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Abstract

Unmanned Aerial Vehicles (UAVs) are of crucial impor-

tance in search and rescue missions in maritime environ-

ments due to their flexible and fast operation capabilities.

Modern computer vision algorithms are of great interest

in aiding such missions. However, they are dependent on

large amounts of real-case training data from UAVs, which

is only available for traffic scenarios on land. Moreover,

current object detection and tracking data sets only provide

limited environmental information or none at all, neglecting

a valuable source of information. Therefore, this paper in-

troduces a large-scaled visual object detection and tracking

benchmark (SeaDronesSee) aiming to bridge the gap from

land-based vision systems to sea-based ones. We collect

and annotate over 54,000 frames with 400,000 instances

captured from various altitudes and viewing angles ranging

from 5 to 260 meters and 0 to 90◦ degrees while providing

the respective meta information for altitude, viewing angle

and other meta data. We evaluate multiple state-of-the-

art computer vision algorithms on this newly established

benchmark serving as baselines. We provide an evaluation

server where researchers can upload their prediction and

compare their results on a central leaderboard 1.

1. Introduction

Unmanned Aerial Vehicles (UAVs) equipped with cam-

eras have grown into an important asset in a wide range

of fields, such as agriculture, delivery, surveillance, and

search and rescue (SAR) missions [5, 48, 21]. In partic-

ular, UAVs are capable of assisting in SAR missions due

to their fast and versatile applicability while providing an

overview over the scene [38, 26, 6]. Especially in maritime

*These authors contributed equally to this work. The order of names is

determined by coin flipping
1The leaderboard, the data set and the code to reproduce our results are

available at https://seadronessee.cs.uni-tuebingen.de.

(a)

(b)
Figure 1. (a) Typical image examples with varying altitudes and

angles of view: 250 m, 90◦; 50 m, 30◦; 10 m, 0◦ and 20 m, 90◦

(from top left to bottom right). (b) Examples of the Red Edge

(717 nm, left) and Near Infrared (842 nm, right) light spectra of an

image captured by the MicaSense RedEdge-MX. Note the glowing

appearance of the swimmers.

scenarios, where wide areas need to be quickly overseen

and searched, the efficient use of autonomous UAVs is cru-

cial [54]. Among the most challenging issues in this appli-

cation scenario is the detection, localization, and tracking

of people in open water [20, 41]. The small size of people

relative to search radii and the variability in viewing angles

and altitudes require robust vision-based systems.

Currently, these systems are implemented via data-

driven methods such as deep neural networks. These meth-

ods depend on large-scale data sets portraying real-case sce-

narios to obtain realistic imagery statistics. However, there

is a great lack of large-scale data sets in maritime environ-
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ments. Most data sets captured from UAVs are land-based,

often focusing on traffic environments, such as VisDrone

[58] and UAVDT [16]. Many of the few data sets that are

captured in maritime environments fall in the category of

remote sensing, often leveraging satellite-based synthetic

aperture radar [12]. All of these are only valuable for ship

detection [11] as they don’t provide the resolution needed

for SAR missions. Furthermore, satellite-based imagery is

susceptible to clouds and only provides top-down views. Fi-

nally, many current approaches in the maritime setting rely

on classical machine learning methods, incapable of dealing

with the large number of influencing variables and calling

for more elaborate models [44].

This work aims to close the gap between large-scale

land-based data sets captured from UAVs to maritime-based

data sets. We introduce a large-scale data set of people

in open water, called SeaDronesSee. We captured videos

and images of swimming probands in open water with var-

ious UAVs and cameras. As it is especially critical in

SAR missions to detect and track objects from a large

distance, we captured the RGB footage with 3840×2160

px to 5456×3632 px resolution. We carefully annotated

ground-truth bounding box labels for objects of interest in-

cluding swimmer, floater (swimmer with life jacket), life

jacket, swimmer† (person on boat not wearing a life jacket),

floater† (person on boat wearing a life jacket), and boat.

Moreover, we note that current data sets captured from

UAVs only provide very coarse or no meta information at

all. We argue that this is a major impediment in the devel-

opment of multi-modal systems, which take these additional

information into account to improve accuracy or speed. Re-

cently, methods that rely on these meta data were proposed.

However, they note the lack of large-scaled publicly avail-

able data set in that regime (see e.g. [27, 51, 36]). Therefore,

we provide precise meta information for every frame and

image including altitude, camera angle, speed, time, and

others.

In maritime settings, the use of multi-spectral cameras

with Near Infrared channels to detect humans can be ad-

vantageous [20]. For that reason, we also captured multi-

spectral images using a MicaSense RedEdge. This enables

the development of detectors taking into account the non-

visible light spectra Near Infrared (842 nm) and Red Edge

(717 nm).

Finally, we provide detailed statistics of the data set and

conduct extensive experiments using state-of-the-art mod-

els and hereby establish baseline models. These serve as

a starting point for our SeaDronesSee benchmark. We re-

lease the training and validation sets with complete bound-

ing box ground truth but only the test set’s videos/images.

The ground truth of the test set is used by the benchmark

server to calculate the generalization power of the models.

We set up an evaluation web page, where researchers can

upload their predictions and opt to publish their results on a

central leader board such that transparent comparisons are

possible. The benchmark focuses on three tasks: (i) object

detection, (ii) single-object tracking and (iii) multi-object

tracking, which will be explained in more detail in the sub-

sequent sections. Our main contributions are as follows:

• To the best of our knowledge, SeaDronesSee is the first

large annotated UAV-based data set of swimmers in

open water. It can be used to further develop detec-

tors and trackers for SAR missions.

• We provide full environmental meta information for

every frame making SeaDroneSee the first UAV-based

data set of that nature.

• We provide an evaluation server to prevent researches

from overfitting and allow for fair comparisons.

• We perform extensive experiments on state-of-the-art

object detectors and trackers on our data set.

2. Related Work

In this section, we review major labeled data sets in the

field of computer vision from UAVs and in maritime sce-

narios which are usable for supervised learning models.

2.1. Labeled Data Sets Captured from UAVs

Over the last few years, quite a few data sets captured

from UAVs have been published. The most prominent are

these that depict traffic situations, such as VisDrone [58]

and UAVDT [16]. Both data sets focus on object detec-

tion and object tracking in unconstrained environments. Pei

et al. [43] collect videos (Stanford Drone Dataset) show-

ing traffic participants on campuses (mostly people) for

human trajectory prediction usable for object detection.

UAV123 [39] is a single-object tracking data set consist-

ing of 123 video sequences with corresponding labels. The

clips mainly show traffic scenarios and common objects.

Both, Hsieh et al. [24] and Mundhenk et al. [40] capture

a data set showing parking lots for car counting tasks and

constrained object detection. Li et al. [31] provide a single-

object tracking data set showing traffic, wild life and sports

scenarios. Collins et al. capture a single-object tracking

data set showing vehicles on streets in rural areas. Krajew-

ski et al. [28] show vehicles on freeways.

Another active area of research focuses on drone-based

wildlife detection. Van et al. [50] release a data set for the

tasks of low-altitude detection and counting of cattle. Ofli

et al. [42] release the African Savanna data set as part of

their crowd-sourced disaster response project.
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Object detection Env. Platform Image widths Altitude Range Angle Range Other meta

DOTA [52] cities satellite 800-20,000 ± ± ✕ 90◦ ✕

UAVDT [16] traffic UAV 1,024 ✕ 5-200 m* ✕ 0− 90◦* ✕

VisDrone [58] traffic UAV 960-2,000 ✕ 5-200 m* ✕ 0− 90◦* ✕

Airbus Ship [2] maritime satellite 768 ± ± ✕ 90◦ ✕

AU-AIR [10] traffic UAV 1,920 ✓ 5-30 m ✕ 45− 90◦ ✓

SeaDronesSee maritime UAV 3,840-5,456 ✓ 5-260 m ✓ 0− 90◦ ✓

Single-object tracking Env. #Clips Frame widths Altitude Range Angle Range Other meta

UAV123 [39] traffic 123 1,280 ✕ 5-50 m* ✕ 0− 90◦* ✓

DTB70 [31] sports 70 1,280 ✕ 0-10 m* ✕ 0− 90◦* ✕

UAVDT-SOT [16] traffic 50 1,024 ✕ 5-200 m* ✕ 0− 90◦* ✓

VisDrone [58] traffic 167 960-2,000 ✕ 5-200 m* ✕ 0− 90◦* ✓

SeaDronesSee maritime 208 3,840 ✓ 5-150 m ✓ 0− 90◦ ✓

Multi-object tracking Env. #Frames Frame widths Altitude Range Angle Range Other meta

UAVDT-MOT [16] traffic 40.7 k 1,024 ✕ 5-200 m* ✕ 0− 90◦* ✓

VisDrone [58] traffic 40 k 960-2,000 ✕ 5-200 m* ✕ 0− 90◦* ✓

SeaDronesSee maritime 54 k 3,840 ✓ 5-150 m ✓ 0− 90◦ ✓

Table 1. Comparison with the most prominent annotated aerial data sets. ’Altitude’ and ’Angle’ indicate whether or not there are precise

altitude and angle view information available. ’Other meta’ refers to time stamps, GPS, and IMU data and in the case of object tracking can

also mean attribute information about the sequences. The values with stars have been estimated based on ground truth bounding box sizes

and corresponding real world object sizes (for altitude) and qualitative estimation of sample images (for angle). For DOTA and Airbus

Ship the range of altitudes is not available because these are satellite-based data sets.

2.2. Labeled Data Sets in Maritime Environments

Many data sets in maritime environments are captured

from satellite-based synthetic aperture radar and therefore

fall into the remote sensing category. In this category, the

airbus ship data set [2] is prominent, featuring 40k images

from synthetic aperture radars with instance segmentation

labels. Li et al. [30] provide a data set of ships with images

mainly taken from Google Earth, but also a few UAV-based

images. In [52], the authors provide satellite-based images

from natural scenes, mainly land-based but also harbors.

The most similar to our work is [34]. They also consider the

problem of human detection in open water. However, their

data mostly contains images close to shores and of swim-

ming pools. Furthermore, it is not publicly available.

2.3. MultiModal Data Sets Captured from UAVs

UAVDT [16] provides coarse meta data for their object

detection and tracking data: every frame is labeled with

altitude information (low, medium, high), angle of view

(front-view, side-view, bird-view) and light conditions (day,

night, foggy). Wu et al. [51] manually label VisDrone af-

ter its release with the same annotation information for the

object detection track. Mid-Air [19] is a synthetic multi-

modal data set with images in nature containing precise al-

titude, GPS, time, and velocity data but without annotated

objects. Blackbird [7] is a real-data indoor data set for agile

perception also featuring these meta information. In [35],

street-view images with the same meta data are captured

to benchmark appearance-based localization. Bozcan et al.

[10] release a low-altitude (< 30 m) object detection data

set containing images showing a traffic circle and provide

meta data such as altitude, GPS, and velocity but exclude

the import camera angle information.

Tracking data sets often provide meta data (or attribute

information) for the clips. However, in many cases these

do not refer to the environmental state in which the image

was captured. Instead, they abstractly describe the way in

which a clip was captured: UAV123 [39] label their clips

with information such as aspect ratio change, background

clutter, and fast motion, but do not provide frame-by-frame

meta data. The same observation can be made for the track-

ing track of VisDrone [18]. See Table 1 for an overview of

annotated aerial data sets.

3. Data Set Generation

We gathered the footage on several days to obtain vari-

ance in light conditions. Taking into account safety and en-

vironmental regulations, we asked over 20 test subjects to

be recorded in open water. Boats transported the subjects

to the area of interest, where quadcopters were launched at

a safe distance from the swimmers. At the same time, the

fixed-wing UAV Trinity F90+ was launched from the shore.

We used waypoints to ensure a strict flight schedule to max-

imize data collection efficiency. Care was taken to maintain
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Camera Resolution Video

Hasselblad L1D-20c 3,840×2,160 30 fps

MicaSense RedEdge-MX 1,280× 960 ✕

Sony UMC-R10C 5,456×3,632 ✕

Zenmuse X5 3,840×2,160 30 fps

Zenmuse XT2 3,840×2,160 30 fps

Table 2. Overview of used cameras.

Data Unit Min. value Max.value

Time since start ms 0 ∞

Date and Time ISO 8601 ± ±

Latitude degrees −90 +90

Longitude degrees −90 +90

Altitude meters 0 ∞

Gimbal pitch degrees 0 90

UAV roll degrees −90 +90

UAV pitch degrees −90 +90

UAV yaw degrees −180 +180

x-axis speed m/s 0 ∞

y-axis speed m/s 0 ∞

z-axis speed m/s 0 ∞

Table 3. Meta data that comes with every image/frame.

a strict vertical separation at all times. Subjects were free to

wear life jackets, of which we provided several differently

colored pieces (see also Figure 2).

To diminish the effect of camera biases within the data

set, we used multiple cameras, as listed in Table 2, mounted

to the following drones: DJI Matrice 100, DJI Matrice 210,

DJI Mavic 2 Pro, and a Quantum Systems Trinity F90+.

With the video cameras, we captured videos at 30 fps. For

the object detection task, we extract at most three frames

per second of these videos to avoid having redundant oc-

currences of frames. See Section 4 for information on the

distribution of images with respect to different cameras.

Lastly, we captured top-down looking multi-spectral im-

agery at 1 fps. We used a MicaSense RedEdge-MX, which

records five wavelengths (475 nm, 560 nm, 668 nm, 717

nm, 842 nm). Therefore, in addition to the RGB channels,

the recordings also contain a RedEdge and a Near Infrared

channel. The camera was referenced with a white refer-

ence before each flight. As the RedEdge-MX captures ev-

ery band individually, we merge the bands using the devel-

opment kit provided by MicaSense.

3.1. Meta Data Collection

Accompanied with every frame there is a meta stamp,

that is logged at 10 hertz. To align the video data (30 fps)

and the time stamps, a nearest neighbor method was per-

formed. The data in Table 3 is logged and provided for

every image/frame read from the onboard clock, barometer,

IMU and GPS sensor, and the gimbal, respectively.

Note that α = 90◦ corresponds to a top-down view, and

α = 0◦ to a horizontally facing camera. The date format

is given in the extended form of ISO 8601. Furthermore,

note that the UAV roll/pitch/yaw-angles are of minor im-

portance for meta-data-aware vision-based methods as the

onboard gimbal filters out movement by the drone such that

the camera pitch angle is roughly constant if it is not inten-

tionally changed [25]. Note that the gimbal yaw angle is not

included, as we fix it to coincide with the UAV’s yaw angle.

We need to emphasize that the meta values lie within the

error thresholds introduced by the different sensors, but an

extended analysis is beyond the scope of this paper (see e.g.

[61, 1, 29] for an overview).

3.2. Annotation Method

Using the non-commercial labeling tool DarkLabel [3],

we manually and carefully annotated all provided images

and frames with the categories swimmer (person in water

without life jacket), floater (person in water with life jacket),

life jacket, swimmer† (person on boat without life jacket),

floater† (person on boat with life jacket), and boats. We

note that it is not sufficient to infer the class floater by the

location from swimmer and life jacket as this can be highly

ambiguous. Subsequently, all annotations were checked by

experts in aerial vision. We choose these classes as they

are the hardest and most critical to detect in SAR missions.

Furthermore, we annotated regions with other objects as ig-

nored regions, such as boats on land. Moreover, the data set

also covers unlabeled objects, which may not be of interest,

like driftwood, birds or the coast such that detectors can be

robust to distinguish from those objects. Our guidelines for

the annotation are described in the appendix. See Figure 2

for examples of objects.

3.3. Data Set Split

Object Detection

To ensure that the training, validation, and testing set have

similar statistics, we roughly balance them such that the re-

spective subsets have similar distributions with respect to

altitude and angle of view, two of the most important fac-

tors of appearance changes. Of the individual images, we

randomly select 4/7 and add it to the training set, add 1/7
to the validation set and another 2/7 to the testing set. In

addition to the individual images, we randomly cut every

video into three parts of length 4/7, 1/7, and 2/7 of the origi-

nal length and add every 10-th frame of the respective parts

to the training, validation, and testing set. This is done to

avoid having subsequent frames in the training and testing

set such that a realistic evaluation is possible. We release

the training and validation set with all annotations and the

testing set’s images, but withhold its annotations. Evalu-
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Floater Floater Swimmer Swimmer Floater†

Floater Life jacket Swimmer Swimmer Swimmers†

Figure 2. Examples of objects. Note that these examples are crops from high-resolution images. However, as the objects are small and the

images taken from high altitudes, they appear blurry.

ation will be available via an evaluation server, where the

predictions on the test set can be uploaded.

Object Tracking

Similarly, we take 4/7 of our recorded clips as the training

clips, 1/7 as the validation clips and 2/7 as the testing clips.

As for the object detection task, we withhold the annota-

tions for the testing set and provide an evaluation server.

4. Data Set Tasks

There are many works on UAV-based maritime SAR

missions, focusing on unified frameworks describing the

process of how to search and rescue people [38, 20, 33, 34,

45, 47, 22]. These works answer questions corresponding to

path planning, autonomous navigation and efficient signal

transmission. Most of them rely on RGB sensors and detec-

tion and tracking algorithms to actually find people of inter-

est. This commonality motivates us to extract the specific

tasks of object detection and tracking, which pose some of

the most challenging issues in this application scenario.

Maritime environments from a UAV’s perspective are

difficult for a variety of reasons: Reflective regions and

shadows resulting from different cardinal points (such as in

Fig. 1) that could lead to false positives or negatives; people

may be hardly visible or occluded by waves or sea foam (see

Supplementary material); typically large areas are overseen

such that objects are particularly small [38]. We note that

these factors are on top of general UAV-related detection

difficulties.

Now, we proceed to describe the specific tasks.

4.1. Object Detection

There are 5,630 images (training: 2,975; validation: 859;

testing: 1,796). See Figure 3 for the distribution of im-

ages/frames with respect to cameras and the class distribu-

tion. We recorded most of the images with the L1D-20c

and UMC-R10C, having the highest resolution. Having the

lowest resolution, we recorded only 432 images with the

RedEdge-MX. Note, for the Object Detection Task only the

RGB-channels of the multi-spectral images are used to sup-

port a uniform data structure.

Furthermore, the class distribution is slightly skewed to-

wards the class ’boat’, since safety precautions require boats

to be nearby. We emphasize that this bias can easily be di-

minished by blackening the respective regions, as is com-

mon for areas which are not of interest or undesired (such

as boats here; see e.g. [16]). Right after that, swimmers with

life jacket are the most common objects. We argue that this

scenario is very often encountered in SAR missions. This

type of class often is easier to detect than just swimmer as

life jackets mostly are of contrasting color, such as red or or-

ange (see Fig. 2 and Table 4). However, as it is also a likely

scenario to search for swimmers without life jacket, we in-

cluded a considerable amount. There are also several differ-

ent manifestations/visual appearances of that class which is

why we recorded and annotated swimmers with and with-

out adequate swimwear (such as wet suit). To be able to dis-

criminate between humans in water and humans on boats,

we also annotated humans on boats (with and without life

jackets). Lastly, we annotated a small amount of life jack-

ets only. However, we note that the discrimination between

life jackets and humans in life jackets can become visually

ambiguous, especially in higher altitudes. See also Fig. 2.

Figure 4 shows the distribution of images with respect

to the altitude and viewing angle they were captured at.

Roughly 50% of the images were recorded below 50 m be-

cause lower altitudes allow for the whole range of available

viewing angles (0 − 90◦). That is, to cover all viewing an-

gles, more images at these altitudes had to be taken. On the

other hand, there are many images facing downwards (90◦),

because images taken at greater altitudes tend to face down-
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wards since acute angles yield image areas with tiny pixel

density, which is unsuitable for object detection. Neverthe-

less, every altitude and angle interval is sufficiently repre-

sented.

4.2. SingleObject Tracking

We provide 208 short clips (>4 seconds) with a total

of 393,295 frames (counting the duplicates), including all

available objects labeled. We randomly split the sequences

into 58 training, 70 validation and 80 testing sequences. We

do not support long-term tracking. The altitude and angle

distributions are similar to these in the object detection sec-

tion since the origin of the images of the object detection

task is the same.

4.3. MultiObject Tracking

We provide 22 clips with a total of 54,105 frames and

403,192 annotated instances, the average consists of 2,460

frames. We differentiate between two use-cases. In the first

task, only the persons in water (floaters and swimmers) are

tracked, it is called MOT-Swimmer. In the second task, all

objects in water are tracked (also the boats, but not people

on boats), called MOT-All-Objects-In-Water. In both tasks,

all objects are grouped into one class. The data set split is

performed as described in section 3.3.

4.4. MultiSpectral Footage

Along with the data for the three tasks, we provide multi-

spectral images. We supply annotations for all channels of

these recordings, but only the RGB-channels are currently

part of the Object Detection Task. There are 432 images

with 1,901 instances. See Figure 1 for an example of the

individual bands.

5. Evaluations

We evaluate current state-of-the-art object detectors and

object trackers on SeaDronesSee. All experiments can be

reproduced by using our provided code available on the

evaluation server. Furthermore, we refer the reader to the

Supplementary Material for the exact form and uploading

requirements.

5.1. Object Detection

The used detectors can be split into two groups. The

first group consists of two-stage detectors, which are mainly

built on Faster R-CNN [23] and its improvements. Built

for optimal accuracy, these models often lack the inference

speed needed for real-time employment, especially on em-

bedded hardware, which can be a vital use-case in UAV-

based SAR missions. For that reason, we also evaluate on

one-stage detectors. In particular, we perform experiments

with the best performing single-model (no ensemble) from

the workshop report [60]: a Faster R-CNN with a ResNeXt-

101 64-4d [53] backbone with P6 removed. For large one-

stage detectors, we take the recent CenterNet [57]. To fur-

ther test an object detector in real-time scenarios, we choose

the current best model family on the COCO test-dev ac-

cording to [4], i.e. EfficientDet [49], and take the smallest

model, D0, which can run in real-time on embedded hard-

ware, such as the Nvidia Xavier [27]. We refer the reader

to the appendix for the exact parameter configurations and

training configurations of the individual models.

Similar to the VisDrone benchmark [58], we evalu-

ate detectors according to the COCO json-format [32],

i.e. average precision at certain intersection-over-union-

thresholds. More specifically, we use AP=APIoU=0.5:0.05:0.95,

AP50 =APIoU=0.5 and AP75 =APIoU=0.75. Furthermore,

we evaluate the maximum recalls for at most 1 and 10

given detections, respectively, denoted AR1 =ARmax=1, and

AR10 =ARmax=10. All these metrics are averaged over all

categories (except for ºignored regionº). We furthermore

provide the class-wise average precisions. Moreover, sim-

ilar to [27], we report AP50-results on different equidistant

levels of altitudes ’low’ = 5-56 m (L), ’low-medium’ = 55-

106 m (LM), ’medium’ = 106-157 m (M), ’medium-high’
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Model AP AP50 AP75 AR1 AR10 S F S† F† B LJ FPS

F. ResNeXt-101-FPN [53] 30.4 54.7 29.7 18.6 42.6 78.1 82.4 25.9 44.3 96.7 0.6 2

F. ResNet-50-FPN [23] 14.2 30.1 7.2 6.4 17.7 24.6 54.1 4.9 7.5 89.2 0.3 14

CenterNet-Hourglass104 [57] 25.6 50.3 22.2 17.7 40.1 65.1 73.6 19.1 48.1 95.8 0.3 6

CenterNet-ResNet101 [57] 15.1 36.4 10.8 9.6 21.4 16.8 39.8 0.8 1.7 74.3 0 22

CenterNet-ResNet18 [57] 9.9 21.8 9.0 7.2 19.7 20.9 21.9 2.6 3.3 81.9 0.4 78

EfficientDet±D0 [49] 20.8 37.1 20.6 11.5 29.1 65.3 55.1 3.1 3.3 95.5 0.1 26

Table 4. Average precision results for several baseline models. The right part contains AP50±values for each class individually. All reported

FPS numbers are obtained on a single Nvidia RTX 2080 Ti. The abbreviation ’F.’ stands for Faster R-CNN. For visualization purposes, the

classes are abbreviated as swimmer(†) → S(†), floater(†) → F(†), boat → B, life jacket → LJ.

= 157-208 m (MH), and ’high’ = 208-259 m (H). To mea-

sure the universal cross-domain performance, we report the

average over these domains, denoted AP
avg
50

. Similarly, we

report AP50-results for different angles of view: ’acute’ =

7-23◦ (A), ’acute-medium’ = 23-40◦ (AM), ’medium’ = 40-

56◦ (M), ’medium-right’ = 56-73◦ (MR), and ’right’ = 73-

90◦ (R). Ultimately, it is the goal to have robust detectors

across all domains uniformly, which is better measured by

the latter metrics.

Table 4 shows the results for all object detection mod-

els. As expected, the large Faster R-CNN with ResNeXt-

101 64-4d backbone performs best, closely followed by

CenterNet-Hourglass104. Medium-sized networks, such as

the ResNet-50-FPN, and fast networks, such as CenterNet-

ResNet18 and EfficientDet-D0, expectedly perform worse.

However, the latter can run in real-time on an Nvidia

Xavier [27]. Swimmers are detected significantly worse

than floaters by most detectors. Notably, life jackets are

very hard to detect since from a far distance these are eas-

ily confused with swimmers† (see Fig. 2). Since there is a

heavy class imbalance with many fewer life jackets, detec-

tors are biased towards floaters.

Table 5 and 6 show the performances for different alti-

tudes and angles, respectively. These evaluations help as-

sess the strength and weaknesses of individual models. For

example, although ResNeXt-101-FPN performs overall bet-

ter than Hourglass104 in AP50 (54.7 vs. 50.3), the latter

is better in the domain of medium angles (45.2 vs. 49.7).

Furthermore, the great performance discrepancy between

CenterNet-ResNet101 and CenterNet-ResNet18 in AP50

(36.4 vs. 21.8) vanishes when averaged over angle domains

(23.8 vs. 23.1 AP
avg
50

) possibly indicating ResNet101’s bias

towards specific angle domains.

5.2. SingleObject Tracking

Like VisDrone [59], we provide the success and preci-

sion curves for single-object tracking and compare models

based on a single number, the success score. As comparison

trackers, we choose the DiMP family (DiMP50, DiMP18,

PrDiMP50, PrDiMP18) [9, 14] and Atom [13] because they

were the foundation of many of the submitted trackers to

the last VisDrone workshop [18].

Model L LM M MH H AP
avg
50

ResNeXt-101-FPN 56.8 54.6 49.2 65 78.3 60.8

ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1

Hourglass104 50.6 52.0 47.5 64.9 73.2 57.6

ResNet101 20.2 30.4 24.1 35.1 38.0 29.6

ResNet18 23.8 20.3 19.2 29.3 31.9 24.9

D0 39.6 38.0 30.4 42.5 54.5 41.0

Table 5. Results on different altitude-domains. E.g. ResNeXt’s

AP50 performance in low-medium (LM) altitudes is 54.6 AP50.

Model A AM M MR R AP
avg
50

ResNeXt101-FPN 68.3 55.1 45.2 63.6 51.5 56.7

ResNet50-FPN 32.8 35.5 32.7 35.7 27.6 32.9

Hourglass104 66.4 42.1 49.7 58.7 46.9 52.76

ResNet101 7.4 35.8 20.5 33.6 21.7 23.8

ResNet18 9.6 29.5 26.3 27.9 22.1 23.1

D0 26.9 47.0 40.5 40.3 36.8 38.3

Table 6. Results on different angle-domains. For example,

ResNeXt’s AP50 performance in medium-right (MR) angles (57-

73◦) is 63.6 AP50.
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Figure 5. Success and precision plots for single-object tracking

task (best viewed in color).

Figure 5 shows that the PrDiMP- and DiMP-family ex-

pectedly outperform the older Atom tracker in both, success

and precision. Surprisingly, PrDiMP50 slightly trails the ac-

curacy of its predecessor DiMP50. Furthermore, all track-

ers’ performances on SeaDronesSee are similar or worse

than on UAV123 (e.g. Atom with 65.0 success) [9, 14, 13],

for which they were heavily optimized. We argue that in

SeaDronesSee there is still room for improvement, espe-

cially considering that the clips feature precise meta infor-

mation that may be helpful for tracking. Furthermore, in

our experiments, the faster trackers DiMP18 and Atom run

at approximately 27.1 fps on an Nvidia RTX 2080 Ti. How-
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Model MOTA IDF1 MOTP MT ML FP FN Recall Prcn ID Sw. Frag

FairMOT-D34 [56] 39.0 44.8 23.6 17 17 3,604 9,445 57.2 77.8 307 1,687

FairMOT-R34 [56] 15.2 27.6 33.7 6 37 2,502 12,592 30.1 68.4 181 807

Tracktor++ [8] 55.0 69.6 25.6 62 4 7,271 3,550 85.5 74.2 165 347

Table 7. Multi-Object Tracking evaluation results for the Swimmer task.

Model MOTA IDF1 MOTP MT ML FP FN Recall Prcn ID Sw. Frag

FairMOT-D34 [56] 36.5 43.8 20.9 28 49 3,788 20,867 47.2 83.1 447 1,599

FairMOT-R34 [56] 30.5 40.8 27.3 29 127 4,401 28,999 40.2 81.6 285 1,588

Tracktor++ [8] 71.9 80.5 20.1 123 5 7,741 5,496 88.5 84.5 192 438

Table 8. Multi-Object Tracking evaluation results for the All-Objects-In-Water task.

Model L LM M MH H AP
avg
50

F. ResNet-50-FPN 32.8 29.8 23.5 40.5 48.9 35.1

5×Altitude@3[27] 32.8 29.9 26.2 41.5 48.9 35.9

Model A AM M MR R AP
avg
50

F. ResNet-50-FPN 32.8 35.5 32.7 35.7 27.6 32.9

5×Angle@3[27] 42.0 35.5 39.3 35.7 27.7 36.0

Table 9. Results on different altitude- and angle-domains.

ever, we note that they are not capable of running in real-

time on embedded hardware, a use-case especially impor-

tant for UAV-based SAR missions.

5.3. MultiObject Tracking

We use a similar evaluation protocol as the MOT bench-

mark [37]. That is, we report results for Multiple Ob-

ject Tracking Accuracy (MOTA), Identification F1 Score

(IDF1), Multiple Object Tracking Precision (MOTP), num-

ber of false positives (FP), number of false negatives (FN),

recall (R), precision (P), ID switches (ID sw.), fragmenta-

tion occurrences (Frag). We refer the reader to [46] or the

appendix for a thorough description of the metrics.

We train and evaluate FairMOT [56], a popular tracker,

which is the base of many trackers submitted to the chal-

lenge [17]. FairMOT-D34 employs a DLA34 [55] as its

backbone while FairMOT-R34 makes use of a ResNet34.

Another SOTA tracker is Tracktor++ [8], which we also use

for our experiments. It performed well on the MOT20 [15]

challenge and is conceptually simple.

Surprisingly, Tracktor++ was better than FairMOT in both

tasks. One reason for this may be the used detector. Track-

tor++ utilizes a Faster-R-CNN with a ResNet50 backbone.

In contrast, FairMOT is using a CenterNet with a DLA34

and a ResNet34 backbone, respectively.

5.4. MetaDataAware Object Detector

Developing meta-data-aware object detectors is difficult

since there are no large-scale data sets to evaluate their per-

formances. However, some works provide promising pre-

liminary results using this metadata [51, 36, 27]. We pro-

vide an initial baseline from [27] incorporating the meta

data. We evaluate the performances of 5×Altitude@3- and

5×Angle@3-experts, which are constructed on top of a

Faster R-CNN with ResNet-50-FPN, respectively. Essen-

tially, these experts make use of meta-data by allowing the

features to adapt to their responsible specific environmental

domains.

As Table 9 shows, meta data can enhance the accuracy of

an object detector considerably. For example, 5×Angle@3

outperforms its ResNet-50-FPN baseline by 3.1 AP
avg
50

while

running at the same inference speed. The improvements are

especially significant for underrepresented domains, such

as +9.2 and +6.4 AP
avg
50

for the acute angle (A) and the

medium angle (M), respectively, which are underrepre-

sented as can be seen from Fig. 4.

6. Conclusions

This work serves as an introductory benchmark in UAV-

based computer vision problems in maritime scenarios. We

build the first large scaled-data set for detecting and track-

ing humans in open water. Furthermore, it is the first large-

scaled benchmark providing full environmental information

for every frame, offering great opportunities in the so-far

restricted area of multi-modal object detection and track-

ing. We offer three challenges, object detection, single-

object tracking, and multi-object tracking by providing an

evaluation server. We hope that the development of meta-

data-aware object detectors and trackers can be accelerated

by means of this benchmark. Moreover, we provide multi-

spectral imagery for detecting humans in open water. These

images are very promising in maritime scenarios, having the

ability to capture wavelengths, which set apart objects from

the water background.
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