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Abstract

Compressed sensing (CS) is extensively used to reduce
magnetic resonance imaging (MRI) acquisition time. State-
of-the-art deep learning-based methods have proven effec-
tive in obtaining fast, high-quality reconstruction of CS-MR
images. However, they treat the inherently complex-valued
MRI data as real-valued entities by extracting the magni-
tude content or concatenating the complex-valued data as
two real-valued channels for processing. In both cases,
the phase content is discarded. To address the fundamen-
tal problem of real-valued deep networks, i.e. their inabil-
ity to process complex-valued data, we propose a complex-
valued generative adversarial network (Co-VeGAN) frame-
work, which is the first-of-its-kind generative model explor-
ing the use of complex-valued weights and operations. Fur-
ther, since real-valued activation functions do not general-
ize well to the complex-valued space, we propose a novel
complex-valued activation function that is sensitive to the
input phase and has a learnable profile. Extensive evalua-
tion of the proposed approach1 on different datasets demon-
strates that it significantly outperforms the existing CS-MRI
reconstruction techniques.

1. Introduction
Magnetic resonance imaging (MRI) is a frequently used

medical imaging modality as it is an excellent non-invasive
source of anatomical information. However, it has a consid-
erably long scan time due to sequential acquisition of large
volumes of data in the k-space. This can cause significant
artifacts due to physiological motion and movement of the
patient during the scan and hinder its use in time-critical di-
agnosis. Compressed sensing (CS) [15] based undersam-
pling can be leveraged to speed up the imaging process.
However, it renders the inverse problem ill-posed, making
the recovery of high-quality MR images challenging.

Conventional approaches for CS-MRI reconstruction fo-
cus extensively on using sparse representations using pre-

*Equal contribution; Work done while at IIT Roorkee.
1Code available at https://github.com/estija/Co-VeGAN

Figure 1. Comparison of the proposed pipeline (a) with the
pipelines (b), (c) typically followed by SOTA DL-based methods
for CS-MRI reconstruction. Our method uses complex-valued op-
erations at all stages to process the complex-valued MRI data. In
contrast, other methods treat it as real-valued data by either con-
catenating it as two real-valued channels (b) or by using the mag-
nitude images (c). Φ is the undersampling matrix, and ΦHΦ is the
matrix to obtain the ZFR. The two channels shown in the ground
truth, ZFR, k-space, output, represent the complex-valued data.

defined transforms [6, 31, 35], dictionary learning [41, 45],
and non-local low-rank regularization [14] to assume prior
knowledge on the structure of the MR image. They suffer
from long computation time due to the iterative nature of the
optimization process. Moreover, the universally applicable
sparsifying transforms may not completely capture the fine
details present in biological tissues [34].

Deep learning (DL)-based frameworks have enjoyed
great success in similar inverse problems like single-image
super-resolution [13], denoising [53], etc. These successes
and their advantages, such as faster inference (reconstruc-
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tion) time and avoidance of an explicit assumption of spar-
sity, have prompted their use for accelerating MR imag-
ing [1, 4, 7, 29, 36, 54, 55]. Recent advancements of gen-
erative adversarial networks (GANs) [19, 28] have inspired
their use for CS-MRI reconstruction [7, 12, 36, 40, 54].

Although state-of-the-art (SOTA) DL-based approaches
have significantly improved the reconstruction quality, they
treat the complex-valued MRI data as real-valued data. This
is done either by concatenating the real and imaginary parts
as two real-valued channels [1, 21, 36, 40], as shown in Fig.
1(b), or by using the magnitude images [26,29], as shown in
Fig. 1(c). Deep neural networks (DNNs) with real-valued
weights are then used to process such data. The use of
the latter pipeline reconstructs only magnitude images and
loses out on phase information. In other works [21, 36, 40],
the use of the former pipeline essentially decouples the
real and imaginary parts of the complex-valued MRI data,
thus damaging the phase information when it is processed
and leading to unsatisfactory recovery. Even methods like
[1] which use a combination of NNs and model-based ap-
proaches suffer from similar limitations. Many applica-
tions utilize the phase content, such as phase-contrast imag-
ing, quantifying velocity, and measuring blood and volume
flow [18], so it is crucial to recover it faithfully. However,
the aforementioned methods fail to do so.

Moreover, when the dataset itself contains only mag-
nitude images, these methods and others [12, 54] use a
pipeline similar to the one in Fig. 1(c). However, since the
zero-filled reconstruction (ZFR), which is used as the input,
is complex-valued, processing it with real-valued networks
fails to utilize its complex algebraic structure.

Motivation: As demonstrated in Fig. 1, the inability of
real-valued DL-based methods to process complex-valued
data causes issues in all the aforementioned cases. Leverag-
ing complex-valued NNs to process the inherently complex-
valued MRI data (Fig. 1(a)) naturally appears to be the right
direction to proceed.

Other motivations for using complex-valued networks
stem from their benefits over real-valued networks. Apart
from having biological inspiration and significance [42],
they offer increased representational capacity and more sta-
bility [9,48]. They exhibit faster learning with better robust-
ness to noise [3, 9, 52] and preserve the phase information,
which encodes fine structural details of an image [39, 48].
Complex-valued operations can be performed with simple
optimization techniques [38] without sacrificing the gener-
alization ability of the network [23].

We seek to exploit the benefits of complex-valued NNs,
and considering the capabilities of adversarial learning ap-
proaches, we propose a novel complex-valued GAN (Co-
VeGAN), which, to the best of our knowledge, is the first-
of-its-kind generative model leveraging complex-valued
weights and operations.

Activation function: Since activation functions in
DNNs allow them to learn highly complex functions due
to their nonlinear nature, we study their behaviour in the
complex domain. Real-valued activations have been stud-
ied extensively, with sigmoid, rectified linear unit (ReLU),
leaky ReLU, parametric ReLU [22], etc. being widely used.
However, they do not prove to be as effective when their
complex-valued equivalents are considered, thus producing
a requirement for complex-valued activations, only a few of
which have been proposed [3, 49]. Their poor transferabil-
ity to the complex domain can be attributed to their weak or
limited sensitivity to the changes in the input phase. To ad-
dress this, we formulate a novel complex-valued activation
by leveraging weighted sinusoid functions.

Loss function: Another limitation of existing frame-
works is the widespread use of pixelwise l2 or l1 loss func-
tions. This efficiently reconstructs the low-frequency com-
ponents of the image but often fails to generate the mid
and high-frequency information. We introduce a novel
Gaussian-weighted wavelet loss function to improve the re-
construction of mid-frequency components of the image.

Contributions: We believe that this work will provide
the basis for future works deploying complex-valued GAN-
based frameworks for CS-MRI reconstruction as well as
other applications, which use complex-valued data. It will
also inspire further research on the behaviour of complex-
valued activation functions for DL-based applications in
general. The major contributions of this work are:

1. We propose a novel Co-VeGAN framework for CS-
MRI reconstruction, introducing complex-valued weights
and operations in a generative model for the first time. In
contrast to the SOTA DL-based methods, which use real-
valued operations, our framework exploits the complex al-
gebraic structure of MRI, leading to accurate recovery of
both magnitude and phase content.

2. We introduce a novel activation function designed
specifically for complex-valued entities. It overcomes the
limitations of the existing activation functions, and our
study on various activations for CS-MRI reconstruction and
their analyses in the complex domain is first-of-its-kind.

3. To overcome the limitations posed by l2 or l1 norm-
based losses in reconstruction problems, we introduce a
novel variant of the wavelet loss function.

4. We also propose a novel dense U-net architecture
leveraging dense connections within the contracting and ex-
panding paths to allow feature reuse between layers.

5. We perform comprehensive ablation studies and eval-
uate our approach on three different datasets. We also an-
alyze the performance of equivalent real-valued networks
and show that our framework provides superior reconstruc-
tion using significantly fewer trainable parameters.
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1.1. Related Work

DL-based Methods for CS-MRI Reconstruction:
Yang et al. [55] used the alternating direction method of
multipliers (ADMM) algorithm [8] to train their deep net-
work. Sun et al. [47] proposed DL models for multi-
contrast CS-MRI reconstruction using parallel networks
and feature sharing strategies. Liu et al. [33] introduced
a framework combining the learning strategy of data-driven
NNs with the iterative solver providing domain knowledge.
Bora et al. [7] have shown that pre-trained generative mod-
els like variational autoencoders and GANs [19] can be used
to recover CS signals without assuming sparsity. Yang et al.
[54] proposed a U-net [43] based generator, following a re-
finement learning-based approach, with mean squared error
(MSE) and perceptual loss to reconstruct the images. Quan
et al. [40] proposed a fully residual NN using addition-
based skip connections. They used cyclic loss for data
consistency constraints in training to achieve better recon-
struction quality. Deora et al. [12] proposed a U-net based
generator with a patch-based discriminator [28] to perform
the reconstruction. Along with mean absolute error (MAE)
and structural similarity (SSIM) [56], they used Wasserstein
loss [2] to improve adversarial learning. Mardani et al. [36]
introduced an affine projection operator in-between the gen-
erator and the discriminator to improve the data consistency
in the reconstructed images. Hammernick et al. [21] split
the complex-valued data, and train a variational network,
where they learn separate filters for real and imaginary data.

Complex-valued NNs: Trabelsi et al. [48] first incor-
porated complex-valued operations in DNNs. Although
complex-valued NNs have several striking benefits, only a
few works have explored their use in applications like vi-
sion [48,58], parallel MR imaging [50], MRI fingerprinting
[10, 49], and audio-related tasks [48]. Sun et al. [46] used
complex-valued residual NNs to reconstruct undersampled
MR images in both image and frequency domain. Dedmari
et al. [11] proposed a complex dense fully convolutional
NN for CS-MRI reconstruction. El-Rewaidy et al. [17] pro-
posed radial batch normalization (BN) to avoid distortion in
phase and magnitude for reconstructing 3D MR images.

Although operations like convolution, backpropagation,
and BN [27] have been extended to the complex domain,
only a few complex-valued activations have been proposed
[3, 10, 49]. Most of these address the poor transferability
of real-valued activations but fail to account for the varia-
tions in the input phase. Virtue et al. [49] propose cardioid,
which is sensitive to the input phase and preserves it at the
output. However, such phase preservation can compromise
the flexibility of the activation.
2. Methodology

The acquisition model of CS-MRI can be described as:

y = Φx + ζ = UFx + ζ, (1)

where x ∈ CK2

is the desired image in vector form,
y ∈ CM denotes the observed data vector, ζ ∈ CM cap-
tures the noise. F ∈ CK2×K2

is the matrix to compute the
2D Fourier transform, U ∈ RM×K2

is the matrix for under-
sampling. Given an observation y, the aim of reconstruction
is to recover x in the presence of a non-zero ζ.

We attempt to recover x by using a GAN model. A GAN
comprises two networks, namely a generator and a discrim-
inator. To generate images that are similar to the samples
of the distribution of true data yt, the generator G attempts
to map an input vector z to the output G(z). On the other
hand, the aim of the discriminator D is to classify the gen-
erated samples G(z) and the samples from the distribution
of yt. As mentioned earlier, for the CS-MRI reconstruction
problem, both the observation y and the desired image x are
complex-valued, whereas the parameters of a GAN are real-
valued in existing methods. Thus, we propose a Co-VeGAN
framework, which is described below.

2.1. Complex-valued GAN

We propose a complex-valued GAN which consists of a
complex-valued G : CK×K → CK×K , and a real-valued
D : RK×K → R1×1. Although the parameters of both G
and D can be complex-valued, we opt to use a real-valued
discriminator, mainly because doing so enables it to take
the visual soundness of the magnitude images into account
while discriminating the generated and actual images. The
use of a real-valued discriminator also makes our frame-
work suitable for real-valued datasets, where the ground
truth (GT) is real-valued. To constrain the phase content
of the generated output to be similar to that of the GT, we
use a pixelwise loss described in Section 2.4.

2.2. Complex-valued operations

Trabelsi et al. [48] proposed complex-valued operations
for DL. We discuss activation in detail and the rest in brief
here. Further details can be found in the supplementary.

Convolution: The complex-valued convolu-
tion of kernel W with feature maps F is given by
A = (WR ∗ FR −WI ∗ FI) + i(WR ∗ FI + WI ∗ FR),
where ∗ denotes convolution, i denotes the imaginary unit,
and subscripts R and I denote the real and imaginary parts
of the complex-valued entities, respectively.

Backpropagation: For a real-valued loss function f ,
which is non-holomorphic and differentiable with respect
to its real and imaginary parts [30], the gradient descent
update of an l-dimensional weight vector w is given by
wt+1 = wt−ρ∇w̄f(w), where ρ is the learning rate (LR),
(̄·) denotes the complex conjugate, and the gradient of f is:

∇w̄f(w) =
[ ∂f
∂w̄1

· · · ∂f
∂w̄l

]T
;
∂f

∂w̄
=

1

2

( ∂f

∂wR
+ i

∂f

∂wI

)
.

(2)
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Figure 2. An example of the proposed activation PC-WSS, with parameters [w0, w1, w2, θ0, θ1, θ2] = [0.08, −0.04, 0.06, 0.6, 0.4, 0.2].
(a) A set of complex-valued inputs, (b) plot of gain vs input phase, (c) plot of gain in the complex space, (d) outputs of PC-WSS with φ =
0, and (e) outputs with φ = π

8
. We see that the gain varies with the phase (b,c) depending on the parameters (wi, θi) and impacts how the

inputs (a) are scaled to get the corresponding outputs (d). Further, φ causes phase changes in the outputs (e).

Batch Normalization: In complex BN (CBN), the input
is first whitened: xstd = B−

1
2 (x− E[x]), where E denotes

expectation operator and B is the covariance matrix:

B =

[
Cov(xR,xR) Cov(xR,xI)
Cov(xI,xR) Cov(xI,xI)

]
, (3)

and learnable parameters γ, β are then used to scale and
shift it: xBN = γxstd + β.

Activation: One common class of complex-valued acti-
vation functions [3] is obtained by applying same nonlinear-
ity separately on the real and imaginary parts. The complex
equivalent of ReLU (CReLU) is given by:

CReLU(a) = ReLU(aR) + iReLU(aI), (4)

where a is a complex-valued input. Similarly, we can also
obtain the complex equivalent of parametric ReLU [22]
(CPReLU). There is another class of complex activations
where the nonlinearity is applied on the magnitude |a| and
phase ∠a of a. One such activation is zReLU [20], which
allows the input to pass only if it lies in the first quadrant.

However, all the aforementioned activation functions are
weakly sensitive to the changes in the input phase, which is
not only important from the biological perspective but also
crucial for the complex representation. Virtue et al. [49]
proposed the cardioid activation, where the input phase is
preserved at the output, and the output magnitude is sensi-
tive to the input phase. It is given by:

Cardioid(a) = g(∠a)a =
1

2
(1 + cos(∠a))a, (5)

where g(·) denotes the gain, which is positive-valued for
phase preservation. However, phase preservation reduces
the flexibility of the activation because phase change from
the input to the output can be viewed as the delay of a neu-
ron. Moreover, since the phase is modified at the CBN layer,
its preservation at the activation layer might not prove use-
ful. Also, the gain of cardioid is fixed, and its shape is not
learnable, due to which it favours positive real-valued inputs
over negative ones, as g(0) = 1 and g(π) = 0, and real-
valued inputs over purely imaginary inputs, as g(π2 ) = 0.5.

Proposed activation: We propose a novel activation
function, where each neuron can introduce a phase change
(PC) φ in the input. This can also be viewed as allowing
coupling between aR and aI . To allow the output mag-
nitude to be sensitive to the input phase, any continuous
function of the input phase can be used as the gain. This
requires the gain to be periodic with period 2π. We pro-
pose the use of a weighted sum of sinusoids (WSS) in this
work to provide flexibility and maintain periodicity. The
proposed PC-WSS is formulated as:

PC-WSS(a) =

PS−1∑
p=0

wp{1 + cos (2p(∠a− θp))}

2
PS−1∑
p=0
|wp|+ ε

aeiφ,

(6)
wherewp, θp and φ are trainable parameters, PS denotes the
number of sinusoids, and ε is a small constant to avoid divi-
sion by 0. The use of trainable parameters wp and θp allow
the framework to learn suitable gain functions. The number
of extra parameters introduced by PC-WSS is very small
since, for a particular channel of a layer, the weights are
shared. The numerator is normalized by the sum of the ab-
solute value of the weights to bound the gain in [−1, 1] and
avoid exploding gradients. To control the trade-off between
the flexibility and the increase in the number of trainable
parameters, PS is set as 3 in this study. Fig. 2 illustrates an
example of PC-WSS2 to demonstrate its flexible learnable
shape and that it can cause changes in the input phase.

To demonstrate the importance of allowing negative gain
and using φ in PC-WSS, we consider two of its variants. In
the first case, φ is set as 0, and the gain is bounded in [0, 1].
This phase preserving (PP) equivalent of PC-WSS is named
PP-WSS. When w0 = 1 and the rest of the parameters are
set as 0, PP-WSS is reduced to cardioid. To highlight the
importance of φ, we consider another variant, where nega-
tive gain is allowed, as in PC-WSS, but φ is set as 0. This

2To further analyze how the trainable parameters influence the acti-
vation function learned, the following parametric graph can be explored:
https://www.desmos.com/calculator/erhfrn3gkv.
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tangent inverse (tan−1( aIaR )) preserving (TIP) equivalent of
PC-WSS is named TIP-WSS.

2.3. Network Architecture

The generator architecture used in the proposed frame-
work is based on a U-net architecture. The left side is a con-
tracting path, where each step involves creating downsam-
pled feature maps using a convolutional layer with stride 2,
followed by CBN and activation. The right side is an ex-
panding path, where each step consists of upsampling (by
a factor of two), a convolutional layer to create new fea-
ture maps, followed by CBN and activation. The features
from the contracting path are concatenated to the features
in the expanding path to provide richer context about low-
level features for superior reconstruction.

We propose the use of dense connections between the
steps (layers) within the contracting and expanding paths.
These dense connections [24] improve the information flow
between the layers and encourage feature reuse. Since the
feature maps at various layers are not of the same size, av-
erage pooling and upsampling (with bilinear interpolation)
operations have been introduced in the dense connections
between the layers of the contracting and expanding paths,
respectively. However, changing the size of the feature
maps by a factor greater than r (less than size K

2r × K
2r )

increases the computational and memory requirement and
reduces the quality of information available to the subse-
quent layers. r is set as 3 in this work.

Further, residual-in-residual dense blocks (RRDBs) [51]
are incorporated at the lowest layer of the generator, where
feature maps of size K

32 ×
K
32 are present. Each block uses

residual learning across each dense block and a group of
three dense blocks. At both levels, the residuals are scaled
by α before being added to the identity mapping. The
RRDBs make identity mappings easier to learn through
residual connections and rich information accessible to
deeper layers through dense connections. At the output of
the generator, a hyperbolic tangent activation is applied3. A
diagram can be found in the supplementary.

The discriminator architecture is based on a standard
CNN with 11 convolutional layers, each of which is fol-
lowed by BN and leaky ReLU activation. We use a patch-
based discriminator to increase the focus on the reconstruc-
tion of high-frequency content. It scores each patch of the
input image separately and uses their mean as the output.

2.4. Training Losses

Adversarial Loss: To constrain the generator to produce
the MR image corresponding to the samples acquired in the

3For real-valued data, we apply three more operations. First, the output
range (of real and imaginary parts) is changed to [0, 1]. Then, the absolute
value is obtained (which lies in [0,

√
2]), and scaled back to [-1, 1].

k-space, it is conditioned [37] over the ZFR given by:

xu = ΦHy = FHUHy, (7)

where xu ∈ CK2

, H is the Hermitian operator. A Wasser-
stein distance-based loss [2] is used to obtain the solution
to the minimax game between G and D, as it leads to more
stable training than vanilla GAN. This is formulated as:

min
G

max
D

LGAN = Ex∼px(x)[D(|x|)]

− Exu∼pxu (xu)[D(|G(xu)|)],
(8)

where px(x) is the distribution of the GT images, and
pxu(xu) is the distribution of the aliased ZFR images.

To solve this, an alternating process of updating G once
and D nD times is followed. To enforce the Lipschitz con-
straint on D, weight clipping is applied [2].

Content Loss: To bring the reconstructed output closer
to the corresponding GT image, other losses are re-
quired. First, we incorporate an MAE-based loss, L`1 =
E[‖G(xu)−x‖1], where ‖ · ‖1 denotes the `1 norm. The `1
norm is preferred to the `2 norm which can lead to overly
smooth and blurry reconstruction. Also, employing MAE
in the complex domain helps in accurate phase as well as
magnitude reconstruction.

Structural Similarity Loss: To improve the percep-
tual quality of the reconstructed MR image and preserve
the structural details, a mean SSIM (mSSIM) based loss is
incorporated. It maximizes the patch-wise SSIM between
the magnitude images of reconstructed output and the cor-
responding GT by minimizing the following expression:

LmSSIM = 1− E

[
1

P

P∑
p=1

SSIM(|Gp(xu)|, |xp|)

]
,

where P denotes the number of patches in the image, and
SSIM is calculated as follows:

SSIM(M,N) =
2µMµN + ε1
µ2
M + µ2

N + ε1

2σMN + ε2
σ2
M + σ2

N + ε2
,

where M, N are two image patches, µM , µN denote their
means, σ2

M , σ2
N denote their variances, σMN denotes their

covariance, ε1, ε2 are slack values to avoid division by 0.
Wavelet Loss: To further enhance the textural details

in the generated image, a weighted version of MAE in the
wavelet domain is incorporated. This is inspired by an-
other inverse problem (super-resolution) [25]. To decom-
pose the image into sets of wavelet coefficients C, which
are equal in size, and correspond to even division of bands
in the frequency domain, the wavelet packet decomposition
is applied. For an rw level decomposition which produces
Pw = 4rw sets of wavelet coefficients of size Kw × Kw

with Kw = K√
Pw

, the wavelet loss is formulated as:
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Table 1. Quantitative results for ablation study of the proposed model
Network Settings 1st 2nd 3rd 4th 5th 6th

Complex-valued GAN 7 3 3 3 3 7
RRDBs 7 7 3 3 3 3

Dense U-net 7 7 7 3 3 3
Wavelet loss 7 7 7 7 3 3

Generator parameters 2M 1.2M 1.5M 1.7M 1.7M 3.5M

PSNR (dB) / mSSIM 39.640 / 0.9823 40.048 / 0.9866 41.418 / 0.9879 43.798 / 0.9902 45.044 / 0.9919 42.864 / 0.9858

Table 2. Quantitative comparison of various activation functions
Activation zReLU CReLU CPReLU Cardioid PP-WSS TIP-WSS PC-WSS

PSNR (dB) / mSSIM 35.991 / 0.9690 45.044 / 0.9919 45.165 / 0.9920 45.128 / 0.9919 45.066 / 0.9919 45.429 / 0.9925 45.678 / 0.9927

Lwvt =
1

PwK2
w

Pw∑
p=1

γp

 Kw∑
i,j=1

|Cp
|G(xu)|(i, j)−Cp

|x|(i, j)|

 ,
where γp denotes the weight of the pth set of coefficients.
Since MAE and mSSIM focus more on preserving low
and high-frequency content, respectively, higher weights
are assigned to the wavelet coefficients corresponding to the
band-pass components to improve their reconstruction. To
do so, they are set according to the normalized probabil-
ity density function of a Gaussian distribution with mean
(Pw−1)

2 and variance σ2
w. rw is set as 3 and σ2

w as 12.5.
Overall Loss: The overall loss L, used to train G, is

formulated as a weighted sum of the losses presented above:

L = λ1LGAN + λ2L`1 + λ3LmSSIM + λ4Lwvt. (9)

In this work, λ1 = 0.01, λ2 = 20, λ3 = 1, and λ4 = 100.
Details of training settings can be found in the supple-

mentary. After training, a single forward pass through the
trained generator is used to obtain the reconstructed image.

3. Results and Discussion
3.1. Datasets

We evaluate our models on three datasets, namely MIC-
CAI 2013 grand challenge dataset [32] from which we use
T1 weighted MR images of the brain, MRNet dataset [5]
from which we use coronal images of the knee, and fastMRI
dataset [57] from which we use coronal proton density-
weighted single-coil images of the knee. The fastMRI
dataset contains complex-valued images, which are cropped
to size 320×320. The other two datasets provide only real-
valued images of size 256 × 256. To improve the robust-
ness to noise, we apply data augmentation by adding syn-
thetic 10% and 20% complex Gaussian noise in the Fourier
space [12], before undersampling. The proportion of noise-
free and noisy images is kept the same as in [12]. For the
MICCAI 2013 dataset, 20 787 images taken from the train
set are used for training, and 2000 images from the test set
are used for testing. For the other two datasets, 12 500
images are randomly chosen for training, and 2000 non-
overlapping images are chosen for testing. The testing is

carried out for three sets: noise-free images (i.e. images
without synthetic noise), images with 10% noise, and im-
ages with 20% noise. To obtain the undersampled data, we
use 30% 1D Gaussian (1D-G) or Cartesian sampling4.
3.2. Ablation Studies

Table 1 shows the results for the ablation study of the
proposed model5. The first case demonstrates a real-valued
GAN model, which consists of a U-net based genera-
tor without RRDBs, without the dense connections, with
CReLU activation and with λ4 = 0 in (9). In the fol-
lowing cases, the effect of adding complex-valued oper-
ations, RRDBs, dense connections, and Lwvt (by setting
λ4 = 100) are observed. Evidently, each step results in sig-
nificant improvement in peak signal-to-noise ratio (PSNR)
and mSSIM. It is noteworthy that despite a 40% decrease
in the number of generator parameters, the complex-valued
equivalent (2nd setting) outperforms the real-valued GAN
model presented as the 1st setting. To further highlight
the usefulness of complex-valued representations, the real-
valued version of the fifth case is considered by doubling
the number of output channels (details in supplementary).
Despite having more than twice the number of trainable pa-
rameters, this model significantly underperforms as com-
pared to its complex-valued counterpart (5th setting). For
the rest of the results, we use the 5th network settings.

3.3. Activation Functions

Table 2 shows the quantitative results for comparing var-
ious activation functions6. It is observed that zReLU, which
only allows the inputs lying in the first quadrant to pass,
has the worst performance. CPReLU outperforms CReLU
and zReLU. This may be because, unlike these activations,
CPReLU does not suppress input information strongly for
non-zero values of the slope parameter. Moreover, it has
an adaptable shape, allowing it to bypass issues like dead
neurons, commonly observed in CReLU. It is observed that

4The results for other sampling ratios (10%, 20%, 30%) and patterns
(1D-G, radial, spiral) can be found in the supplementary.

5Qualitative results are shown in the supplementary.
6Qualitative results are shown in the supplementary.
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Figure 3. Qualitative results and comparison of the proposed method for two images taken from the MICCAI 2013 dataset. Inset- top right:
the ZiR enclosed by the red box, bottom right: absolute difference between the ZiR and its corresponding GT. Best viewed in 200% zoom.

cardioid performs better than these activations, as it is sen-
sitive to phase, and PP-WSS obtains a similar performance
as cardioid. However, these phase preserving activation
functions slightly underperform as compared to CPReLU,
which does not have phase preservation capabilities. Fur-
ther, when the possibility of a negative gain is introduced
in PP-WSS, the resulting TIP-WSS obtains a significantly
better performance. This indicates that if phase change is
allowed, the flexibility thus produced leads to a boost in
performance. The same is true for the proposed PC-WSS
after the parameter φ is introduced. This experiment not
only highlights the superiority of PC-WSS but also shows
that phase preserving activations prove less effective in a
complex GAN framework. The superior performance of
TIP-WSS and PC-WSS over CPReLU can be attributed to
higher flexibility and sensitivity to the input phase. The rest
of the results are reported by using PC-WSS activation7.
3.4. Comparison with State-of-the-art

MICCAI 2013 Dataset: Fig. 3 demonstrates the quali-
tative results8 of our final model and comparison with SOTA
methods. We used the publicly available official imple-
mentations of the SOTA methods to analyze their perfor-
mances on the test set. As seen in the reconstructed re-
sults for the first image, methods like FBPCNet, DLMRI,
and BM3D are unable to properly reconstruct the high-
frequency content (edges) in the zoomed-in region (ZiR).
Also, most of the SOTA methods obtain blurry reconstruc-
tion results, which might be due to the use of l2 loss. This
can be clearly seen by the quality of reconstruction of the
fine details in the ZiR of the second image. FBPCNet,
DLMRI, DeepADMM, and BM3D obtain an overly smooth
low-quality reconstruction, which appears to be slightly out
of focus. Moreover, we can also observe subtle artifacts
in the background of the ZiR of the first image. On close
inspection of the lower half of the first image, we can see
that FBPCNet, DLMRI, DeepADMM produce outputs with

7Plots of the training losses, comparison of runtime with other methods,
and ablation study of the loss function can be found in the supplementary.

8A high-resolution version of this figure is shown in the supplementary.

aliasing artifacts. The reconstructed images produced by
DAGAN, although significantly better than other methods,
do not capture subtle details. The visual representations of
the proposed scheme show that it preserves the fine struc-
tural details and most closely aligns with the GT.

Table 3. Quantitative results and comparison with previous meth-
ods using MICCAI 2013 dataset

Method Noise-free images 10% noise level 20% noise level

PSNR (dB) / mSSIM

FBPCNet [29] 35.996 / 0.8655 34.025 / 0.6011 31.421 / 0.4226
DLMRI [41] 37.405 / 0.8732 34.144 / 0.6140 31.564 / 0.4346

DeepADMM [55] 41.545 / 0.8946 39.078 / 0.8105 35.373 / 0.6000
MoDL [1] 42.383 / 0.9760 40.204 / 0.9481 36.844 / 0.8572

BM3D [16] 42.521 / 0.9764 37.836 / 0.7317 33.657 / 0.4947
DAGAN [54] 43.329 / 0.9860 42.006 / 0.9814 39.160 / 0.9619

Proposed 45.678 / 0.9927 41.809 / 0.9838 39.083 / 0.9718

Table 3 illustrates the quantitative comparison of the pro-
posed method with the six SOTA approaches. It can be ob-
served that there is an appreciable boost in both PSNR and
mSSIM values obtained by our approach. On comparing the
results for images with 10% and 20% noise, it is observed
that some methods like FBPCNet, DLMRI, and BM3D ex-
perience a steep decline in the reconstruction quality, indi-
cating a lack of robustness. Augmenting the training data
with noisy images for our method increases its robustness
towards noise. The values obtained by our method for noisy
images are significantly better than the other methods, but
they are comparable to DAGAN. This might be due to the
high complexity of the proposed model, which allows supe-
rior reconstruction quality in the noise-free case at the cost
of an increase in the sensitivity to the noise-level [44].

MRNet Dataset: To further analyze the effectiveness of
our method compared to SOTA methods, we perform an-
other set of experiments using the MRNet dataset, shown in
Table 49. We can see that the proposed method significantly
outperforms both MoDL and DAGAN for noise-free and
noisy images. The proposed method obtains better results
for images with 20% noise as compared to those obtained
by MoDL and DAGAN for noise-free images.

9Qualitative results are shown in the supplementary.

678



Figure 4. Qualitative results and comparison of the proposed method for complex-valued images from the fastMRI dataset. For each
method, the two columns show the reconstructed outputs and their absolute difference with the GT.

Table 4. Quantitative results and comparison using MRNet dataset

Method Noise-free images 10% noise level 20% noise level

PSNR (dB) / mSSIM

ZFR 19.916 / 0.6753 19.889 / 0.6385 19.806 / 0.5681
MoDL [1] 28.471 / 0.8643 27.659 / 0.7740 25.903 / 0.6303

DAGAN [54] 31.529 / 0.8754 30.452 / 0.8182 28.267 / 0.7098
Proposed 34.010 / 0.9306 33.031 / 0.9097 31.670 / 0.8802

Table 5. Quantitative results & comparison using fastMRI dataset

Method Parms Noise-free images 10% noise level 20% noise level

PSNR (dB) / mSSIM

ZFR - 19.813 / 0.788 19.795 / 0.788 19.744 / 0.773
Baseline 133M 22.957 / 0.593 22.928 / 0.588 22.841 / 0.574

MoDL [1] 1.1M 32.201 / 0.585 32.140 / 0.564 31.970 / 0.513
Proposed 1.7M 34.538 / 0.789 34.231 / 0.787 33.468 / 0.767

fastMRI dataset: To evaluate the performance of our
approach on complex-valued images, we perform another
set of experiments using the fastMRI dataset. For compar-
ison, we report the results for ZFR, MoDL, and a baseline
based on DAGAN. Instead of taking the magnitude images
as input, the baseline takes the complex-valued images con-
catenated as two real-valued channels. The output is also
modified in the same way. Magnitude images are used for
the adversarial and VGG loss, while complex-valued im-
ages are used for the MSE and frequency loss [54].

Table 5 and Fig. 4 show the quantitative and qualitative
results10, respectively. Despite having significantly fewer
trainable parameters (Table 5) in the generator as compared
to the baseline, our approach obtains a superior reconstruc-
tion. This is highlighted by the similarity of the recovered
magnitude and phase images to the GT. The trade-off be-
tween the PSNR and mSSIM for ZFR and baseline indicates
that the latter gives an improved phase reconstruction at the
cost of low-quality magnitude reconstruction. The baseline
output demonstrates a significant loss in both magnitude
and phase content, with the former being visibly blurry and
the latter showing alarming differences. Although MoDL
obtains a better PSNR than the baseline, it visibly fails to

10Qualitative results of ZFR and a high-resolution version of this figure
can be found in the supplementary.

reconstruct some portions of the magnitude image, hallu-
cinates some details, and gives an inaccurate phase recov-
ery. Our approach also obtains robust reconstructions in the
presence of noise in the undersampled data. These observa-
tions reiterate the importance of complex-valued operations
for processing the CS-MRI data.

3.5. Zero-shot Inference
In this experiment, the model trained on brain images

from the MICCAI 2013 dataset is tested for the reconstruc-
tion of images of canine legs from the MICCAI 2013 chal-
lenge. This model achieves an average PSNR of 42.949
dB and mSSIM of 0.9864 when inferred for 2000 test im-
ages11. Although the test set images are of completely dif-
ferent anatomy compared to those used for training, our ap-
proach can obtain high-quality reconstruction.

Potential Hallucination by GANs: The proposed
scheme using the L`1 , LmSSIM , Lwvt loss functions during
training tries to align the reconstructed MR image closely
to the GT, in effect trying to reduce the possibility of hal-
lucination by GAN. Experiments using different sampling
masks, datasets, and zero-shot inference help demonstrate
that the proposed model displayed no signs of hallucination
and generalizes well. An expert radiologist confirmed the
same after examining the GT and reconstructed images.

4. Conclusion
We propose a first-of-its-kind Co-VeGAN framework

to combat the fundamental weakness of SOTA DL-based
frameworks for CS-MRI reconstruction, i.e. their inability
to process the inherently complex-valued MRI data. We
also propose a learnable complex-valued activation, PC-
WSS, to overcome the transferability issues in real-valued
activations and perform extensive comparisons to demon-
strate its suitability to the complex domain. The insights
provided by detailed analyses and ablation studies of our
approach, along with the SOTA results obtained on both
real and complex-valued datasets, would prove beneficial
for future applications reliant on complex-valued data.

11Qualitative results can be found in the supplementary.
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