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Abstract

The goal of video captioning is to generate captions for a
video by understanding visual and temporal cues. A general
video captioning model consists of an Encoder-Decoder
framework where Encoder generally captures the visual and
temporal information while the decoder generates captions.
Recent works have incorporated object-level information
into the Encoder by a pretrained off-the-shelf object detec-
tor, significantly improving performance. However, using
an object detector comes with the following downsides: 1)
object detectors may not exhaustively capture all the object
categories. 2) In a realistic setting, the performance may be
influenced by the domain gap between the object-detector
and the visual-captioning dataset. To remedy this, we argue
that using an external object detector could be eliminated if
the model is equipped with the capability of automatically
finding salient regions. To achieve this, we propose a novel
architecture that learns to attend to salient regions such as
objects, persons automatically using a co-segmentation in-
spired attention module. Then, we utilize a novel salient
region interaction module to promote information propaga-
tion between salient regions of adjacent frames. Further,
we incorporate this salient region-level information into the
model using knowledge distillation. We evaluate our model
on two benchmark datasets MSR-VTT and MSVD, and show
that our model achieves competitive performance without
using any object detector.

1. Introduction
Video captioning task aims to generate human-

understandable captions by understanding visual and tem-
poral cues in the video. As we are witnessing an expo-
nential increase in videos, this task assumes greater impor-
tance. Further, the ability of a machine/computer to gener-
ate text from a video has the potential to have an enormous
impact on our day-to-day life. For example, a live sports
game can have automatically generated live commentary,
the machine-human interaction may become more natural
by human-understandable text format, it can serve better in

Figure 1: An illustration of spatial attention maps from
proposed co-segmentation branch (CoSB) taken from the
MSRVTT test dataset. The model is equipped with the ca-
pability to localize key salient regions (things and stuffs)
necessitated by video-captioning task.

blind assistance and automatically creating video subtitles.
However, this task requires understanding complex visual
contents such as the spatiotemporal structure of events, the
interactions between different objects, and then grammat-
ically generating coherent text descriptions out of it. Fur-
ther, the multi-modal nature of this task makes it even more
challenging to map information from one modality (video)
to another (text).

Classical methods used a template-based matching
scheme by means of hand-crafted features and rules to de-
termine the subject (S), verb (N), and Object (O). Then the
sentences were generated using a sentence template [28, 2].
In these methods, nouns were detected predominantly by
object detection methods [2]. However, these methods
failed to show promising results on visuals involving com-
plex scenes.

Recent advances in deep learning paved way for reju-
venated interest in solving this task. A typical deep learn-
ing pipeline for video captioning involves an encoder (2D
[41, 19] and 3D CNNs [53, 3], transformer-based models
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[44]) that takes the video frames as input and extracts fea-
tures and a decoder (RNN [20, 14], Self-attention models
[44]) to generate captions. Encoder features give global
context in terms of spatial and temporal field of views of the
video but fail to focus on local aspects and the relationship
between them. For example, using a 2D CNN to extract a
global descriptor for a frame does not account for different
objects in the frame and therefore fails to model object-level
interactions in the spatial and temporal domains.

To alleviate the issue mentioned above, some methods
[59, 33, 60, 32, 62] not only focus on incorporating global
descriptors but also consider the local aspects of the video
overshadowed by the global features. They incorporate
object-level features extracted from an off-the-shelf object
detector such as YOLO [38], Faster RCNN [39], and Mask
RCNN [18]. For instance, OA-BTG [59] extracts multiple
object regions using an object detector and forms object tra-
jectories by aligning the same object from different frames,
thus capturing temporal dynamics of the scene. Zhou et al.
[62] and Ma et al. [32] aggregate object features via pooling
mechanism. One perceived downside of these approaches
is the lack of object-to-object interactions modeling, as ob-
ject interactions form a basis for the majority of the cap-
tions. To promote object-level interactions, some methods
[13, 61, 55] use Graph convolutional networks (GCNs) [27]
to form a spatiotemporal graph on object features. [33, 60]
have shown that such an approach helps in boosting the per-
formance.

Recent literature on video-captioning [32, 1, 58, 33, 60]
task suggests that incorporating object-level information is
important to achieve state-of-the-art performance. How-
ever, it needs an object detector pretrained on a large
dataset. Though object detectors support video-captioning
models with prior information on objects and their labels,
we perceive the following downsides: 1) Object detectors
may not exhaustively capture all the object categories. 2)
The object detectors may bias the captioning model towards
the object categories that it has been trained on. These cat-
egories are limited in numbers and can differ from the cat-
egories in the captioning dataset. Thus, the generalization
may be affected, and performance may be capped by the
performance of object detector in video captioning dataset,
3) Further, in a realistic setting, the performance may be
influenced by the domain gap [5, 52] between the object
detector’s dataset and the visual-captioning dataset.

In this paper, we propose a novel method to demon-
strate the possibility of incorporating object-level informa-
tion without using off-the-shelf object detectors. Specif-
ically, we attempt to equip the model with the capability
to find salient regions in terms of co-segmentation inspired
attention [42] between adjacent frames in an end-to-end
manner. To this end, we propose a two-branch network as
follows: 1) Global scene branch (GSB) for capturing fea-

tures of the global scene directly by means of pretrained
2D and 3D CNNs, 2) Co-segmentation branch (CoSB) to
retrieve features from salient local regions in the video
frames. To achieve this, we incorporate a co-segmentation
inspired attention [42] module to determine salient regions,
conditioned on the cost volume of features between adja-
cent frames. This cost volume is created by the normal-
ized cross-correlation between features from the adjacent
frames. Once the salient regions are localized (Fig.1), to
encourage temporal information propagation between these
salient regions, we propose a novel Salient Region Inter-
action Module (SRIM) that captures region/object-level in-
teractions in temporal dimension through multi-head self-
attention [44] mechanism. GSB and CoSB are connected by
knowledge-distillation inspired KL-divergence constraint
that distills the knowledge of salient regions from CoSB to
GSB. Our main contributions are as follows:

• We propose a two-branch architecture to capture
global scene features as well as salient local regions
automatically without using object detector.

• Through qualitative visualizations, we show that the
co-segmentation branch is able to capture interpretable
object-level information to aid video-captioning.

• We evaluate our model on two benchmark datasets
MSR-VTT and MSVD, and show that our model
achieves competitive performance without using any
object detector.

2. Related work
This section describes the deep learning solutions on

video-captioning and co-attention based architectures in the
literature.

Video captioning: Earlier deep learning based methods
[34, 46, 40, 47] follow a straightforward approach to extract
2D/3D CNNs features and use LSTMs to model the tempo-
ral relationship between frames and caption generation [20].
Yao et al. [56] used 3D CNNs to extract features and atten-
tion mechanism to learn long-range temporal dependencies,
whereas [57] used hierarchical RNNs to model long term
dependencies. Recent works started using object detectors
to infuse knowledge about objects in video-captioning mod-
els. For instance, Zhang et al. [60] extracts object features
from an object detector and uses GCN to merge object fea-
tures. Pan et al. [33] uses a two-branch network where one
branch extracts global features using 2D/3D CNNs and the
other branch applies GCN to model interaction between ob-
ject features. Further, object-related information is distilled
into the global branch via a KL-divergence knowledge dis-
tillation. Our method is similar to [33], however, we do not
use an object detector and show that it is able to achieve on
par or better performance by making the model learn salient
regions in an end-to-end manner.
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Figure 2: Illustration of the proposed model architecture. The model consists of two branch viz., 1) Global Scene branch
(GSB) - Sec. 3.1, and 2) Co-segmentation branch (CoSB) - Sec. 3.2. Both branches have a separate Transformer as decoder
(Sec. 3.3). GSB captures global scene by using 2D and 3D CNN global descriptors. CoSB attends to salient regions via
COSAM module (Sec. 3.2.1) and promotes interaction among salient regions through SRIM (Sec. 3.2.2). Generated captions
are evaluated using standard cross entropy loss. Further, the salient region information is distilled from CoSB to GSB via
KL-divergence loss. Here, GAP = Global average pooling,

⊕
= feature concatenation.

Co-segmentation architectures: Co-segmentation is a
task of localizing similar objects in one or more frames.
Similarity can be based on several characteristics such as
category, color, texture, and semantics. Earlier works relied
on graph-based [4, 23, 29] or clustering [24, 43] approaches
based on hand-crafted features to perform co-segmentation.
Recent works employ deep networks for this task by means
of spatial or channel-wise attention between frames. For
instance, [7] proposed to use semantic similarity between
regions to co-segment the images. [30] demonstrated the
possibility of co-segmenting the images in an unsupervised
way by constraining that foreground features to be similar
to foreground features of other images and dissimilar their
background features. [7] promoted common channel acti-
vations in bottleneck layer to aid co-segmentation. [42] re-
purposed the co-segmentation techniques to activate com-
mon regions between frames and shown that their model
is able to learn salient regions for the underlying task. In
this line of work, we attempt to eliminate the usage of pre-
trained object detector by studying the applicability of co-
segmentation based attention [42]. Specifically, we pro-
pose to equip the network to find salient regions automati-
cally, thus avoiding the need of an external object detection
model.

3. Co-segmentation aided two-stream architec-
ture

Recent state-of-the-arts predominantly use pretrained
object detectors [38, 39, 18] to provide object-related cues
to the visual captioning model. However, using object de-
tectors has the following disadvantages: 1) Object detec-
tors are trained with limited object categories, thus may not

cover all the objects in captioning vocabulary. 2) The object
detectors may bias the captioning model towards the object
categories that it has been trained on. 3) Further, in realis-
tic setting, the performance may be influenced by the do-
main gap [5, 52] between the object-detector’s dataset and
the visual-captioning dataset. In our work, we attempt to
augment the model with end-to-end co-segmentation based
learnable salient regions.

The overall model architecture is illustrated in Fig. 2. It
follows a two-branch architecture: 1) Global scene branch
(GSB) for capturing global scene cues, 2) Co-segmentation
branch (CoSB) for capturing salient region features based
on co-segmentation between frame-level spatial features.
Each branch follows an encoder-decoder architecture. First,
the input frames {Fi}Ti=1 of a video V with dimension
T × 3×H ×W are passed through GSB and CoSB simul-
taneously to predict the captions individually. Here Fi = ith

frame, T = number of frames, 3 channels belong to RGB,H
= height, and W = width of the frames respectively. Next,
we employ cross-entropy loss to evaluate the predicted cap-
tions from both the branches. Further, we employ a KL-
divergence loss to impose a knowledge distillation con-
straint that requires both the branches to predict the same
captions with similar confidence level. This ensures the
knowledge of learned salient regions from CoSB is prop-
agated to GSB. [33] follows a similar approach, however,
they make use of an object-detection branch that requires
a pretrained object detector. In the following sections, we
describe the constituting components of the model.

3.1. Global scene branch (GSB)

The goal of GSB is to capture the global scene-level in-
formation to aid captioning task. To achieve this, we utilize
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Figure 3: Co-Segmentation branch (CoSB) consists of two sub-modules COSAM and SRIM. 1) COSAM consists of two
sub-blocks a) Spatial Attention Block (SAB) takes 2D-feature maps of dimension T ×CL×HL×WL as input an generates
spatial masks signifying salient regions. b) Channel Attention Block (CAB) attends to common informative channels across
the video frames. 2) Next, Salient Region Interaction Module (SRIM) promotes information propagation between salient
regions via multi-head self-attention mechanism. Here,

⊗
= point-wise multiplication,

⊕
= feature addition.

an ImageNet [15] pretrained 2D CNN to capture frame-wise
features and a Kinetics [25] pretrained 3D CNN to capture
temporal features of the video. Specifically, given the input
frames {Fi}Ti=1 of dimension T × 3×H ×W , we pass the
frames through a 2D ResNet-101 [19] pretrained on Ima-
geNet to obtain frame-wise features of dimension T ×2048
after global-average pooling (GAP) layer. The input frames
are also passed through a 3D ResNeXt-101 [53] pretrained
on kinetics dataset to obtain temporal features of dimension
T × 2048 from its fully-connected layer before classifica-
tion layer. These per-frame 2D and 3D features are concate-
nated together and are projected to 512 dimensions to result
in features FGSB of dimension T × 512 for each video.

3.2. Co-segmentation branch (CoSB)

Global-scene information captured by GSB (Sec. 3.1)
may not be sufficient for the task of video captioning which
requires fine-grained understanding of the video. Hence,
different from GSB, the goal of CoSB is to focus on salient
spatial regions of the frames that serves the task better. To
this end, we propose to employ a co-segmentation based
attention module [42] to focus on salient regions. Specif-
ically, CoSB branch (Fig.3) takes spatial feature maps of
dimension T ×CL×HL×WL and uses a co-segmentation
inspired attention (COSAM) [42] to capture salient regions
of frames, followed by a salient-region interaction module
(SRIM) to capture interaction between those regions. Here,
CL, HL,WL = number of channels, height, width of feature
maps after Lth CNN block. In our work, we obtain these in-
put feature maps from 2D ResNet-101 used in GSB to share
weights and reduce model complexity. We will briefly men-
tion the architecture of the COSAM and SRIM modules in
the following paragraphs.

3.2.1 Co-segmentation inspired attention module
(COSAM)

We hypothesize that the usage of object-level information
derived from an external object-detector could be avoided
if the model is equipped with the capability to capture the

notion of objects / salient regions on its own in an end-to-
end manner. Towards this end, in our work, we re-use the
attention method formulated by [42] to activate common
regions between input frames. [42] demonstrated that co-
segmentation inspired attention (COSAM) aids the model
to capture salient regions (typically, regions corresponding
to objects). We adapt the COSAM module to be applied
within adjacent frames to capture salient regions for the un-
derlying task (i.e., video captioning).

COSAM consists of two consecutive attention blocks
namely: 1) Spatial attention block (COSAM-SAB) to ac-
tivate common spatial salient regions and suppress non-
informative regions, 2) Channel attention block (COSAM-
CAB) to activate common informative channels. The de-
sign of COSAM-SAB and COSAM-CAB follows the ar-
chitecture proposed in [42]. Note that spatial and chan-
nel attention concepts have been used in image-based tasks
[22, 51, 26] and relatively under-explored in video-based
tasks. Specifically, the input feature maps of dimension
T × CL × HL × WL are passed through COSAM-SAB
to generate a spatial attention mask of dimension T × 1 ×
HL×WL. For each frame Fi, COSAM-SAB correlates ev-
ery location’s feature with its adjacent frame features (i.e.,
Fi−1, Fi+1) and creates a cost volume. A summary convo-
lution layer takes the cost volume as input and produces a
spatial attention mask. The spatial mask is multiplied with
corresponding original features to obtain spatially refined
features. Further, COSAM-CAB takes the spatially refined
features as input, then through a GAP followed by an MLP,
it produces channel attention weights (T × CL). These
channel attention weights are multiplied with spatially re-
fined features to output co-attended features of dimension
T × CL ×HL ×WL.

3.2.2 Salient-region interaction module (SRIM)

The COSAM module may have selected the salient regions
containing potentially multiple objects. To promote interac-
tions between individual object-like regions, we propose to
use a self-attention based salient region interaction module
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inspired from GloRe [11]. It takes the co-attended spatial
feature maps of dimension T ×CL×HL×WL from previ-
ous step (COSAM) as input, and passes it through a 1×1 2D
convolution layer to perform dimension reduction on chan-
nels (CL → CR, CR << CL) to reduce computations.
Next, we assume that every frame has No objects and each
pixel may belong to one of these objects. To figure out the
object association of pixels, the dimension reduced feature
maps (dimension T ×CR ×HL ×WL) are passed through
an object-association module to output object-association
maps {Oi}Ti=1 that associates every pixel of feature map to
one of No objects. We utilize an 1× 1 2D convolution with
No output channels to achieve this. Further, based on this
object association map, we apply weighted average pool-
ing (WAP) on the dimension-reduced feature maps to out-
put object feature descriptors of size T ×No×CR. i.e., for
each object, the model outputs a descriptor of size CR. In
the next step, we promote interactions between these object
features using multi-head self-attention [44]. Each frame
Fi’s object features (No×CR) are restricted to interact with
the previous, current and next frame’s (Fi−1, Fi, Fi+1) ob-
ject features to avoid noisy feature interactions (refer to Sec.
4.6 for ablation studies).

Next, these self-attended object features are distributed
back to pixel-space to obtain context-aware features. To
achieve this, the self-attended features are passed through
a dimension expansion block (CR → CL) consisting of an
1× 1 2D convolution followed by a reverse mapping mod-
ule based on object association maps {Oi}Ti=1. These redis-
tributed features (dimension T ×CL×HL×WL) are added
to the original input features (dimension T×CL×HL×WL)
to yield context-aware features {Fci}Ti=1. Next, we ap-
ply GAP on {Fci}Ti=1 to get per-frame feature descriptors
FCoSB (dimension T ×CL) to pass them to the decoder for
caption generation.

3.3. Caption generation decoder

For every video instance, after obtaining its features from
GSB (FGSB) and CoSB (FCoSB), we use transformer based
decoders to generate captions. Specifically, we use two sep-
arate decoders similar to [33]: one to predict captions from
FGSB and the other to predict captions from FCoSB . The
decoder transformer generates a word at every time-step by
attending to the input features as well as previously gener-
ated words in the caption. The predicted caption from the
decoders is evaluated using cross-entropy loss. Further, to
transfer salient region specific learning from CoSB to GSB,
we impose a knowledge distillation based constraint that
both CoSB and GSB shall generate the caption words with
similar confidence (refer Sec 3.4 for objective functions).
During test time, we use the captions from Global scene
branch for evaluation, as followed in [33].

3.4. Objective functions

We use standard cross entropy loss for evaluating cap-
tions generated from the transformer decoders. Further,
to promote knowledge propagation of salient regions from
CoSB to GSB, we apply online knowledge distillation
constraint that GSB and CoSB shall predict same words
with similar confidence. Specifically, knowledge distilla-
tion constraint is imposed via KL-divergence loss similar
to [33]. Given the word vocabulary W and probabilities
of caption words generated from global-scene branch P ,
co-segmentation branch Q, the knowledge distillation con-
straint is formulated using KL-divergence as follows:

DKL( P || Q) =
∑
x∈W

P (x) log

(
P (x)

Q(x)

)
(1)

The overall loss function is given by,

L = LGSB + λLCoSB + λKLLKL (2)

Here, LGSB and LCoSB are the individual cross entropy
losses for GSB and CoSB branches respectively. LKL de-
notes KL-divergence between probability distributions of
GSB and CoSB branch. λ and λKL are hyper-parameters.

4. Experiments
In this section, we describe the training and test details,

experiments and comparison of our model with state-of-the-
arts.

4.1. Datasets

We use two challenging benchmark datasets: Microsoft
Research Video-to-Text (MSR-VTT) [54] and Microsoft
Video-Description Corpus (MSVD) [6].

MSTVTT: It contains 10,000 video clips from 20 wide-
range of categories (cooking, animations, sports, etc) with
an average video length of 20 seconds. Each video has 20
human-annotated English captions. We follow the standard
split followed in [34, 37, 59] for train, validation and test
as follows: 6513 video clips for training set, 497 for cross-
validation set and remaining 2990 for the test set.

MSVD: It contains total of 1970 videos with approx. 40
English captions per video. We follow standard protocol
split [34, 37, 59] of dividing 1970 videos into train = 1200,
validation = 100, and test = 670 videos for performing ex-
periments.

4.2. Evaluation metrics

We use the following metrics found in literature to
quantitatively evaluate our models performance: BLEU@4
[35], METEOR [16], ROUGE L [31] and CIDEr [45].
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BLEU@N matches n-gram between the generated captions
and the ground truth, while METEOR metric is based on
word-to-word matching between the generated captions and
the ground truth, ROUGE L is Longest common subse-
quence based metric (LCS) and CIDEr calculates n-gram
similarity between generated caption and ground truth. The
above mentioned metrics are computed using Microsoft
COCO evaluation server [10]

4.3. Implementation Details

We implement our model using PyTorch [36] deep learn-
ing framework1. During training, for every video, we use
uniformly subsampled T = 10 frames as input with correct
temporal order. The frames are resized to spatial resolution
of 256×256 and are center cropped to 224×224. We use the
2D CNN ResNet-101 pretrained on ImageNet [15] dataset
to extract 2D features in GSB. Also, we extract intermediate
features after 5th block (dimension T ×1024× 14× 14) as
input features to CoSB branch. For acquiring 3D features
in GSB, we use 3D ResNeXt-101 pretrained on Kinetics
dataset. For every frame, a clip of 16 adjacent frames is
used as input for ResNeXt-101 to get per-frame 3D feature.
The following hyper-parameters are used in network design:
CR = 512, No = 5.

For the transformer decoder, we adopt [9] as our trans-
former architecture. We build a vocabulary of size 11K
and 6.5K for MSR-VTT and MSVD respectively. During
this process, punctuations are removed from every sentence
and a word is removed if its count is one or less in whole
dataset to avoid imbalanced distributions. During training,
the maximum length of the sentence is set to 20. We use 2
multi-head self attention layers (one to encode visual fea-
tures and the other to generate captions) in the decoder. We
greedly output words with beam size of 1. Self-attention
module has 8 attention heads and an MLP to output features
with 1024 dimension.

We use a cross validation set to tune the hyper-
parameters. The hyper-parameters are set as follows: batch
size = 64, learning rate = 10−4, the learning rate is decayed
by multiplying 0.8 after every 200 epochs, weight decay =
5×10−4, dropout probability = 0.3. The model is optimized
using Adam optimizer with default parameters (β1 = 0.9,
β2 = 0.999) for 650 epochs with early stopping to get the
best performing model. For MSRVTT dataset, we set λ = 1
and for MSVD dataset, λ = 2. λKL is set to 4 for both
datasets.

4.4. Comparison with state-of-the-art methods

We compare our model with recent state-of-the-art meth-
ods: SA-LSTM [49], M3 [50] RecNet [49], PickNet [12],
MARN [37], POS+VCT [21], ORG-TRL [60], OA-BGT
[59], STG-KD [33].

1Code will be released in Github upon acceptance of the paper.

SA-LSTM [56] captures global temporal structure us-
ing temporal attention mechanism. M3 [50] creates mul-
timodal memory space that stores and retrieves both visual
and textual information, to get mapping between words and
visuals. RecNet [49] follows an encoder-decoder architec-
ture along with a reconstruction module to generate visual
features for the generated captions. PickNet [12] uses re-
inforcement Learning methods to pick video frames that
are more visually diverse to get non-redundant features.
MARN [37] establishes a mapping between words and vi-
sual cues related to that word over the spectrum of training
data to get more robust context. OA-BTG [59] and STG-KD
[33] introduce object features in the model with the help of
a pretrained external object detector. Specifically, OA-BTG
[59] aligns similar objects and computes object trajectories,
whereas STG-KD [33] finds object level interactions using
a spatiotemporal graph and further distilling this knowledge
into their encoder-decoder network. Our model differs from
STG-KD [33] by eliminating the need for external object
detector and relying on model’s ability to focus on salient
regions. POS+VCT [21] and ORG-TRL [60] focus to im-
prove the decoder. Specifically, POS+VCT uses <POS>
tags to learn syntactic structure and uses a combination of
features such as Inception-ResNetV2 with C3D, where as
ORG-TRL [60] uses pretrained BERT [17] model to gener-
ate better distribution of vocabulary while predicting words
in caption. Table 1 shows the comparison of our model with
the state-of-the-art methods.

Table 1 is split into three logical groups that signifies
different line of works in the video-captioning literature.
First group (POS+VCT [21], ORG-TRL [60]) focuses on
improving decoder in their video captioning model. As
these models directly optimize decoder with <POS> tags
and pretrained BERT [17] modules, according to the fair
comparison policy followed in the literature [33], we com-
pare our method only with those methods that worked on
encoder part (i.e., logical group 3). The second group (OA-
BTG [59], STG-KD [33]) employ a pretrained object detec-
tor to introduce the concept of objects inside the model. The
third group (RecNet [49], PickNet [12], MARN [37], SA-
LSTM [49], M3 [50]) focuses on encoders without the help
of external pretrained models like object detectors / optical
flow estimators. Our model belongs to third category where
we focus on getting a better encoder representation without
using external pretrained models and dependencies. In that,
our model is most comparable with MARN, in which we
use same global feature extractors as MARN i.e. ResNet-
101 [19] and ResNeXt-101 [53]. Note that we follow the
standard procedure in the literature [37] to not compare with
models based on reinforcement Learning (RL) [48] tech-
niques.

From the Table 1, in MSRVTT dataset, we can see
that our model gets competitive performance in B@4,
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Methods Year Object detector MSRVTT MSVD
B M R C B M R C

POS+VCT [21] ICCV-2019 - 42.3 29.7 62.8 49.1 52.8 36.1 71.8 87.8
ORG-TRL [60] CVPR-2020 Faster RCNN 43.6 28.8 62.1 50.9 54.3 36.4 73.9 95.2
OA-BTG [59] CVPR-2019 Mask RCNN 41.4 28.2 - 46.9 56.9 36.2 - 90.6
STG-KD [33] CVPR-2020 Faster RCNN 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93.0
SA-LSTM [49] CVPR-2018 - 36.3 25.5 58.3 39.9 45.3 31.9 64.2 76.2
M3 [50] CVPR-2018 - 38.1 26.6 - - 52.8 33.3 - -
RecNet [49] CVPR-2018 - 39.1 26.6 59.3 42.7 52.3 34.1 69.8 80.3
PickNet [12] ECCV-2018 - 41.3 27.7 59.8 44.1 52.3 33.3 69.6 76.5
MARN [37] CVPR-2019 - 40.4 28.1 60.7 47.1 48.6 35.1 71.9 92.2
Ours - - 41.4 27.8 61.0 46.5 50.7 35.3 72.1 97.8

Table 1: Performance analysis on MSRVTT and MSVD datasets. First group of methods optimize on decoder. Second group
of methods enhance encoder visual features by making use of object detectors. Third group of methods enhance encoder
features without the usage of object detectors. Here, B = BLEU@4, M = METEOR, R = ROUGE L, C = CIDEr.

(a) STG-KD [33]: A woman is cooking.
Ours: A person is cutting a piece of meat.
GT: A person is cutting mushroom.

(b) STG-KD [33]: A boy kicks a goal.
Ours: A boy is kicking a soccer ball.
GT: A boy kicks a soccer ball.

(c) STG-KD [33]: A person is cooking.
Ours: A woman is mixing ingredients.
GT: A woman is mixing water and flour.

Figure 4: Qualitative visualization of CoSB branch’s COSAM spatial attention on MSVD dataset (best viewed in color)

(a)
STG-KD [33]: A man is pouring pasta on to a container.
Ours: A man is putting a lid on a plastic container.
GT: A man puts a lid on a plastic container.

(b)
STG-KD [33]: A woman is slicing carrot.
Ours: A woman is slicing octopus.
GT: A woman is slicing octopus.

Figure 5: Qualitative visualization of CoSB branch’s COSAM spatial attention on MSVD dataset (best viewed in color)

ROUGE L measures. Specifically, our model performs
1 and 0.3 points better than its most comparable method
MARN in B@4 and ROUGE L respectively. Further,
our model performs 1.2 and 2.4 points over PickNet [12]
in ROUGE L and CIDEr metrics respectively. We hy-
pothesize that the moderate performance of our model in
MSRVTT is due to the high number of discontinuous clips

in these videos, thus it may be difficult for COSAM to de-
termine salient regions.

In MSVD dataset, our model outperforms on 3 metrics
in the third logical group: METEOR, ROUGE L and CIDEr
showing the effectiveness of combination of GSB and CoSB
branches. We achieve state-of-the-art CIDEr score outper-
forming even the models that use external object detectors
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[8] and those that focuses on both encoder and decoder [60].
CIDEr being a metric that is better correlated with human
judgement, this performance improvement shows that our
model is able to generalize to test set and generate better
captions.

Components
B@4 M R CGSB CoSB

COSAM SRIM
3 7 7 48.0 34.5 71.2 93.3
7 3 3 38.3 28.3 64.7 49.1
3 3 7 50.4 34.4 71.7 92.7
3 7 3 49.2 35.2 71.9 92.7
3 3 3 49.4 35.0 71.5 96.9
3 3 3(m) 50.7 35.3 72.1 97.8

Table 2: Ablation study of the proposed model on MSVD
dataset. Here, B@4 = BLUE@4, M = METEOR, R =
ROUGE L, C = CIDEr. ’m’ in SRIM column indicates
masked multihead self-attention.

4.5. Qualitative Analysis

In this section, we illustrate some of the interesting qual-
itative visualization from our model showing its ability to
localize the important salient regions to aid video caption-
ing. As our model is similar to [33]2 but without using ex-
ternal object detector, we also provide captions from [33]
in the figures to have a relative comparison. In the quali-
tative visualizations (Fig. 4a, 4b, 4c, 5a and 5b), we show
the visualizations of the spatial mask from COSAM mod-
ule of CoSB branch. From the visualizations, it is evident
from the masks that our model is able to attend key salient
regions such as objects, persons in the video. Specifically,
in Fig. 4a, our model attempts to generate more detailed
caption by adding a quantifier like “a piece of”. Similarly,
in Fig. 4c, “mixing ingredients” is more detailing about the
particular action than “cooking”. In Fig. 5a, our model is
able to capture the “closing” action between the person and
the box lid, as well as it is able to generate a caption giving
specific details about “plastic container”. Further, in Fig.
4b, our model is able to attend on the cross bar of the goal
post which is an important cue to showcase that the boy is
hitting a “soccer ball”. We notice a key observation that
our model is better at classifying/recognizing objects that’s
important for captioning tasks. For example, Fig. 5b shows
that our model is correctly able to classify “octopus”, where
as [33] classifies it as “carrot”. We hypothesize that object
detectors may face difficulty in detecting and recognizing
such uncommon classes that’s not present in their training
dataset. Hence, letting the model to figure out the salient
regions without biasing it with an external object detector is
a potent approach.

2We reproduce and train the model on our own for producing these
results.

4.6. Ablation studies
In this section, we show performance of our model by

ablating on different components, especially the signifi-
cance of the CoSB branch. The ablation study results are
shown in the Table 2. We perform six experiments to iso-
late and analyze the contributions from different compo-
nents of our model. In first experiment (Row 1), we first
start with a simple model by having only the GSB with
the cross entropy loss and show the performance. In the
next experiment (Row 2), we train only CoSB with cross
entropy loss which performs inferior to GSB-only model.
It may be due to the use of only 2D intermediate features
without temporal context. As GSB takes input as both 2D
and 3D CNN features, it receives both spatial and tempo-
ral cues. Further, from the third experiment, along with
GSB, we start integrating the components of CoSB one by
one. Row 3 shows the performance of our model with GSB
and COSAM. This variant improves the GSB-only perfor-
mance by 2.4, 0.5 points in B@4 and ROUGE L metrics
respectively. Similarly (Row 4) we train GSB and SRIM
to showcase relevance of spatial interactions, the results
are similar to Row 3 with improvements in METEOR and
ROUGE L. Row 5 shows the performance of the model
with GSB+COSAM+SRIM. It can be seen that this com-
bination improves CIDEr metric significantly by 3.6 points
over GSB-only model. In the next experiment (Row 6), we
modify SRIM to restrict interaction of salient-region fea-
tures (i.e., use a mask in multi-head self-attention) to be
only within adjacent frames. i.e. every salient region in-
teracts with salient regions from only the adjacent frames.
We observe that this masked multi-head self attention im-
proves the model’s performance, Specifically, it improves
1.3, 0.9 points on B@4 and CIDEr metrics over the model
where SRIM has all-to-all self attention. We hypothesize
that constraining salient region interaction only to adjacent
frames may avoid noisy feature interaction between frames
with higher time gap, thus improving the performance.

5. Conclusion
In this paper, we proposed a unified framework to

combine global scene features along with co-segmentation
based salient regions and demonstrated that it performs
competitive to the state-of-the-art methods that make
use of external pretrained object detectors. Further, by
means of qualitative visualization, it is shown that the
co-segmentation is indeed able to capture salient regions
/ objects that’s necessary for video captioning. Through
a set of ablation studies, we quantified the contributions
of individual components of our model and shown that
co-segmentation based salient regions and salient region in-
teraction module add value to the video captioning pipeline.
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