64,
32, and 16, respectively, and all the three encoders follow the same training flow.

Figure 2 depicts an overview of the proposed framework.
The whole framework is mainly composed of 3 encoders
with different architectures and 3 classifiers. The overall
flow of the proposed anomaly detection and segmentation
system will be described in details subsequently.

3.1. Training Stage

In our training process, we first select two patches of size
64 × 64 and use the same selection method for patches of
size 32× 32 and size 16× 16 from the same image several
times. The 3 different sizes of patches will then go through
the same work flow except that the encoders are with dif-
ferent architectures. Here the 3 encoders are denoted as
Enc64, Enc32, and Enc16 respectively.

Take the patches of size 64 × 64 for example. The se-
lected patches will be sent into Enc64, which is pretrained
on ImageNet [9] with VGG16 [21] architecture. The feature
embeddings of these patches encoded by Enc64 will then
be clustered by applying K-means clustering [12] method.
Meanwhile, the features will be sent into a classifier C to
predict the relative angles between the patches.

3.2. Objective Functions

Our network is trained with four different objective func-
tions, which are SVDD loss, Cos loss, SSL loss, and Kmean
loss. The details of these objective functions will be de-
scribed in the following subsections. Here Encθ is denoted
as the encoders, where θ ∈ {64, 32, 16} denotes the patch
size. The approach of selecting the patches in the four losses
will be explained in details in 3.3.

3.2.1 SVDD Loss and Cos Loss

We follow the concept of gathering semantically similar
patches by SVDD loss in [27]. By sampling spatially ad-
jacent patches, the encoder is trained to minimize the L2-
distance between their features. Besides the SVDD loss,
we expect the two patches with larger distance to be se-
mantically less similar. Thus, we further add the Cos loss
to strengthen the information extracted from the patches.
Equation 1 and 2 show the SVDD loss and the Cos loss,
respectively.

LSVDD =
∑

(i,j)∈N

∥Encθ(Pi)− Encθ(Pj)∥2, (1)

and

LCos =
∑

(i,j,k)∈T

Sim cos(Encθ(Pi), Encθ(Pk))

− Sim cos(Encθ(Pi), Encθ(Pj)),

(2)

where N denotes the set of pairs of neighboring patches,
T denotes a set of triplets of patches (Pi, Pj , Pk)’s with Pj

and Pi closer than Pk and Pi, and Sim cos(u,v) is the
cosine similarity between feature vectors u and v.

3.2.2 SSL Loss

We also follow [27] to utilize the self-supervised learning
method in [10]. Yet we extend the concept of predicting
the relative positions into relative angles, for the purpose of
helping the model predict more accurate direction between
two neighboring patches. The classifier C is trained to pre-
dict the relative angles between the selected two neighbor-
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ing patches Pi and Pj .

LSSL =
∑

(i,j)∈N

CrossEntropy(y, C(Encθ(Pi), Encθ(Pj))),

(3)
where y ∈ {0, 1, 2, ..., 11} is the index of ground-truth an-
gles of Pj relative to Pi and the set corresponds to the angles
{0◦, 30◦, 60◦, ..., 330◦}.

3.2.3 Kmean Loss

In order to learn better feature representation of normal pat-
terns, we adopt K-means clustering [12] to gather patches
with similar patterns. Since the embeddings of the patches
in the same cluster are expected to be closer to the center
of that cluster as much as possible, we define the K-means
loss as follows:

LKmeans =
∑
r

min
k

∥Encθ(Pr)− ck∥2, (4)

where ck are the centers of the clusters. Here we update ck
for every 5 epochs.

3.2.4 Overall Loss

Finally, the overall loss for optimizing our model is given
by Equation 5.

Lall = λ(LSVDD + LCos) + LSSL + LKmeans, (5)

where λ is the hyper-parameter in the objective function for
the model training. If the data has similar pattern for all
patches, then the value λ can be set to a larger value for
relying much more on the semantically similarity among
patches, and vice versa. However, here λ can be set to the
same value regardless of the image structure in our model
due to the sufficient information extracted from the embed-
ding features.

3.3. Patch Selection

The strategy of the patch selection in our model train-
ing is different for different loss functions. Figure 3 depicts
an example of selecting patches for different loss functions.
For the SVDD loss and Cos loss, we first randomly select a
patch Pi from the image. Then a patch Pj is randomly se-
lected from the ±4 pixels adjacent patches to Pi if the patch
size is 64, ±2 pixels adjacent patches to Pi if the patch size
is 32, and ±1 pixel adjacent patches to Pi if the patch size is
16. Patch Pk is randomly selected from the patches which
are further away from Pi. On the other hand, the process
of the patch selection for SSL loss is to randomly select a
patch Pm first, and then select a patch Pn nearly a patch size
away from Pm along a direction randomly selected from the

Figure 3. An example of patch selection process. The left side of
the figure shows how patches are selected for SVDD loss and Cos
loss and the right side demonstrates SSL loss.

12 pre-defined angles. Finally, Kmean loss simply selects
patches Pr from the image randomly.

For the whole training process, the total number of
patches, patch pairs, or patch triplets selected for each loss
is set to 100 for each image in our implementation.

3.4. Inference Stage

Figure 4 depicts the process of our inference phase. A
test image will first be split into overlapped patches with
patch size θ ∈ {64, 32, 16} and with stride dθ. In our ex-
periments, d64 = 16 and d32 = d16 = 4. Then the trained
encoders Enc64, Enc32, and Enc16 extract features from
these patches. For each patch P θ

r , we evaluate its abnor-
mality by calculating the shortest L2-distance between its
feature embedding and all the normal feature embeddings
in the training dataset by

Dθ(P
θ
r ) = min

t∈T θ

∥∥Encθ(P
θ
r )− Encθ(Pt)

∥∥
2
, (6)

where T θ is the index set of all patches of the training
images with patch size θ. Next, we picture the anomaly
map for each θ by making the above patch-wise calculated
anomaly scores distributed to the pixels by averaging the
scores overlapped on the same pixels, i.e., the value of the
anomaly map AMθ at the (i, j)-pixel is defined by

AMθ(i, j) = mean
a∈Iθ

i,j

(Dθ(P
θ
a )), (7)

where Iθi,j is the index set of the patches covering the (i, j)-
pixel. After that, we aggregate the three maps correspond-
ing to different patch sizes by using element-wise addition
to obtain the final anomaly map AM , i.e.,

AM(i, j) =
∑
θ

AMθ(i, j), (8)

is used as our final anomaly segmentation result.
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Figure 4. The detailed process of our inference phase. Features of different sizes of patches are extracted from Enc64, Enc32, and Enc16
respectively. Note that the anomaly maps here are all 256× 256.

For the anomaly detection, we use a sliding window over
the anomaly map with window size 8×8 and stride 4. Then
we evaluate a local score for each window by averaging the
scores inside it. The final anomaly score of the image is then
defined by the maximum of all the local scores as follows:

Score = max
(s1,s2)∈S

1

64

7∑
i=0

7∑
j=0

AM(i+ s1, j + s2),

(9)
where S is the set of the top-left positions of the win-
dows. We adopt this strategy for anomaly detection due
to its ability to alleviate the influence of outlier pixels with
high anomaly scores for normal patches, which effectively
reduces the false positives.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct our experiments mainly on the MVTec AD
dataset [3], which is a dataset for benchmarking anomaly
detection methods on industrial inspection. The dataset
contains over 5,000 high-resolution (700 × 700 ∼ 1024 ×
1024 pixels) images with 5 texture classes and 10 objects
classes. Each class is composed of defect-free training im-
ages and testing images with various types of defects as well
as defect-free images. The testing data also provides pixel-
precise annotations of all anomalies.

We also perform experiment on BTAD (beanTech
Anomaly Detection dataset) dataset, which is recently re-
leased by [16]. It contains 2,830 images with 3 different
classes. The resolution of these 3 classes are 1600 × 1600,

600× 600, and 800× 600, respectively. Each class is com-
posed of defect-free training images and testing images, like
MVTech AD dataset, except that the defect types are not il-
lustrated.

Similar to most recent works and the state-of-the-art
methods, we adopt Area Under the Receiver Operating
Characteristics (AUROC) as the evaluation metric for fair
comparison. The threshold is determined by the point
corresponding to the maximal F1-score of the precision-
recall-curve between the anomaly scores and the ground
truth. We also compute another evaluation metric sug-
gested by [3], per-region-overlap score(PRO-score), which
weights ground-truth anomalous regions equally regardless
of the sizes of the regions. The main metric AUROC is bi-
ased in favor of large anomalous region, whereas for PRO-
score, a large correctly segmented region cannot make up
for wrongly segmented minor ones. Same as [3] and other
papers, we produce a binary mask which indicates whether
a pixel is an anomaly by giving a threshold to anomaly
scores. The PRO-score is calculated as the average pro-
portion of the pixels detected as anomaly in each ground
truth anomalous regions. Then the measure of the PRO-
score will be the normalized value of the integral across per-
pixel false-positive rates from 0 to 0.3. A high PRO-score
indicates that both large and minor anomalous regions are
well-localized.

4.2. Experimental Comparison

Our model is implemented in PyTorch. We resize im-
ages in MVTec AD dataset to 256 × 256 and images in
BTAD to 512 × 512. Here λ is empirically set to 10−3

and batch size is set to 64 for all classes in both datasets.
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Table 1. Comparison of our models with the SOTA methods for
the image-level anomaly detection performance on MVTec AD
dataset. The results are reported with AUROC%.

Class CutPaste [13] STPM [24] InTra [18] SPADE [6] Patch SVDD [22] PaDiM [7] Ours

Carpet 93.1 - 98.8 - 92.9 - 93.4

Grid 99.9 - 100.0 - 94.6 - 100.0

Leather 100.0 - 100.0 - 90.9 - 99.3

Tile 93.4 - 98.2 - 97.8 - 96.2

Wood 98.6 - 98.0 - 96.5 - 99.7

All Texture Classes 97.0 - 99.0 - 94.5 - 97.7

Bottle 98.3 - 100.0 - 98.6 - 100.0

Cable 80.6 - 84.2 - 90.3 - 98.8

Capsule 96.2 - 86.5 - 76.7 - 97.2

Hazelnut 97.3 - 95.7 - 92.0 - 99.6

Metal nut 99.3 - 96.9 - 94.0 - 97.8

Pill 92.4 - 90.2 - 86.1 - 97.7

Screw 86.3 - 95.7 - 81.3 - 94.1

Toothbrush 98.3 - 99.7 - 100.0 - 100.0

Transistor 95.5 - 95.8 - 91.5 - 98.9

Zipper 99.4 - 99.4 - 97.9 - 99.5

All Object Classes 94.3 - 94.4 - 90.8 - 98.4

All classes 95.2 95.5 95.9 85.5 92.1 97.9 98.1

The optimizer is Adam with the learning rate 10−5. Note
that Patch SVDD [27] used different λ values for different
classes whereas we use the same λ value for all experiments
in the paper.

We compare the performance of our model with several
state-of-the-art anomaly detection methods on MVTec AD
dataset and BTAD dataset. Table 1 and Table 2 show the su-
perior overall accuracy of our methods compared with the
SOTA methods, including CutPaste [13], STPM [24], In-
Tra [18], SPADE [6], Patch SVDD [22], and PaDiM [7], on
anomaly detection and anomaly segmentation, respectively.

Table 2. Comparison of our models with the SOTA methods for
the pixel-level anomaly localization performance on MVTec AD
dataset. The results are reported with AUROC%.

Class CutPaste [13] STPM [24] InTra [18] SPADE [6] Patch SVDD [27] PaDiM [7] Ours

Carpet 98.3 98.8 99.2 97.5 92.6 99.1 98.4

Grid 97.5 99.0 99.4 93.7 96.2 97.3 98.5

Leather 99.5 99.3 99.5 97.6 97.4 99.2 99.1

Tile 90.5 97.4 94.4 87.4 91.4 94.1 94.4

Wood 95.5 97.2 90.5 88.5 90.8 94.9 97.5

All Texture Classes 96.3 98.3 96.6 92.9 93.7 96.9 97.6

Bottle 97.6 98.8 97.1 98.4 98.1 98.3 98.6

Cable 90.0 95.5 93.2 97.2 96.8 96.7 98.2

Capsule 97.4 98.3 97.7 99.0 95.8 98.5 97.9

Hazelnut 97.3 98.5 98.3 99.1 97.5 98.2 97.8

Metal nut 93.1 97.6 93.3 98.1 98.0 97.2 99.1

Pill 95.7 97.8 98.3 96.5 95.1 95.7 98.8

Screw 96.7 98.3 99.5 98.9 95.7 98.5 98.5

Toothbrush 98.1 98.9 99.0 97.9 98.1 98.8 99.0

Transistor 93.0 82.5 96.1 94.1 97.0 97.5 97.7

Zipper 99.3 98.5 99.2 96.5 95.1 98.5 98.6

All Object Classes 95.8 96.5 97.2 97.6 96.7 97.8 98.4

All classes 96.0 97.0 97.0 96.5 95.7 97.5 98.1

Note that our method achieves state-of-the-art results on
several classes and provides the highest average AUROC
among all classes for both anomaly detection and segmen-

tation tasks. It is obvious that the previous SOTA methods
usually perform not well on one or two classes. However,
our method performs consistently well for all classes in this
experiment.

Table 3 shows the comparison of our models with the
SOTA methods which also conduct the PRO-score calcu-
lation. Our model performs better on most of the classes,
especially for the class Transistor. The results prove that
our proposed method segment both large and minor anoma-
lous regions well.

Table 3. Comparison of our models with the SOTA methods for
the pixel-level anomaly localization performance on MVTec AD
dataset. The results are reported with PRO-score%.

Class STPM [24] U-Student [4] DFR [26] SPADE [6] PaDiM [7] Ours

Carpet 95.8 87.9 93.0 94.7 96.2 92.7

Grid 96.6 95.2 93.0 86.7 94.6 97.9

Leather 98.0 94.5 97.0 97.2 97.8 99.2

Tile 92.1 94.6 79.0 75.9 86.0 88.8

Wood 93.6 91.1 91.0 87.4 91.1 96.2

All Texture Classes 95.2 92.7 90.6 88.4 93.2 95.0

Bottle 95.1 93.1 93.0 95.5 94.8 95.3

Cable 87.7 81.8 81.0 90.9 88.8 96.7

Capsule 92.2 96.8 97.0 93.7 93.5 97.8

Hazelnut 94.3 96.5 97.0 95.4 92.6 97.8

Metal nut 94.5 94.2 90.0 94.4 85.6 88.8

Pill 96.5 96.1 96.0 94.6 92.7 96.1

Screw 93.0 94.2 96.0 96.0 94.4 98.3

Toothbrush 92.2 93.3 93.0 93.5 93.1 94.4

Transistor 69.5 66.6 79.0 87.4 84.5 95.0

Zipper 95.2 95.1 90.0 92.6 95.9 97.0

All Object Classes 91.0 90.8 91.0 93.4 91.6 95.7

All classes 92.1 91.4 91.0 91.7 92.1 95.5

We also compare our model with VT-ADL [16] and
Patch SVDD [27] on the recently released BTAD dataset.
Note that [16] only reported its anomaly segmentation ac-
curacy with PRO-score and PR-AUC. For comparison with
our method, we use the code of the works [16] and [27]
released in Github and output both the anomaly detection
and segmentation AUROC results on BTAD dataset. Ta-
ble 4 and Table 5 show that [16] only performs well on
Product01 for anomaly detection task. On the contrary, our
method achieves 95.1% average AUROC on anomaly detec-
tion and 97.7% average AUROC on anomaly segmentation
for all the three product types. The results show the high ac-
curacy and generalization of applying our method to detect
different styles and resolutions of defects.

4.3. Ablation Study

We conduct various ablation studies on the MVTec AD
dataset to provide deeper insight of the proposed method.
Multi-scale architecture is the main characteristics of our
model. From Table 6, we prove that with different scales
of patches, representative features are extracted from the
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Table 4. Comparison of results by applying VT-ADL[16], Patch
SVDD [27] and our models for the image-level anomaly detection
on BTAD dataset. The results are reported with AUROC%.

Product VT-ADL[16] Patch SVDD [27] Ours

Product01 97.6 96.3 100.0

Product02 71.0 70.3 85.3

Product03 82.6 91.1 100.0

All Products 83.7 85.9 95.1

Table 5. Comparison of results by applying VT-ADL[16], Patch
SVDD [27] and our models for the pixel-level anomaly segmenta-
tion on BTAD dataset. The results are reported as AUROC%.

Product VT-ADL[16] Patch SVDD [27] Ours

Product01 76.3 94.9 97.3

Product02 88.9 92.7 96.8

Product03 80.3 91.7 99.0

All Products 81.8 93.1 97.7

Table 6. Study of the image-level anomaly detection and the pixel-
level anomaly segmentation performance with different scales on
MVTec AD dataset. Here single-scale denotes patch of size 64,
2-scale denotes size 64 and 32, and 3-scale denotes size 64, 32,
and 16. The results are reported with AUROC%.

Class All Texture Classes All Object Classes All Classes

Task det. seg. det. seg. det. seg.

Ours (single-scale) 81.5 84.6 93.2 95.2 89.3 91.7

Ours (2-scale) 97.0 95.8 97.1 97.9 97.1 97.2

Ours (3-scale) 97.7 97.6 98.4 98.4 98.1 98.1

images. The improvement on the experimental evaluation
on different texture classes is especially significant from
single-scale to multi-scale, especially on subtle defect re-
gions.

Table 7 shows our ablation study for each loss function.
It is obvious that without SSL loss, the performance drops
significantly for all classes, which justifies the importance
of the self-supervised learning component. Besides, we no-
tice that removing the Cos loss or K-means loss cause con-
siderable degradation on the accuracy, especially for texture
classes.

4.4. t-SNE Visualization

t-SNE is commonly used as an dimensionality reduction
tool for the visualization of high-dimensional feature dis-
tributions. It is also frequently used in anomaly detection
tasks to visualize the distributions of learned features. Here
we show the t-SNE plots of the learned features from our
model in the top row of Figure 5. It can obvious that the

Table 7. Study of the image-level anomaly detection and the pixel-
level anomaly segmentation performance with different losses on
MVTec AD dataset. The results are reported with AUROC%.

Class All Texture Classes All Object Classes All Classes

Task det. seg. det. seg. det. seg.

Ours (w/o SVDD) 96.0 95.5 96.0 97.3 96.0 96.7

Ours (w/o Cos) 94.8 93.4 97.8 98.0 96.8 96.5

Ours (w/o SSL) 89.9 93.8 88.9 95.7 89.3 95.0

Ours (w/o Kmean) 94.8 93.9 97.2 98.2 96.4 96.8

Ours 97.7 97.6 98.4 98.4 98.1 98.1

Figure 5. t-SNE plots of the learned features of our full model
and our model without Kmeans loss. Purple points and yellow
points denote normal patches and anomalous patches, respectively.
The plots show that our model can better separate anomaly from
normal samples.

normal patches and the anomalous patches are well sepa-
rated in the learned feature space. This suggests that our
model learns the feature representation very well from nor-
mal images only. Note that each point here is a patch from
a testing image. To emphasize the importance of K-means
clustering method, we also conduct the t-SNE visualization
of the learned features without Kmeans loss in the bottom
row of Figure 5. The comparisons between the plots demon-
strate the contribution of K-means clustering method to our
model.

4.5. Qualitative Results

In this section, we show some examples of anomaly seg-
mentation results for different classes in Figure 6 and Fig-
ure 7 to demonstrate the performance of our model. We
calculate F1-score as the threshold of every anomaly map
like most of the previous works. Each anomaly score of
the pixel larger than the threshold is regarded as anoma-
lous pixel and set to 1. Then the mask composed of 0
and 1 generates our predicted mask. It can be shown from
the images that regardless of the sizes, shapes, or posi-
tions of the defects, all predicted defects produced by our
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Figure 6. Examples of different classes in MVTec AD dataset.
From top row to bottom row are Grid, Tile, Wood, Bottle, and
Cable on the left side, and Capsule, Hazelnut, Metal nut, Screw,
and Transistor on the right side respectively. We compare our pre-
dicted masks with Patch SVDD [27] and PaDiM [7].

Figure 7. Examples of the 3 products of BTAD dataset. Product01
to Product03 are shown from the left side to the right side. Here
we show the predicted masks obtained from our proposed method.

proposed method are properly localized. Although some
shapes of the masks seem not very accurate, the predicted
masks still justify that our model performs well on detecting
tiny defects. Compared with our predicted masks in Fig-
ure 6, [27] misses defects of small anomalous regions and
texture classes, and [7] has some false positive detection on
a few classes.

4.6. Analysis of Failure Cases

In this section, we give deeper insight in some failure
cases in the MVTec AD dataset and the BTAD dataset. We
concentrate on texture classes here since our model per-
forms worse for some texture classes.

4.6.1 MVTec AD Dataset

From Figure 8, we can observe that our model fails to detect
some scratch defect type with thin and tiny or thin and long
scratches for the classes Carpet. Also, our model struggles
to detect the defect type thread side of the class Screw.
And for the class Tile, our model failed to detect some
slightly rough cases for the defect type rough, as shown
in the figure.

Figure 8. Examples of failure cases in defective testing images in
the MVTec AD dataset. From left to right are Carpet, Tile, and
Screw classes, respectively.

Figure 9. Examples of failed cases in defective testing images of
Product02 in the BTAD dataset.

4.6.2 BTAD Dataset

For the experimental results on BTAD dataset, our model
performs slightly worse for Product02 in the image-level
anomaly detection task. We dig into the failed images and
find out that there are 96 out of 200 defective test images
containing only tiny or thin scratches, as shown in Figure 9.
These challenging scratches are undetected by our model
even with 3-scale patches and patch size 16. These tiny
or thin anomalous regions are even smaller and difficult to
detect from the image normalized to size 256x256, which is
used as input to our model.

5. Conclusion

We proposed a multi-scale patch-based framework of
image representation learning for anomaly detection. Our
experimental results prove that considering the global and
local context of an image at the same time leads to excel-
lent representation learning for image anomaly detection.
Moreover, our multi-scale system is capable of detecting
anomalous regions of different sizes. Our experimental re-
sults demonstrate that the proposed method achieves SOTA
accuracy on the benchmark datasets for image anomaly de-
tection and segmentation.
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