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Abstract

Channel pruning has become an effective yet still chal-
lenging approach to achieve compact neural networks. It
aims to prune the optimal set of filters whose removal re-
sults in minimal performance degradation of the slimmed
network. Due to the prohibitively vast search space of fil-
ter combinations, existing approaches usually use various
criteria to estimate the filter importance while sacrificing
some precision. Here we present a new approach to opti-
mizing the filter selection in channel pruning with looka-
head search guided reinforcement learning (RL). A neural
network that takes as input filter-related features is trained
with RL to prune the optimal sequence of filters and max-
imize the performance of the remaining network. In addi-
tion, we employ Monte Carlo tree search (MCTS) to pro-
vide a lookahead search for filter selection, which increases
the sample efficiency for the RL training. Experiments on
MNIST, CIFAR-10, and ILSVRC-2012 validate the effec-
tiveness of our approach compared to both traditional and
automated existing channel pruning approaches.

1. Introduction
In recent years, deep convolutional neural networks

(CNNs) have enjoyed tremendous successes and have been
widely used in different computer vision tasks , such as ob-
ject classification [38, 22, 30] and detection [16, 73, 72],
image synthesis [17, 69, 42, 83], semantic segmentation
[55, 11, 48], and biological image-based disease diagnosis
[41, 70, 87]. Improvements over the state of the art in these
areas are usually achieved by designing deeper and wider
CNNs [38, 78, 80, 22, 31]. However, the computing cost in
these CNNs is usually expensive, which restricts their us-
age on resource-constrained devices such as robotics, mo-
bile devices, and drones [59, 74, 66, 5, 65, 1, 12, 9].

To reduce the computation and storage cost of a CNN
while maintaining its performance, many network compres-
sion approaches have been proposed, such as matrix de-
composition [35, 94, 81], quantization [20, 71, 34], knowl-
edge distillation [28, 79, 8, 8, 82, 84], and network pruning

[21, 68, 44, 64, 27, 57, 93, 26, 43, 86]. Among all these
approaches, network pruning has become the most popular
one because of its appealing properties of straightforward
implementation and large pruning ratio with little perfor-
mance degradation. Compared to weight pruning [21, 96],
channel pruning is a more straightforward approach be-
cause it removes the entire filter/channel rather than specific
weights so that it can be implemented without the need for
specialized software and hardware [19]. However, most of
the existing channel pruning approaches are faced with the
following two issues.

1) Filters’ importance heavily relies on approxima-
tion. As we know, the optimal solution for channel pruning
is to evaluate the performance of the slimmed networks after
removing every possible combination of filters that meets
a pre-defined pruning ratio in a trial-and-error manner [14]
and choose the best one, which is called oracle pruning [64].
However, this approach is computationally insupportable
due to the prohibitively vast search space of filter combi-
nations. Therefore, many channel pruning approaches rely
on the fast estimation of filter importance while sacrificing
some ranking precision. For example, [44] uses a heuris-
tic criterion that prunes the filters with the smallest weight
magnitude. [26] calculates the geometric median of the fil-
ters and removes those that exhibit functional redundancy.

2) Filters are often pruned with a greedy selection
strategy without a lookahead mechanism. In many exist-
ing channel pruning approaches, the filters’ influence on the
performance is estimated solely based on the current config-
uration of the network, and the long-range influence of these
pruned filters is omitted. A recent study [14] observes that
filters’ importance changes dramatically after each pruning
iteration. Moreover, [24] shows that keeping the identified
unimportant filters in the neural network, continuing fine-
tuning them, and re-selecting a new set of filters to prune
during each iteration results in a better performance than
permanently pruning the selected filters and finetuning the
remaining sub-network iteratively. These studies indicate
that pruning filters based on the current configuration of a
network is not always the best choice without a lookahead
mechanism. A deeper search needs to be implemented to
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achieve optimal filter importance calculation/estimation.
With the above concerns, we propose a novel channel

pruning approach with lookahead search guided reinforce-
ment learning (RL). Specifically, we train a neural network
with RL [62, 63, 61] that learns to prune a sequence of
filters and maximize the performance of the slimmed net-
work. Given a CNN to be pruned, it takes as input a num-
ber of filter-related features extracted from the CNN and
outputs the probabilities of pruning each filter. After a fil-
ter is pruned based on the output probabilities, a slimmed
CNN architecture is obtained, whose features are used as
the input in the next iteration. The process repeats until a
requirement is reached (for example, a certain amount of
FLOPs are pruned). For each intermediate CNN during the
pruning process, before the filter selection, a Monte Carlo
tree search (MCTS) [36, 10, 7] is executed to provide a
lookahead search and generate much stronger policies for
RL training. With RL and MCTS incorporated in chan-
nel pruning, the sample efficiency is significantly improved
and the search space is remarkably narrowed. Therefore,
the pruning can be controlled within a tolerable time com-
pared to oracle pruning. We validate our proposed approach
with various benchmark network architectures and datasets.
Experiment results demonstrate that our approach achieves
improvements over the current state of the art of both tradi-
tional [44, 64, 26, 51] and automated [25, 15, 91, 90] chan-
nel pruning approaches.

2. Related work
The most well-known pruning approach after CNNs

have been widely used is deep compression [20], which
prunes specific weights whose magnitudes are below a
threshold. Along this line of research, Liu et al. proposes to
combine Winograd’s minimal filtering algorithm in weight
pruning [52]. Alternatively, Zhang et al. [96] use the al-
ternating direction method of multipliers for weight prun-
ing. As previously mentioned, weight pruning introduces
unstructured sparsity to the network and thus cannot be im-
plemented without specialized software and hardware [19].

On the other hand, channel pruning drops the entire fil-
ters in a CNN, which is more flexible. Traditional chan-
nel pruning approaches usually rank filters’ importance and
prune unimportant filters. For example, the magnitudes of
filter weights are used as the criterion in [44] to rank the fil-
ter importance and those with small magnitudes are pruned
out. First-order Taylor expansion is introduced in [64] to
estimate the loss change when pruning each filter. [98]
implements a spectral clustering algorithm to identify the
efficient groups of filters that contribute essentially to the
network performance. Geometric median [26] is used as a
measurement to find the filters that contain the most redun-
dancy. Thinet [57] proposes to identify the filters that result
in minimal reconstructed error. [27] also introduces a sim-

ilar idea with LASSO regression. GAL [51] leverages the
idea of generative adversarial learning that learns to prune
a network that mimics the output of the original baseline.
HRank [49] proposes to prune filters with low-rank feature
maps that contain less information.

Recently, several studies leverage RL in the network
pruning area. N2N learning [3] proposes to use a recur-
rent neural network trained with RL for network compres-
sion. [89] and [97] use RL to prune connections in ResNet
and DenseNet, respectively. AMC [25] introduces a deep
deterministic policy gradient (DDPG) [47] agent to opti-
mize the best number of filters in each convolutional layer
and achieve considerable acceleration on mobile devices. A
“try-and-learn” scheme is described in [32], which trains
an agent that takes filter weights as the input and outputs
a binary decision on whether the filters should be pruned.
There are also a number of automatic pruning approaches
related to our work [56, 45, 6, 40]. AutoPruner [56] uses
the gradient information during fine-tuning to rank the fil-
ters so that pruning and fine-tuning can be combined. [6]
uses Viterbi inference and [46] introduces to achieve such a
purpose. Related to network pruning, there are also several
works in the neural architecture search (NAS) area using
RL to obtain compact CNNs [4, 99, 15]. Our proposed ap-
proach is related to AMC but is different in the following
aspects. (1) AMC is layer-wise and extracts the features of
each layer and the action is how many filters are be pruned
in a layer. Our approach is filter-wise, which extracts the
features of each filter and the action is which filter across
all layers should be pruned. (2) AMC’s search space is rel-
atively small so that a multilayer perceptron can be used
as the policy network without a search tree. However, the
search space of filter-wise pruning is extremely large so we
use MCTS to increase sample efficiency.
Monte Carlo tree search. MCTS was first proposed in
2006 which uses Monte Carlo rollouts to approximate the
value of each state in a system that can be represented with
a tree [36]. MCTS has been proved as an efficient algo-
rithm in various sequence decision-making problems such
as board [2] and real-time video games [67], complex ma-
terials design [58], and network virtualization [18].

However, for the tasks whose search spaces are ex-
tremely large, solely using MCTS does not work well due
to the complexity of the task [76]. Here we formulate the
channel pruning problem with RL by leveraging a neural
network to predict the probabilities of pruning each filter
in a CNN, taking a sequence of features extracted from the
CNN as the input. MCTS is used for improving the pol-
icy with a lookahead search and helping the neural network
make better decisions on filter selection. [14] proposes
a related method with a straightforward binary lookahead
search. Different from their work, we use MCTS combined
with RL so that the search space is deeper and larger.
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Figure 1. The overall framework of channel pruning using RL and MCTS. The neural network takes filter-related features as the input, and
outputs (1) probabilities of filter selection and (2) a value as an estimate of the performance of the pruned network. MCTS simulations
are executed to improve the sample efficiency for filter selection. When the pruning is done, the performance of the slimmed network is
evaluated with training samples, which is used for the improvement of the performance estimation in the neural network.

W
(1)
1

W
(1)
2

W
(L)
NL

W
(L)
1

W
(1)
Ni

W
(1)
Ni

.

.

.

.

.

.

.
.

.

W
(1)
2

W
(1)
1

W
(L)
NL

s1
s2

sK

Extracted

input features

1D Convolutional 

Layers

Flatten 

Layer

Dense 

Layers

Pruning 

actions

.

.

.

.

.

.

W
(1)
2

W
(1)
1

W
(1)
N1

W
(L)
NL

Neural network

to be pruned

0.1

0.05

0.8

0.01

W
(1)
N1

Performance 

evaluation

0.56

…

Figure 2. Architecture of the policy network. A sequence of features is extracted for each filter in the network to be pruned. 1D CNN has
utilized to output the probabilities over filter selection and a value as the performance estimate of the slimmed network.

3. Network pruning using RL and MCTS

In this section, we present our approach in detail. We
first formulate the channel pruning problem with RL and
MCTS and present the detailed implementation of each part.

3.1. Notations and preliminaries

Suppose we have an L-layer CNN with Ni (i =

1, 2, · · · , L) filters in each layer. Denote W
(i)
j as the j-

th filter in the i-th layer. The CNN’s parameters W can
be represented as W = {W(i) ∈ RNi+1×Ni×hi×wi , i =
1, 2, · · · , L}, where Ni, Ni+1, hi, wi represent the numbers
of input and output channels, filters’ height and width in the
i-th layer, respectively. Channel pruning aims to find an
optimal set of parametersW ′ that leads to the least perfor-
mance loss in the remaining network such that |W ′| < B,
where |W ′| corresponds to the number of elements and B
is the maximum number of non-zero filters allowed inW ′.
The performance loss can be measured with different crite-
ria, such as training accuracy drop or absolute loss change.

3.2. Problem formulation and the proposed pipeline

We formulate the channel pruning problem as a sequence
decision-making problem, which is modeled as a Markov
decision process (MDP). The features extracted from the
CNN to be pruned are represented as the state. When tak-
ing an action, i.e., pruning a filter, one network architecture
transforms to another. A reward is given as an evaluation of
the slimmed CNN. The goal of the system aims to find the
slimmed CNN that maximizes the performance and meets a
certain criterion (e.g., pruning a certain number of FLOPs).

The framework of our approach is described in Fig. 1
Starting with a CNN to be pruned, at each time step t, we
extract a number of filter-related features st as the input of a
neural network trained with RL for filter selection. The neu-
ral network outputs two components, i.e., (1) a value vt as a
performance estimate of the current slimmed CNN, and (2)
a policy pt that represents the probabilities of pruning each
filter. pt is improved by executing a lookahead search, i.e.,
MCTS, and the improved policy πt is used to select the next
action at, i.e., the next filter to be pruned. When reaching
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the requirement, the pruned network’s performance is eval-
uated with training samples and v is the final outcome of
the evaluation. The tuples (st,πt, v) are used for training
the neural network via RL to improve its capability on filter
selection and performance estimate.

3.3. Reinforcement learning for filter pruning

Feature extraction as state representation. Fig. 2
demonstrates the design of the neural network for pruning
action selection trained with RL. Because the sizes of the
filters Ni × hi × wi are usually different from each other,
we propose to extract features for each filter across all lay-
ers to get consistent dimensionality of feature representa-
tion. In our study, we use K features s = {si ∈ R1×N , i =
1, 2, · · · ,K} to characterize each filter and combine them
as a K × N matrix, where N is the total number of filters
in the CNN to be pruned, as the representation of the state.
In our study, the features are categorized into 3 types.
(1) Saliency responses. Saliency response has been proved
as an effective criterion for the estimate of filter importance
[68, 64, 29]. We feed training samples to the CNN to be
pruned and record the value of each filter’s feature map Z

(i)
j

and gradient G(i)
j . Denote z(i)jk and g

(i)
jk the elements in Z

(i)
j

and G
(i)
j , respectively. We use 3 widely used quantities

that are previously proposed to rank and prune filters as the
components of our feature representation.

• Mean ReLU activation value [68], i.e., s1 =

{ 1

|Z(i)
j |

∑
k |z

(i)
jk |}, where |Z(i)

j | is the the dimensional-

ity of Z(i)
j after vectorization and i = 1, 2, · · · , L, j =

1, 2, · · · , NL.
• Average percentage of zero (APoZ) activation neurons

[29], i.e., s2 = {||Zj
(i)||0}.

• Loss change estimate with first-order Taylor poly-
nomial after each filter’s removal [64], i.e., s3 =

{ 1

|Z(i)
j |

∑
k |z

(i)
jk · g

(i)
jk |}.

(2) Filter weights. Because pruning filters with the small-
est magnitude of weights has been widely used [44], we
calculate the ℓ2-norm of each filter’s weights as a com-
ponent of the feature sets, i.e., s4 = {||W (i)

j ||2 =
1

|W (i)
j |

∑
k(w

(i)
jk )

2}, where w
(i)
jk is the elements in W

(i)
j ,

|W (i)
j | is the dimensionality of W (i)

j after vectorization.
(3) Structural-related quantities. Recent studies indicate
that optimizing a network’s structure also plays an essential
role to achieve efficient compact neural networks [54, 60].
Therefore, it is also necessary to include the following
structural-related features for characterizing each filter.

• Number of filters in the layer to which a filter belongs,
in the original CNN to be pruned. s5 = {#W

(i)
j },

where #W
(i)
j denotes the number of filters in W(i),

i.e., #W
(i)
j = Ni.

• Number of filters in the layer to which a filter belongs,
in the current slimmed CNN. s6 = {#W′(i)

j }.
• Index of the layer to which a filter belongs. s7 =

{ind(W(i)
j )}, where ind(W(i)

j ) is the layer index of

W
(i)
j , i.e., W(i)

j = i.

Filter selection. Since the input state of the neural network
is a 2D tensor, 1D convolutional neural network becomes a
natural choice. We use a 1D CNN fθ parameterized by θ as
the neural network for filter selection and performance es-
timate. fθ takes as input the extracted features st described
above and outputs a probability pt and a scalar value vt, i.e.,
fθ(st) = (pt, vt). pt represents the probabilities of prun-
ing each filter and vt is an estimation of the performance
of the current slimmed network. Because the CNN to be
pruned usually contains thousands of filters, which makes
the search space prohibitively large, we execute an MCTS
search to get an improved policy πt over pt (which will be
introduced in the next sub-section).
Model training. When the slimmed CNN reaches the pre-
defined requirement, we use a simple strategy to evaluate
its performance. Before pruning, we randomly prune filters
from the CNN until the target is reached. We calculate the
training accuracy (with the whole training set, or a subset if
the number of training samples is too large) of the randomly
slimmed CNN and use it as the initial baseline. When a fil-
ter is pruned, we compute and compare the training accu-
racy of the slimmed network with the baseline. If it outper-
forms the baseline, a reward of +1 is given and the base-
line is updated with the new accuracy. Otherwise, a penalty
of −1 is given. Therefore, the outcome v ∈ {−1,+1},
depending on whether a better-slimmed network architec-
ture is found. At the end of each iteration, fθ is trained
with the tuples (st,πt, v). With more training iterations, the
baseline is gradually increased and more efficient slimmed
CNN can be obtained. We use a slightly modified advantage
actor-critic (A2C) approach [75, 61] for the RL training and
the loss function of fθ is defined in Eq. (1).

Lθ = (vt − v)2 − πT
t · log(pt) + c||θ||2, (1)

where c is a weight decay coefficient to prevent fθ from
overfitting.

3.4. MCTS for policy improvement

MCTS establishment. We introduce MCTS as a lookahead
search mechanism to improve the filter pruning policy that
is produced by fθ. The workflow of MCTS execution is
presented in Fig. 3. In an MCTS tree, each node represents
a CNN configuration. Here we use the number of filters
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Figure 3. The workflow of MCTS execution for improving the pruning action selection. In each MCTS execution, the filter that maximizes
the upper confidence bound U(s, a) is selected. When reaching a leaf node, the neural network is used for filter selection instead of a
rollout, and values of Q, N , and v are backpropagated.

in each convolutional layer as a unique representation for a
certain CNN. A directed edge exists from Node ni to nj if
nj is obtained by removing a filter from ni. For each node
in the tree, we maintain the following three quantities.

• Q(s, a). Expected reward for taking action a (pruning
a filter) from state s (the current network architecture),
i.e., the state-action value.

• N(s, a). The number of times that an action a is se-
lected from the state s, i.e., for a certain intermediate
network architecture, how many times a filter has been
chosen to remove during the MCTS.

• P (s, ·). The prior probabilities of pruning each filter
from fθ by taking s as the input.

MCTS execution. Starting with a CNN to be pruned and
an empty tree, the MCTS is iteratively executed by selecting
actions that maximize the upper confidence bound U(s, a),
which is defined in Eq. (2) [77].

U(s, a) = Q(s, a) + cpuct · P (s, a) ·
√∑

b N(s, b)

1 +N(s, a)
, (2)

where cpuct is used for balancing exploration/exploitation.
When a leaf node is reached by continuously expanding

nodes with Eq. (2), instead of performing a rollout, the leaf
node is expanded with the output of the neural network fθ,
which generates both the probabilities p and a value v for
performance estimation. Then for all traversed edges, v is
backpropagated, the Q-value Q(s, a) is updated by Eq. (3),
and the visit count N(s, a) is increased. If we encounter a
terminal state st, we backpropagate the actual reward (+1 if
the slimmed CNN outperforms the baseline, otherwise -1)
rather than v.

Q(s, a)← N(s, a) ·Q(s, a) + v

N(s, a) + 1
. (3)

Therefore, the MCTS execution refers to a search process
from the current node (the network to be pruned) to a leaf

Algorithm 1 The Monte Carlo Tree Search: MCTS(si)
1: Input: Raw configuration of the network to be pruned

s0, current configuration of the network to be pruned si,
neural network for pruning action selection fθ, pruning
ratio γ, trainingAccBaseline b, P (s, ·), cpuct.

2: Output: N(s, a).
3: if FLOPs(si)/FLOPs(s0) < γ then
4: if trainAcc(si) > b then
5: return 1
6: else
7: return -1
8: if s not visited then
9: P (si, ·), v = fθ(si)

10: return v
11: maxU = −∞, bestAction = −1
12: for a in validActions(si) do
13: u = Q(si, a) + cpuct · P (si, a) ·

√∑
b N(si,b)

1+N(si,a)

14: if u > maxU then
15: maxU = u, bestAction = a

16: si+i = pruneFilter(si, bestAction)
17: v = MCTS(si+1)

18: Q(si, a) =
N(si,a)·Q(si,a)+v

N(si,a)+1

19: N(si, a)+ = 1
20: return v

node with the help of the prior probabilities p from fθ. We
summarize the MCTS procedure in Algorithm 1.

After the MCTS search, the improved policy π can be
simply obtained by normalizing the visit count N(s, a) as
shown in Eq. (4). π usually presents a much stronger policy
compared to p and the policy network fθ is trained to output
probabilities that approximate π.

π(a|s) = N(s, a)1/τ∑
b N(s, b)1/τ

, (4)
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Approach Test Acc. ∆ Acc. Remaining FLOPs ∆ FLOPs
NISP [93] NA→ 99.18% - 6.5E5 -71.6%

Min Weight [44] 99.22%→ 98.88% -0.34% 4.3E5 -81.2%
Taylor [64] 99.22→ 99.05% -0.17% 3.9E5 -83.0%
SSL [88] NA→ 99.00% - 2.0E5 -91.3%
GAL [51] 99.20→ 98.99% -0.21% 1.0E5 -95.6%

RL-MCTS 99.22%→ 99.28% +0.06% 1.0E5 -95.6%
Table 1. Results of MNIST. Results of min weight and Taylor expansion are based on our own implementation.

where τ is the temperature coefficient that balances ex-
ploration and exploitation. Once the slimmed architecture
meets the pre-defined requirements, we consider a whole
self-play procedure is finished. Usually, we can empty the
search tree after each self-play and perform the procedure
for multiple times to obtain robust policies.
Reduction of search space. MCTS can significantly nar-
row down the search space compared to oracle pruning and
improve the performance of the slimmed network. How-
ever, since a CNN usually contains thousands of filters,
the search space is still large even with MCTS. In addi-
tion, many filters are commonly considered as important
by various criteria so there is no need for search among
them. Here we introduce two strategies to further reduce
the search space of filter selection to boost the pruning pro-
cess.

The first strategy is mask. We can mask out some impor-
tant filters, which should not be pruned, before the MCTS
execution to prevent MCTS from selecting the masked out
filters. We can do this because [64] has shown that rank-
ing filters in a CNN with first-order Taylor expansion can
achieve a 0.8 Spearman’s correlation [95] with the oracle
ranking (1 means the two ranks are with full positive cor-
relation and -1 implies full negative correlation) on various
architectures. By masking out a certain percent of filters
during the MCTS execution, the search space can be largely
narrowed while only losing limited performance.

The second strategy is segment. We can split a task with
a large pruning rate into several segments. By pruning a
small number of FLOPs each time, fewer filters are pruned
at one time, thus the MCTS search depth can be signifi-
cantly reduced. When the network is not fine-tuned after
each pruning segment, the approach is within the scope of
single-shot pruning. If the network is fine-tuned, it becomes
a progressive pruning approach.

4. Experiments
4.1. Setup

We evaluate our approach with the following experi-
ments: LeNet5 [39] on MNIST [39], VGG-16 [78] and
ResNet-56 [22] on CIFAR-10 [37], and ResNet-50 on
ILSVRC-2012 (ImageNet) [13]. A VGG16 style 1D CNN
with a kernel size of 3 in each convolutional layer is used for
the action selection and performance estimate. We perform

50 MCTS from each state to obtain the improved policy that
prunes a filter from the current network, and 5 self-plays for
each pruning iteration. The weight decay factor c is set to
1e − 4. The scaling factors cpuct and τ that balance the
exploration and exploitation are set to 1 for the sake of sim-
plicity. The MCTS is executed with a root parallelization
scheme. A queue with a maximum length of 5000 is used
to collect the training tuples (s,π, v). The earliest samples
are replaced if the training samples exceed the maximum
queue length. After each pruning iteration, the policy net-
work fθ is trained for 100 epochs with an Adam optimizer
(learning rate 4e−5, batch size 64).

We select 5000 samples from each training set for perfor-
mance evaluation to prevent overfitting. Before pruning, we
randomly prune filters from the CNN until the pre-defined
target is reached. The performance of this slimmed net-
work is used as the initial baseline. In this study, we use the
training accuracy drop as the evaluation criterion. We also
discuss other criteria in the ablation study section. After the
training process, we use the selected samples to evaluate
the performance of the slimmed network. If the slimmed
network outperforms the previous model, the baseline (ac-
curacy) is updated with the new number, and the whole pro-
cess repeats. If the performance cannot be further improved
in 3 continuous iterations, we stop the current training pro-
cess, prune the selected filters, and fine-tune the slimmed
network for 120 epochs, with a learning rate of 0.1, which
is divided by 10 every 30 epochs. If the segment strategy
is used, we fine-tune the slimmed network for 30 epochs
and re-calculate the features of each filter with the whole
training set before entering the next pruning segments. The
pruned filters are also masked out so that they will not be
selected in the following iterations. When the pruning is
done, we fine-tune the remaining network for another 30
epochs with a batch size of 256, starting with a learning
rate of 1e−4, which is divided by 5 at epoch 15.

4.2. Result comparison

LeNet5 on MNIST. We first evaluate our approach with
LeNet5 on the MNIST dataset. In our LeNet5 implemen-
tation, the network contains two convolutional layers, with
20 and 50 filters in each layer. We first train the model from
scratch and achieve a test accuracy of 99.22%. As shown
in Table 1, our approach prunes 95.6% of the total FLOPs,
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Model Approach Test Acc. ∆ Acc. Remaining FLOPs ∆ FLOPs

VGG-16

Min Weight [44] 93.25%→ 93.40% +0.15% 2.06E8 -34.2%
FPGM [26] 93.58%→ 93.54% -0.04% 2.06E8 -34.2%

SSS [33] 93.96%→ 93.02% -0.94% 2.00E8 -39.6%
GAL [51] 93.96%→ 93.42% -0.54% 1.72E8 -45.2%

ABCPruner∗ [50] 93.02%→ 93.08% +0.06% 0.82E8 -73.7%
AOFP∗ [14] 93.38%→ 93.28% -0.10% 0.77E8 -75.3%

RL-MCTS 93.51%→ 93.90% +0.39% 1.71E8 -45.5%
93.51%→ 93.72% +0.21% 0.67E8 -79.9%

ResNet-56

Min Weight [44] 93.53%→ 93.30% -0.23% 7.8E7 -38.6%
NISP [93] 93.53%→ 93.38% -0.15% 7.1E7 -43.8%
GAL [51] 93.50%→ 92.74% -0.76% 6.5E7 -48.5%

AMC∗ [25] - -0.90% 6.3E7 -50.0%
TAS∗ [15] 94.46%→ 93.69% -0.77% 6.0E7 -52.7%
LFPC [23] 93.59%→ 93.24% -0.35% 5.9E7 -52.9%
FPGM [26] 93.68%→ 93.74% +0.06% 5.9E7 -53.2%

ABCPruner∗ [50] 93.26%→ 93.23% -0.03% 5.8E7 -54.1%
RL-MCTS 93.20%→ 93.56% +0.36% 5.7E7 -55.0%

Table 2. Results of VGG and ResNet on CIFAR-10. ∗ indicates automated pruning approach.

Approach Top-1 Acc. Top-5 Acc. ∆ Top-1 Acc. ∆ Top-5 Acc. ∆ FLOPs
SFP [24] 76.15%→ 74.61% 92.87%→ 92.06% -1.54% -0.81% -41.8%

FPGM [26] 76.15%→ 75.50% 92.84%→ 92.63% -0.65% -0.21% -42.2%
GAL [51] 76.15%→ 71.95% 92.87%→ 90.94% -4.20% -1.93% -43.0%
TAS∗ [15] 77.46%→ 76.20% 93.55%→ 93.07% -1.26% -0.48% -43.5%

Slim NN [92] 76.00%→ 74.90% - -1.10% - -43.8%
HRank [49] 76.15%→ 71.95% 92.87%→ 92.33% -1.17% -0.54% -43.8%
Taylor [64] 76.18%→ 74.98% - -1.68% - -44.9%

MetaPrunning∗ [53] 76.01%→ 72.17% - -3.84% - -45.3%
AutoPruner∗ [56] 76.15%→ 74.76% 92.87%→ 92.15% -1.39% -0.72% -51.2%

LFPC [23] 76.15%→ 74.46% 92.87%→ 92.04% -1.69% -0.83% -53.5%
ABCPruner∗ [50] 76.01%→ 73.86% 92.96%→ 91.69% -2.15% -1.27% -54.3%
Random Search 77.34%→ 73.29% 93.27%→ 90.98% -4.05% -2.29% -45.0%

RL-MCTS 77.34%→ 76.80% 93.27%→ 93.00% -0.54% -0.27% -46.1%
77.34%→ 76.46% 93.37%→ 92.83% -0.88% -0.34% -55.0%

Table 3. Results of ResNet-50 on ILSVRC-2012. ∗ indicates automated pruning approach.

which results in an extremely compact network with only 2
and 15 filters remaining in each layer, and the test accuracy
can still increase by 0.06% after fine-tuning. The previous
best performance (NISP [93]) is 99.18%, by pruning 71.6%
FLOPs. By pruning comparable FLOPs, GAL [51] achieves
an accuracy of 98.99%, while ours is 99.28%. These results
validate the improvement with our proposed approach over
the state of the art on MNIST.

VGG and ResNet on CIFAR-10. Table 2 presents the
results of pruning VGG16 and ResNet-56 on CIFAR-10.
For both architectures, we mask 70% of the unimportant fil-
ters with the mask strategy and prune 1% of the total FLOPs
with the segment strategy. Our approach can reduce nearly
80% of the total FLOPs on VGG16 with no performance
loss, which outperforms previous studies with a clear mar-
gin. In particular, AOFP [14], which uses a similar binary
search idea, achieves a test accuracy of 93.28% by pruning

75.3% FLOPs, with 0.1% performance loss. On ResNet-
56, our pruned model achieves a test accuracy of 93.56%,
which is 0.36% higher than the baseline, by removing 55%
FLOPs, which performs better than recent automated prun-
ing approaches (TAS [15] and ABCPruner [50]).

ResNet-50 on ILSVRC-2012. We finally conduct ex-
periments with ResNet50 on the ILSVRC-2012 dataset to
validate the effectiveness of our approach on large-scale
network architecture and datasets. To alleviate computation
cost, we first rank all filters with the Taylor expansion cri-
terion [64] and get an importance score for each filter. We
first prune 30% of the total FLOPs based on the filter im-
portance and mask the least 80% important filters. We split
the whole pruning process into a sequence of segments in
which 0.5% FLOPs are pruned. The results are presented
in Table 3. By pruning 46% FLOPs, the networks’ top-1
and top-5 accuracies only drop by 0.54% and 0.27%. When

2035



0 2 4 6 8 10 12
Training (RL+MCTS) Iteraion

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Tr
a
in
in
g
 a
cc

u
ra
cy

 d
ro
p

99.00

99.05

99.10

99.15

99.20

99.25

99.30

Te
st
 a
cc

u
ra
cy

(a) LeNet5 on MNIST

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Number of MCTS simulations

64

66

68

70

72

74

76

Ac
cu

ra
cy

63.41

69.23
70.22

71.06 71.61
73.16

74.88 75.31 75.71 76.14 76.59 76.62

Training acc. before fine-tune
Test acc. after fine-tune

(b) AlexNet on CIFAR-10

Layer1 Layer2 Layer3 Layer4 Layer5
Conv Layers

0

50

100

150

200

250

300

350

Re
m

ai
ni

ng
 n

um
be

r o
f f

ilt
er

s

54

155

329

205
215

58

155

309

204 207

59

158

300

195 195

62

161

297

187 190

MCTS sims=1
MCTS sims=7
MCTS sims=13
MCTS sims=15

(c) AlexNet on CIFAR-10

Figure 4. Effectiveness with different numbers of training iterations and MCTS executions. (a) With more training iterations, the pruned
network’s training accuracy before fine-tuning and test accuracy after fine-tuning increases. (b) With more MCTS simulations, the perfor-
mance is improved, and (c) more filters in deeper layers are pruned.

Model Acc. drop Acc. change Loss drop Loss change
AlexNet on CIFAR-10 76.62% 76.54% 76.55% 76.40%
VGG-16 on CIFAR-10 93.90% 93.68% 93.82% 93.85%

Table 4. Performance comparison using different evaluation criteria after pruning.

the pruning ratio increases to 55%, the top-1 accuracy of
the slimmed network is 76.46%, which is only 0.88% lower
than the baseline. These results show competitive perfor-
mance compared to existing channel pruning approaches.
To understand the effectiveness of our approach, we also
prune the network with random search, using the same num-
ber of executions as our approach. It turns out that the per-
formance of random search is unsatisfactory, which drops
more than 4% top-1 accuracy when pruning 45% flops.

4.3. Ablation study

Performance over iteration. We first show that the perfor-
mance is improved with more training iterations. We use
the LeNet5 on the MNIST case for illustration. From the
experiment results (Fig. 4(a)) we observe that the drop of
the training accuracy decreases as more iterations are con-
ducted. After fine-tuning the slimmed models, the test ac-
curacy increases to 99.28% after 10 iterations.
Effect on the number of MCTS simulations. To study
the effect of the number of MCTS simulations on the per-
formance, we conduct experiments with different numbers
of MCTS simulations for action selection. To compare the
number of filters in each layer of the slimmed network,
we use AlexNet, which contains five convolutional layers,
on CIFAR-10 as an example. We plot the training ac-
curacy before fine-tuning and the test accuracy after fine-
tuning in Fig. 4(b). Not surprisingly, as more MCTS are
executed each time, better performance can be obtained.
The test accuracy increases significantly as the number of
MCTS simulations grows from 1 to 10. When more than
10 MCTS simulations are executed, the performance im-
provement gets flattened, which indicates that the slimmed
network gets close to the optimum.

We further plot the network architectures searched with

different numbers of MCTS simulations in Fig. 4(c). As
more MCTS are executed, more filters in the deeper layers
are pruned. This finding indicates that these filters play less
essential roles compared to those in the shallower layers,
which is consistent with the observations in several other
studies [44, 64, 85].

Effect on the model evaluation criteria. We also inves-
tigate whether different criteria for evaluating the slimmed
model after each training iteration have any influence on the
performance. We use the following four criteria for compar-
ison: (1) accuracy drop, (2) accuracy change, i.e., the abso-
lute value of (1), (3) loss drop, and (4) loss change, i.e., the
absolute value of (3). From the results shown in Table 4 we
observe that using training accuracy as the criteria performs
slightly better than using loss. However, the performance
of the slimmed networks with different criteria is generally
similar, which implies that our approach is not sensitive to
these commonly used evaluation criteria.

5. Conclusion

We proposed a pruning approach based on reinforcement
learning, incorporated with a lookahead search mechanism
via MCTS. A neural network that takes a sequence of filter-
related features as the input is trained with RL to output the
probabilities of pruning each filter in a CNN. An MCTS is
executed for each pruning action to increase the sample ef-
ficiency in the RL training. We implemented our approach
with various benchmark networks and experiments showed
the effectiveness of our approach. We will focus on improv-
ing the mask and the evaluation strategies to further increase
the performance and investigate the potential usage of this
approach in the zero-shot pruning manner in the future.
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