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Abstract

Automated vessel segmentation in cerebral digital sub-
traction angiography (DSA) has significant clinical util-
ity in the management of cerebrovascular diseases. Al-
though deep learning has become the foundation for state-
of-the-art image segmentation, a significant amount of la-
beled data is needed for training. Furthermore, due to
domain differences, pretrained networks cannot be applied
to DSA data out-of-the-box. To address this, we propose
a novel learning framework, which utilizes an active con-
tour model for weak supervision and low-cost human-in-
the-loop strategies to improve weak label quality. Our study
produces several significant results, including state-of-the-
art results for cerebral DSA vessel segmentation, which ex-
ceed human annotator quality, and an analysis of annota-
tion cost and model performance trade-offs when utilizing
weak supervision strategies. For comparison purposes, we
also demonstrate our approach on the Digital Retinal Im-
ages for Vessel Extraction (DRIVE) dataset. Additionally,
we will be publicly releasing code to reproduce our method-
ology and our dataset, the largest known high-quality anno-
tated cerebral DSA vessel segmentation dataset.

1. Introduction
Digital subtraction angiography (DSA) is the gold stan-

dard in vessel visualization and extremely important in the
diagnosis and treatment of arterial and venous occlusions.
Vessel segmentation in cerebral DSA is crucial to the man-
agement of cerebrovascular diseases such as stroke diagno-
sis and detection of aneurysms. While manual annotation
is possible, it is often elaborate and complex, limiting the
study of large cohorts of images [10]. Consequently, auto-
mated vessel segmentation methods have become increas-

ingly necessary.
With recent advances in deep learning, convolutional

neural networks (CNN) have shown substantial improve-
ment in medical image segmentation. To the best of our
knowledge, our work is the first to incorporate active con-
tour models as weak supervision for semantic segmentation
deep learning training. By doing so, we significantly re-
duce the human cost related to annotation generation. The
rest of the paper is as follows. In Section 2, we review
prior work in vessel segmentation, weak supervision, and
deformable models. In Section 3, we propose our methodol-
ogy for weak supervision. Finally, in Section 4, we employ
our methodology on the datasets and discuss the results and
implications.

2. Related Work
Several methods have been proposed to segment vessels

in DSA; however, they all suffer from limitations associ-
ated with noise, bone artifacts, significant vessel diameter
differences, and small dataset sizes [10, 5, 25, 37]. Despite
limited research in DSA vessel segmentation, there has been
significant research in blood vessel segmentation in fundus
retinal images largely due to the availability of several pub-
lic data sets. Recent studies have used deep learning meth-
ods such as multi-scale and multi-level CNNs [9], multi-
path supervision [31], deformable CNNs [15], and feature
pyramid cascade networks [30].

Due to the the difficulty of acquiring labeled data, there
has recently been considerable interest in weak supervision
for CNNs for medical image segmentation. Prior work have
incorporated weak supervision into CNNs for histopathol-
ogy image segmentation[14] as well as brain tumor seg-
mentation [13] with methods for weak supervision includ-
ing bounding boxes, scribbles, image level tags, and partial
labels [4, 32]. Human-in-the-loop strategies have also been
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Figure 1: Pipeline of our approach which combines manual and weak annotations.

explored for active learning [34, 2].
Generalizing these weak supervision approaches to

blood vessels is nontrivial as blood vessels often possess a
significantly more complex and intricate structure (see Fig-
ure 3) than the objects of focus in prior work. In one study,
hierarchical clustering was used as weak annotations and
weak annotations from different but related domains were
used to augment the training set for retinal segmentation
[20]. In another study, vessel enhancement algorithms were
used to generate weak annotations and an iterative optimiza-
tion process and active learning were used to improve anno-
tation quality [36]. Methods such as this use significant an-
notation and optimization resources. These considerations
make utilizing relatively computationally cheap deformable
models an attractive choice.

Deformable models such as snakes and level-set method
are pioneering methods in autonomous segmentation of 2D
and 3D medical images [22, 24, 35]. Recently, several re-
searchers have proposed methods combining the strengths
of deformable models and CNNs in the automated segmen-
tation of left ventricles [3] and cardiac walls [33]. Al-
though these works combine both deformable models and
deep learning in their approach, the deformable models are
primarily used as refinement of deep learning segmentation
predictions rather than weak supervision for deep learning
training.

With this in mind, our work is the first to use active
contour models as weak supervision for CNN semantic
segmentation model training. By utilizing large unlabeled
datasets through computationally efficient active contour
methods with limited human intervention, our proposed
method shows extremely promising results for CNN seg-
mentation despite the intricacy of blood vessel structures.

3. Methodology

In our proposed approach, we obtain several different
types of annotations for supervised training of a semantic
segmentation deep learning model. We use active contour
models to generate weak annotations with limited human
intervention and compare our approach to popular base-
line methods for automated segmentation. Additionally, we
combine weak annotations with manual annotations in or-
der to assess whether we can improve model performance
with lower annotation costs. For each set of annotations, we
train a semantic segmentation model and evaluate its per-
formance on a held out test set. Figure 1 displays a pipeline
of our approach which combines manual and weak annota-
tions. Similar to prior work [36], our approach is compati-
ble with any CNN-based segmentation architecture.

3.1. Datasets

The Cerebral DSA imaging dataset utilized in this study
was obtained from patients evaluated at a comprehensive
stroke center and identified with symptoms of acute is-
chemic stroke. Inclusion criteria for this study included:
(1) final diagnosis of acute ischemic stroke, (2) last known
well time within six hours at admission, and (3) DSA of
the brain performed as part of a thrombectomy procedure.
A total of 91 patients satisfied the above criteria and were
included in this study. The DSA scanning was performed
on a Philips Allura Xper FD20® Biplane using a routine
timed contrast-bolus passage technique. A manual injec-
tion of omnipaque 300 was performed at a dilution of 70%
(30% saline) such that 10cc of contrast was administered
intravenously at an approximate rate of 5cm3/s with median
peak voltage output of 95 Kv, IQR 86, 104. Image sizes
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were all 1024×1024 but were acquired with different fields
of view [10]. The total dataset consists of 128 images which
was partitioned into a 75− 25 training test split.

In order to compare our approach to other published re-
sults, we also replicate our results on DRIVE. This dataset
consists of a total of 40 color fundus photographs acquired
from a diabetic retinopathy screening program. Images
were acquired using a Canon CR5 non-mydriatic 3CCD
camera with a 45◦ field of view (FOV). Each image is cap-
tured using 8 bits per color plane at 768 × 548 pixels. The
FOV of each image is circular with a diameter of approx-
imately 540 pixels. The set of 40 images is divided into a
test and training set both containing 20 images [26].

3.2. Manual Annotations (MA)

To obtain the manual annotations for the Cerebral DSA
dataset, fifteen observers were trained by research staff
which included experienced stroke researchers. All manual
annotations were developed using GIMP, a popular open-
source raster graphics editor. Twelve observers annotated
the training set with no overlap while two observers anno-
tated the test set. The Cohen’s kappa coefficient - a statistic
to measure inter-rater reliability - was 0.799 which demon-
strates that the annotation quality was highly reliable. The
final observer annotated a subset of the test set to determine
which set of test annotations would be the gold standard
ground truth based on inter-annotator agreement. The re-
maining set of annotations (referred to as ”second anno-
tator” annotations) was used as an additional datapoint in
our performance comparison. To standardize for differing
skill levels, annotation times were only collected from those
who generated both manual and weak annotations. With
this, the mean annotation time per image was 1.92 hours.
The DRIVE dataset manual annotations are publicly avail-
able. Three observers were trained by an ophthalmologist
and manually segmented the dataset. The first observer and
second observer annotated both the train and test set. A
third observer separately annotated the test to compare the
performance of an independent human observer with auto-
mated methods. The Cohen’s kappa coefficient was 0.759
which demonstrates that the annotation quality was highly
reliable [26].

3.3. Active Contour Model

For our active contour model, we use a hybrid level set
model (CGLI) proposed by Chen et al. [7] based on the Se-
lective Binary and Gaussian Filtering Regularized Level Set
(SBGFRLS) model and the local fitting term in Local Bi-
nary fitting (LBF) model for retina vessel segmentation. We
chose this model for three primary reasons: (1) the signed
pressure force function introduced by the SBGFRLS model
combined with the local intensity property introduced by
the LBF model allows for proper segmentation of low con-

trast vessels, (2) the approach is more robust to initial con-
ditions than traditional methods, and (3) strong results have
been demonstrated on two other vessel imaging datasets,
DRIVE and STARE.

Let Ω ⊂ R2 be the image space and I : Ω → R be an
intensity of the image space. The CGLI model consists of
a local force functional gL that captures the intensity differ-
ence between the inside and outside of the contours and a
global force functional gG that is used to avoid the model
being trapped in a local minima. More specifically, the local
force is defined as

gL(I(x)) =

∫
Kσ(y − x)(I(x)−A(y))dy

max(|
∫
Kσ(y − x)A(y)dy|)

(1)

where Kσ is a smoothing kernel function with variance σ,
and A(y) = 0.5(f1(y) + f2(y)).

Here, f1(x) and f2(x) are two spatial dependent func-
tions that approximate the intensities of the inside and out-
side of the contours near the point x ∈ Ω and enable the
algorithm to detect the accurate segmentation in the inten-
sity inhomogeneity more efficiently than the vanilla level
set method. They are defined as

f1(x) =

∫
Kσ(y − x)I(x)Hϵ(ϕ(y))dy∫
Kσ(y − x)Hϵ(ϕ(y))dy

f2(x) =

∫
Kσ(y − x)I(x)(1−Hϵ(ϕ(y)))dy∫
Kσ(y − x)(1−Hϵ(ϕ(y)))dy

(2)

where ϕ is the signed distance function and Hϵ = 0.5 +
arctan(x/π)/π is a smooth Heaviside step function.

The global force is then defined as

gG(I(x)) =
I(x)− (c1 + c2)/2

max(|I(x)− (c1 + c2)/2|)
(3)

where c1 and c2 are global average intensity values.

Finally, using both the local and global force, the hybrid
level set method computes the signed distance function that
satisfies the following partial differential equation:

∂ϕ(t, x)

∂t
= (gL(I(x)) + ωgG(I(x))) · α|∇ϕ(t, x)| (4)

where α controls the evolution speed and ω regulates the in-
fluence between the local and global forces. The algorithm
of the hybrid CGLI level set method is shown in Alg. 1.
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Algorithm 1 Hybrid CGLI Level Set Method
Input: An image intensity function I
Output: A signed distance function ϕ

Initialize ϕ← Kσ ∗ I − max(I)+min(I)
2

for i = 1, ... , N do
for x ∈ Ω do

if ϕ(x) > 0 then
ϕ(x)← 1

else
ϕ(x)← −1

ϕ← ϕ+∆t(g
L + ωgG)

√
(∂xϕ)2 + (∂yϕ)2

In our DSA experiments we use the heat equation and
in our DRIVE experiments we use a Gaussian kernel for
the smoothing kernels. Furthermore, we use the forward
difference scheme to solve for derivatives ∂xϕ and ∂yϕ.

3.3.1 Fully-automated Active Contour Weak Annota-
tions (FACWA)

To generate FACWA, the DSA image is pre-processed us-
ing a Gaussian filter with σp = 1.0 and passed to the ac-
tive contour model which runs for 600 iterations with opti-
mal parameters of σ = 1e−7, ω = 0.2, and ϵ = 0.2. In
order to faithfully represent the lack of manual annotation
data, optimal hyper-parameters were chosen based on visual
comparison. The following hyper-parameters were consid-
ered: σ ∈ [1e−6, 1e−7], ω ∈ [0.1, 0.2, 0.3, 0.5, 0.7], and
ϵ ∈ [0.01, 0.1, 0.2, 0.3, 0.5]. The model consumes 260 MB
of RAM and runs for approximately 200 seconds per image.
We looked at slightly different parameters for the DRIVE
dataset and tuned the parameters differently for better com-
parison with other related work on the DRIVE dataset.

3.3.2 Human-in-the-Loop Active Contour Weak An-
notations (HACWA)

A universal pipeline for automated segmentation is often
inadequate as images within the same dataset can differ
drastically in terms of quality and clarity. For the DSA
dataset, we address these issues by generating several an-
notation candidates by changing pre-processing parameters.
We then use human intervention to choose the best seg-
mentation based on a visual comparison of the generated
annotations. For pre-processing, we use a combination of
Gaussian blurring followed by contrast limited adaptive his-
togram equalization (CLAHE). We vary σp in Gaussian blur
as well as the clip limit δ in CLAHE while the tile size of
CLAHE is set constant as 8× 8. We use σp ∈ [1.0, 1.5, 2.0]
for low blurring, medium blurring, and high blurring and
δ ∈ [2.0, 4.0] for low contrast and high contrast. The com-
bination of these parameters produce six total annotation
candidates for each image. The user then picks the best one

or discards all of them if none are of sufficient quality. Us-
ing this method, a total of 50 images from the training set
were deemed to have annotations of sufficient quality. The
mean annotation time per image was 1.02 minutes which is
drastically lower than the annotation time for MA.

3.3.3 Baseline Weak Annotations

For the baseline fully-automated weak annotations
(BFWA), we chose a popular light-weight unsuper-
vised image segmentation method, kernel graph-cut
segmentation [27]. The hyper-parameters considered
were α ∈ [0.0, 0.01, 0.1, 0.25, 0.5], a ∈ [1, 2, 3],
b ∈ [0.5, 1.0, 1.5], and σb ∈ [0.25, 0.5, 0.75] and the
optimal values were chosen as α = 0.0, a = 2, b = 1.0,
and σb = 0.5, based on visual comparison.

For the baseline human-in-the-loop weak annotations
(BHWA), we used the popular fuzzy select tool imple-
mented by GIMP to segment vessels. To use the tool, the
user selects a seed point within the image, which results in
adjacent pixels with a similar intensity to the selected pixels
being selected. Users can modulate a similarity threshold
for the intensity of the selected pixels [1]. The mean anno-
tation time per image for this method was 1.08 minutes.

3.4. Supervised Model Training

In order to compare the different annotation approaches,
we train and evaluate a deep learning semantic segmenta-
tion model that utilizes the annotations for supervised learn-
ing. The experiments were conducted on Amazon EC2 in-
stances and utilized the g4dn.xlarge instances. The CNNs
were implemented in PyTorch 1.6.0. A total of 4.9 GB
and 1.7 GB of GPU memory and 4.3 GB and 3.0 GB of
RAM are consumed during model training and inference
with training and inference time of 0.38 and 0.44 seconds
per image respectively.

3.4.1 Encoder-Decoder Model Architecture

In order to stress the generality of our approach, we uti-
lized popular and publicly available encoder-decoder archi-
tectures for our segmentation model. The encoder networks
were pre-trained on ImageNet. We tested several notable
encoder [11, 28, 12, 29] and decoder [18, 8, 17, 38, 6] net-
works and determined that the DenseNet169 encoder and
Feature Pyramid Network decoder were optimal for the
DSA dataset and VGG16 encoder and UNet decoder were
optimal for the DRIVE dataset.

3.4.2 Deep Learning Model Training

To optimize the loss function, we trained for 150 epochs
for the DSA dataset and 1000 epochs for DRIVE using the
Adam algorithm, a learning rate of 0.0001, and 0.20 dropout
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Figure 2: The graph describes the relationship between model performance and annotation time for models trained with
HACWA+MA (red line) and models trained exclusively with MA (blue line). Each filled circle represents a datapoint. The
brown horizontal line represents the second annotator score on the test set. For the first four datapoints on the red line, the
models are trained exclusively with HACWA. For subsequent datapoints on the red line, the models are trained with 100%
HACWA and proportions of MA.

applied to the last layer. In order to correct for class imbal-
ance for the DSA dataset (this was not applied to DRIVE),
we used weighted binary cross entropy (WBCE) as our loss.
For the WBCE positive class weight, we tested values of
1.0 and 0.50 times the ratio of negative and positive sam-
ples (optimal was 1.0). During training we applied several
image augmentations, including horizontal flip, shift, and
Gaussian noise.

3.4.3 Hyperparameter Testing

For hyperparameter tuning, we first optimized the hyper-
parameters on a model trained exclusively on manual an-
notations. The hyperparameters for all other experiments
were then fixed (except for the number of epochs which we
increased to 300 for small samples for the DSA dataset).
This was done to demonstrate parameter robustness for the
different annotation types. To obtain the model hyperpa-
rameters, we created three non-overlapping validation sets
from the training set to generate three training and valida-
tion splits. We then used grid search to generate hyperpa-
rameter combinations and trained and validated each com-
bination on each split. The performances were then aver-
aged on each fold to determine optimal parameters.

3.4.4 Evaluation Metrics

To evaluate the performance of our model on the DSA
dataset, we used three metrics: DICE, Average Precision
(AP), and Area Under the Curve of the Receiver Operating
Characteristic (AUROC). DICE is a commonly used evalu-
ation metric and is defined as:

DICE =
2TP

2TP + FP + FN
(5)

Unlike Accuracy, DICE considers low prevalence of the
positive class, which is why it is a popular metric for seg-
mentation. AP is also a commonly used metric and is de-
fined as the area under the Precision-Recall curve. AUROC
is calculated by obtaining the area under the Receiver Op-
erating Characteristic, which is generated by plotting the
True Positive rate against the False Positive rate. Both AP
and AUROC consider the model performance on several de-
cision thresholds. AP is generally preferred to AUROC in
cases with class imbalance though we report AUROC be-
cause AUROC is often more commonly reported. For the
DRIVE dataset, we report Accuracy and AUROC for com-
parison purposes because they are the most commonly re-
ported for this dataset. Unless otherwise stated, metrics are
only generated from the FOV for DRIVE. Thresholded met-
rics, like DICE and Accuracy, are more relevant for clinical
use.

4. Experiments

We trained supervised models on the different anno-
tations and considered performance of models trained on
varying amounts and combinations of annotations. For
models trained on a mix of weak annotations and MA, for
the DSA dataset we trained a supervised model on a com-
bination of 100% of HACWA and varying amounts of MA
for the images that were excluded from HACWA. For the
DRIVE dataset, a certain proportion of weak annotations
were replaced with MA. For each experiment on the DSA
dataset, we trained the model ten times with ten different
random seeds, which affected the training data and param-
eter initialization, and reported statistics for test set metrics
over all the models. For the DRIVE dataset, because of the
high-quality FACWA, we did not generate HACWA.
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Approach DICE (%) Average AUROC (%) Annotation Optimization
Precision (%) Time (hours) Time (hours)

Combined Weakly-supervised and Supervised
100% HACWA+48% MA 84.0± 0.5 92.2± 0.4 98.9± 0.2 89.95 1.5
100% HACWA+24% MA 82.7± 1.1 91.6± 0.5 98.0± 0.1 45.86 1.2
100% HACWA+11% MA 82.5± 0.8 90.8± 1.1 98.4± 0.1 21.90 0.97
100% HACWA+4% MA 80.9± 0.7 89.8± 0.5 98.4± 0.2 9.00 0.87

Weakly-supervised
100% HACWA 80.5± 0.6 89.5± 0.6 98.3± 0.3 1.6 0.80
50% HACWA 79.5± 0.4 88.9± 0.7 97.9± 0.6 0.81 0.40
25% HACWA 79.1± 0.9 88.4± 0.8 98.0± 0.3 0.41 0.20
100% FACWA 76.3± 0.8 84.9± 1.3 96.1± 1.2 0 1.5

Supervised
100% MA 83.9± 1.3 92.8± 0.4 99.0± 0.1 184.3 1.5
70% MA 84.3± 0.5 92.3± 0.4 98.8± 0.2 129.0 1.1
50% MA 83.4± 1.9 92.2± 0.5 98.9± 0.2 92.2 0.77
30% MA 83.5± 0.6 91.9± 0.4 98.7± 0.3 55.3 0.46
20% MA 82.8± 0.6 91.6± 0.4 98.8± 0.1 36.9 0.31
10% MA 82.0± 1.1 90.9± 0.5 98.6± 0.3 18.4 0.31
5% MA 80.3± 1.3 89.9± 0.6 98.7± 0.2 9.22 0.15
4% MA 79.9± 2.5 89.5± 1.0 98.7± 0.1 7.37 0.12
3% MA 78.8± 1.7 87.5± 2.1 98.4± 0.3 5.53 0.093
2% MA 74.8± 2.9 84.2± 3.6 97.8± 1.0 3.69 0.062

Baseline
100% BHWA 80.0± 1.0 87.5± 1.0 98.1± 0.3 1.7 1.5
50% BHWA 79.3± 1.1 87.6± 1.0 97.8± 0.5 0.87 0.77
25% BHWA 78.0± 1.0 85.9± 1.8 97.9± 0.4 0.43 0.39
100% BFWA 60.3± 1.9 69.0± 2.7 91.3± 2.7 0 1.5

Annotations
Second Annotator* 81.1 X X X X
FACWA* 79.0 X X X X
BFWA* 59.3 X X X X

Table 1: These are the metric scores for the models trained on the different annotations on the DSA dataset. The rows
indicated by (*) are the scores for the annotations on the test set. Using a significance level of 5% and the Bonferroni
correction for multiple comparisons, the DICE scores which are significantly greater than the second annotator are bolded.

4.1. Results

The metric results from our experiments on the DSA
dataset can be seen in Table 1. Our models trained on
FACWA performed better than BFWA. However, all the
models trained on HACWA perform better than the model
trained on the FACWA, which demonstrates that limited
human supervision has a significant impact on model per-
formance. Additionally, models trained on HACWA pro-
duced much higher performance than models trained on
MA given the annotation time. For example, the models
trained on 100% HACWA obtained near human-level per-
formance given an annotation time of 1.6 hours for the train-
ing set. In contrast, models trained on 4% MA and 5% MA
have similar performance to the models trained on 100%
HACWA yet utilize 7.37 hours and 9.22 hours, correspond-

ing to five and six times the annotation time respectively.
Additionally, the models trained on 4% MA and 5% MA
have higher variance in model results because of the small
dataset sizes, which suggests more variability in annotation
quality.

In Figure 3, results from models trained on 100%
FACWA, 100% BFWA, 100% HACWA, 100% BHWA,
100% HACWA+ 48% MA, and 100% MA on two test im-
ages are shown. The second image has significantly more
noise than the first image yet all the models are able to
successfully discriminate between the noise and blood ves-
sels. The quality of the predictions from the model trained
on 100% FACWA are significantly better than the model
trained on 100% BFWA and are able to capture much more
of the vessel structure. The quality of the predictions from
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Approach Accuracy (%) AUROC (%)
Supervised

Jin et al. [15] 95.7 98.0
Liskowski
and Krawiec [19] 95.4 97.9
Maji et al. [21] 94.7 92.8
Marin et al. [23] 94.5 95.9

Weakly- and Unsupervised
Lu et al. ◦ [20] 95.6 95.8
Neimeijer et al. [26] 93.8 89.8
Kande et al. [16] 89.1 95.2

Our Approach
100% MA 95.6 96.5
75% FACWA+25% MA 94.7 93.0
100% FACWA 94.2 92.1
100% FACWA◦ 95.7 94.2

Annotations
Second Annotator* 94.7 X
FACWA* 92.4 X

Table 2: Metric scores for previous work and our models
trained on different annotations on the DRIVE dataset. The
rows indicated by (*) are the scores for the annotations on
the test set. The rows indicated by (◦) are the scores gener-
ated from the entire image rather than just the FOV.

the model trained on 100% HACWA are slightly better than
the model trained on 100% FACWA and 100% BHWA. Vi-
sually, predictions from models trained on HACWA+ 48%
MA and 100% MA are very similar from the model trained
on 100% HACWA. All three of the models are effectively
able to discriminate between the blood vessels and noise
and capture the vast majority of the intricate blood vessel
structure.

In Figure 2, we show the relationship between model
performance and annotation time for models trained with
HACWA+MA and models trained exclusively with MA.
For the first four datapoints on the red line, the models
are trained exclusively with HACWA and perform far bet-
ter for the given annotation cost than the models trained
exclusively on MA. For subsequent datapoints on the red
line, the models are trained with 100% HACWA and pro-
portions of MA and are able to achieve human annotation
quality with less annotation time than models trained ex-
clusively on MA. Models trained on HACWA notably have
very small error bars unlike models trained on MA which
are susceptible to high variance with small sample sizes.
Using a significance level of 5% and the Bonferroni correc-
tion for multiple comparisons, our analysis of the respec-
tive p-values strongly suggest HACWA+11% MA would
result in model performance exceeding a human annota-
tor while involving minimal additional annotation time. As

can be seen in Table 1, models trained on various anno-
tation combinations have statistically significantly greater
performance than a human annotator, which has significant
annotation cost implications. Model performance that sur-
passes inter-annotator agreement suggests that such models
can generate annotations as reliably as humans, which en-
ables a wide range of practical applications.

4.2. Comparison with Related Work

The metric results for previous work and our models
trained on different annotations on the DRIVE dataset can
be seen in Table 2. In terms of accuracy, our model trained
on FACWA performed better than all the weakly- and un-
supervised approaches. While our AUROC is lower than
some models, thresholded predictions are more relevant for
clinical use and strong AUROC which translates to poor
accuracy is not clinically relevant (e.g. Kande et al. [16]).
One of the competitive scores, Lu et al. [20], used hier-
archical clustering as weak annotations. However, images
from other retinal segmentation datasets were used to aug-
ment the training set whereas we were able to generate our
results from the DRIVE training set images alone.

Additionally, the 94.2% accuracy obtained was very
close to the human annotator accuracy of 94.7%. In fact,
by only exchanging five FACWA with MA, the model is
able to obtain human annotator performance. The accuracy
obtained surpasses a few deep learning supervised methods
(Marin et al. [23] and Maji et al. [21]), which is impres-
sive because the model only uses a quarter of the annotation
resources. Our supervised model has metric scores close
to the most competitive supervised models, though enhanc-
ing our supervised model is out of the scope of the current
study.

While weakly supervised learning in vessel segmenta-
tion is one of the focuses of this study, our study also pro-
duces pioneering work in DSA vessel segmentation. In
comparison to other work, our dataset of 128 high-quality
annotated DSA images is the largest used by far (two stud-
ies in this area used 30 annotated images [37, 25] and an-
other one used 88 annotated images[10]). Based on a vi-
sual comparison of other DSA study results [37, 10], our
models produce higher quality vessel masks and are able to
better discriminate noise. A previous study which utilized
data in the current study achieved an AUCROC of 95.1%
[10], which is well below the model scores in our current
study. We will be the first group to make our annotated
DSA dataset publicly available. Not only will our results be
the first that are completely reproducible, but the publicly
available data will spur other researchers to continue work
and improve methodologies in this area.
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(1e) (1f) (1g) (1h)

(2a) (2b) (2c) (2d)

(2e) (2f) (2g) (2h)

Figure 3: Two test images are shown with their respective (a) DSA image, (b) 100% FACWA, (c) 100% HACWA, (d) 100%
HACWA+48% MA, (e) Ground Truth, (f) 100% BFWA, (g) 100% BHWA, and (h) 100% MA.

5. Conclusion

DSA vessel segmentation is a challenging problem;
however, based on the results in our study, we were able
to demonstrate significant practical advantages to using our
weak learning framework in comparison to other related
work. One weakness in our study is the generalization of
our approach to additional datasets as well as different net-
work architectures and computer vision tasks. In future

work, we hope to address these issues.
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