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Abstract

Images are transmitted or stored in their compressed
form and most of the AI tasks are performed from the re-
constructed domain. Convolutional neural network (CNN)-
based image compression and reconstruction is growing
rapidly and it achieves or surpasses the state-of-the-art
heuristic image compression methods, such as JPEG or
BPG. A major limitation of the application of the CNN-
based image compression is on the computation complexity
during compression and reconstruction. Therefore, learn-
ing from the compressed domain is desirable to avoid the
computation and latency caused by reconstruction. In this
paper, we show that learning from the compressed domain
can achieve comparative or even better accuracy than from
the reconstructed domain. At a high compression rate of
0.098 bpp, for example, the proposed compression-learning
system has over 3% absolute accuracy boost over the
traditional compression-reconstruction-learning flow. The
improvement is achieved by optimizing the compression-
learning system targeting original-sized instead of stan-
dardized (e.g., 224x224) images, which is crucial in prac-
tice since real-world images into the system have different
sizes. We also propose an efficient model-free entropy es-
timation method and a criterion to learn from a selected
subset of features in the compressed domain to further re-
duce the transmission and computation cost without accu-
racy degradation.

1. Introduction

Convolutional neural networks (CNNs) have revolutionized
many visual-based understanding tasks, such as image clas-
sification [28, 31], object detection [12] and semantic seg-
mentation [16]. Recently, the applications of CNNs are ex-
tended to non-visual understanding tasks, in particular, to
the image compression task. That is, transforming an im-
age from the color space domain (e.g., RGB domain) to a

compressed representation. The purpose of image compres-
sion is to remove intrinsic redundancy in the image and thus
be able to use much smaller number of bits to represent it,
which is beneficial both in transmission and in data storage.
Therefore, almost all images exist in the compressed do-
main. CNN-based compression methods [3, 6, 25, 5, 20, 24]
have achieved promising performance and can compete
with or even outperform the traditional heuristic methods
such as JPEG [29], JPEG2000 [23], and BPG [4]. To per-
form computer vision (CV) tasks from the compressed do-
main, the compressed representation (a sequence of com-
pressed features in Fig. 1) is reconstructed to RGB images
first and then normalized to a matched size to be fed into
CNNs for the CV tasks (see Fig. 1(a)). However, both of
the CNN-based compression and reconstruction networks
are computationally intensive because they are performed
over original images of high resolutions. For example, a
state-of-the-art four-layer CNN-based reconstruction net-
work [6] requires over 900 GFLOPS to reconstruct a 1080p
(1920×1080 pixels) image while a ResNet-50 [14] can per-
form an inference from the reconstructed and standardized
image (224× 224) with only 4 GFLOPS. Therefore, learn-
ing from the compressed domain without image reconstruc-
tion is crucial in reducing the computation complexity and
the latency of the CV system.

Several works [8, 11, 32] were proposed to learn from the
traditional discrete cosine transform (DCT) domain which
is used in JPEG compression. In this work, we would like
to explore the compressed domain defined by CNN-based
compression networks. It is shown in [27] that learning
from the compressed domain is feasible but the accuracy
from the compressed domain drops significantly. Another
limitation of existing works is that input size to the compres-
sion network is fixed, e.g., 224 × 224, during both training
and inference. The real-world images to be compressed,
however, are usually with variable resolutions. For exam-
ple, the image height and width in ImageNet [9] valida-
tion dataset range from fifties to thousands. The lack of
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(a) Learning from the reconstructed domain.

(b) Learning from the compressed domain.

Figure 1. Comparison of the conventional system (a) and the proposed system (b).

optimization for variable-size images results in inferior ac-
curacy and thus limits the application of learning from the
compressed domain.

Motivated by reducing computations of a practical sys-
tem for image compression, reconstruction, and learning,
we present an end-to-end solution. It consists of a compres-
sion network that accepts the original-size input image and
convert it into the compressed domain, a reconstruction net-
work that outputs a decompressed image of its original size,
and learning networks that read variable-size compressed
features directly from the compressed domain. Fig. 1 shows
such an exemplar system. Instead of reconstructing images
of different sizes and then spatially resizing them into the
standard size for learning (see Fig. 1(a)), we manage to
learn directly from the compressed-domain features of dif-
ferent sizes (see Fig. 1(b)). Note that in both cases, the size
of the compressed features depends on the size of the input
images, which can vary in a large dynamic range.

The development of CNN architectures and their soft-
ware implementations enable the input to a CNN to be flex-
ible. For example, ResNet [14] and MobileNetV2 [21]
use the adaptive average pooling layer to convert a fea-
ture map of any size into one single number for the last
output layer. Thus they can algorithmically classify im-
ages of any size. However, conventionally trained CNNs
have inferior accuracy when the input image is not nor-
malized to the matched size. For example, the accuracy
of a ResNet-50 trained with input size 224 × 224 drops
from 75.7% to 72% when the original-size images (from
ImageNet validation dataset) are fed into it. The accuracy
degradation is mainly due to the inconsistency between the
fixed-size training and variable-size inference. In order to
solve this, we train the compression-learning system ac-
cepting variable-size images and observe significant accu-
racy improvement, which is comparative or even better than
from the reconstructed domain.

In addition to optimizing the learning network, we
also propose a method to simplify the training of the
compression-reconstruction networks. One of the chal-
lenges in training them is on minimizing the loss function
that is called rate-distortion optimization (RDO). Existing
works [3, 6] utilized sophisticated neural networks models
to estimate the entropy in RDO and it needs extra efforts
to train. Observing that compressed feature maps usually
approximate Gaussian distributions, we propose to directly
use differential entropy [7] as an approximation. Due to
its close form, the differential entropy is differentiable with
respect to the weights and allows the gradient of the loss
function to be flowed back into the compression network
during training.

Observing that features in the compressed domain ex-
hibit large variation in the amount of information they con-
tain, we propose to learn only from a selected subset of
compressed features to further reduce the transmission and
computation cost. We have shown that using only one
eighth or less number of the original compressed features,
we can still maintain or even improve the learning accuracy.

We summarize our contributions as follows.

• We show that learning directly from the compressed
domain can achieve comparative or even better im-
age classification accuracy than from the reconstructed
RGB domain while avoiding large amount of computa-
tion in the reconstruction network. Experiments show
that this improvement (over reconstruction) is more
than 1% and 2% for modest and large compression ra-
tio, respectively. As far as we know, our work is the
first clear demonstration of superior accuracy of learn-
ing from CNN-based domain over the reconstructed
domain.

• We introduce a model-free method to estimate the dis-
crete entropy of the compressed features such that this
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estimation is differentiable with respect to the weights
in the compression network, which can be trained more
efficiently than using complicated entropy estimation
networks [3, 6]. The correlation between the proposed
estimation and the true entropy is close to 99%.

• We propose a criterion to learn from a selected subset
of compressed features instead of all features to further
reduce the transmission and computation cost. The re-
sultant accuracy with 12.5% features is similar to or
even better than learning from all features.

• Compared to the state-of-the-art results in [27], our
proposed compression-reconstruction/learning system
with a fixed-size input (224 × 224) improves (PSNR,
accuracy) by (3.31 dB, 6.83%) for image classifica-
tion and (3.31 dB, 4.74%) for semantic segmentation,
respectively, where our proposed compression system
has almost the same set of bpps as [27].

2. Related Work
CNN-based compression. In recent years, a number of

CNN-based image compression networks have been pro-
posed. [25, 26] used RNN-based network to compress im-
ages with variable bit-rate. [17] improved the performance
by a better initial hidden state and [3, 6] outperformed ex-
isting methods by using shallow networks, Generative ad-
versarial network (GAN) [13] has also been exploited. The
discriminator usually works as the quality metric to distin-
guish reconstructed and original images [22], and a gener-
ator is often used as a decoder to recover images from the
compressed domain [1].

In [30], segmentation maps were used to direct bit al-
location, as the region of interest (ROI) denoting by these
maps usually attracts more human visual attention than the
background. [19] proposed an importance map instead of
using the segmentation map. Following the similar idea, [2]
treated the segmentation maps as extra channels and the re-
construction network can thus have more information for
better reconstruction quality. Our work differentiates from
all mentioned works in that we also perform learning tasks
(e.g., classification, segmentation) from the compressed do-
main while they only do image reconstruction. Also, the
saliency map can also used as the criteria for bit alloca-
tion [20].

Learning from the compressed domain. Several works
perform learning tasks in the frequency domain. JPEG, the
most widely-used compression format, uses DCT to convert
the RGB domain into the frequency domain. [11, 32] took
the DCT coefficients as the input to CNNs for image clas-
sification, object detection and instance segmentation. Our
method differs from these works in that the compression is
accomplished by a CNN-based network, instead of a DCT
transformation.

The most related work to ours is [27], which also used
the compressed features derived from CNN-based compres-
sion network. Our work differs from [27] in several ways.
Most importantly, the input size to the compression network
in [27] is fixed (i.e., 224) while our compression-learning
system is optimized and aims to accept the original-size im-
age. This differentiation is critical as a) real-world images
to be compressed are in various sizes; b) it provides large
accuracy improvement, e.g., the classification accuracy of
ImageNet validation set is improve from 55.18% to 70.37%
at 0.098 bpp. Other works (e.g., [15]) will sacrifice 8% to
18% accuracy (at a modest compression ratio) and thus not
feasible to real-world applications.

3. Method

3.1. Problem Statement

A complete image analysis system consists of modules
for image capture, image compression, image reconstruc-
tion, and image learning. Throughout the paper, we denote
the originally captured image by x ∈ X where X is the
RGB domain. The image compression module is a function
z = CompNet(x) that transforms the image in X to the
compressed domain Z . z is then entropy encoded for trans-
mission or storage. The image reconstruction module is a
function x̂ = RecNet(z) that transforms the compressed
representation z ∈ Z to the reconstructed image x̂ in the re-
constructed RGB domain X̂ . In this paper, CompNet(x)
is composed of a CNN-based compression network and a
quantizer, and RecNet(z) is a CNN-based reconstruction
network. CompNet(x) and RecNet(z) are jointly trained
to minimize the difference between x and x̂ and to minimize
the number of bits to represent z. The reconstructed im-
age is meant to be presented for human to understand. The
image learning module is a function LearnNet() that out-
puts the desired learning result for the original image x. Al-
most all conventional machine learning tasks are performed
from the RGB domain, which means the input domain of
LearnNet(x̂) has to be the reconstructed domain X̂ and
thus the image reconstruction is required before learning.
However, most automatic systems do not aim for human
to understand, but for machine to learn. In this paper, we
define LearnNet(z) over Z such that the learning accu-
racy of LearnNet(z) is as good as LearnNet(x̂). This
converts the reconstruction task and the learning task from
sequential to parallel, effectively removing the latency in
performing RecNet(z). Another potential benefit of learn-
ing directly from the compressed domain is that we can
avoid information loss in RecNet(z) as reconstruction and
learning might have different need in processing informa-
tion from z.

As presented, the system in this paper is a multi-task sys-
tem where compressed features can be reconstructed for hu-
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man to see and be learned for machine to understand. For
this purpose, the input x to this system is a real-world im-
age with various resolutions. For example, the height/width
of images in the ImageNet validation set ranges from 55
to 5005 pixels. Since CompNet(x) is an all-CNN net-
work that downsamples x by a fixed scaling factor, the com-
pressed feature z has various resolutions as well. We ob-
serve that resizing compressed features to a fixed size in
the compressed domain catastrophically hurts the learning
accuracy. Consequently, LearnNet(z) should be able to
accept variable-size input z without hurting the learning ac-
curacy. This is fundamentally different from learning after
reconstruction because the reconstructed image can be spa-
tially re-scaled to a proper size for CNNs. For example,
224 × 224 has become a standard input size for classifica-
tion networks on ImageNet dataset.

3.2. Network Architectures

In this section, we present the detailed network archi-
tecture for the proposed compression network, reconstruc-
tion network, and learning networks. We will explore two
typical learning tasks, namely, image classification and se-
mantic segmentation, and we will denote the corresponding
LearnNet(z) by ClsNet(z) and SegNet(z), respectively.

Compression network and reconstruction network.
We use the state-of-the-art compression/reconstruction net-
work in [6] as CompNet(x) and RecNet(z). The only
difference is that we do not have their entropy estimation
model since we propose a model-free estimation method
(see Section 3.3).

Learning networks LearnNet(z). We manage to
apply network structures similar to ResNet-50 and Mo-
bileNetV2 since they contain some useful and thus widely-
used building blocks such as residual blocks and depth-wise
separable convolutions. Assume the original image x has
dimensions w × h × 3 in the RGB domain, then the com-
pressed features have dimensions w/16× h/16×C where
C is the number of channels in the compressed features.
Since it has smaller w and h but larger C than the RGB do-
main image, we skip the input layer (stride-2 convolution
and max-pooling if existed) of a conventional CNN archi-
tecture, e.g., ResNet-50 or MobileNetV2. We adjust the
number of channels in the residual block to match the num-
ber of compressed channels C such that existing CNN ar-
chitectures can accept the compressed-domain features as
input.

The widely-used and -accepted datasets such as Im-
ageNet and PASCAL VOC 2012 [10] contain images
with much smaller resolutions than the real-world images.
Therefore, the resolution of compressed features is usually
very small. For example, images of width less than 300 are
quite common in ImageNet and they have width less than
18 in the compressed domain, which is too small for exist-

Table 1. Learning network architectures.

(a) ResNet-41 as the learning network

layer name input size #block, stride

up-scale w
16

× h
16

stride 0.5

conv3 x w
8
× h

8
×4, stride 1

conv4 x w
8
× h

8
×6, stride 2

conv5 x w
16

× h
16

×3, stride 2
avg pool w

32
× h

32
-

conv2d 1× 1 -

(b) MobileNetV2-45 as the learning network

operator input size t c n s

up-scale w
16

× h
16

- 320 1 0.5
bottleneck w

8
× h

8
6 32 3 1

bottleneck w
8
× h

8
6 64 4 2

bottleneck w
16

× h
16

6 96 3 1
bottleneck w

16
× h

16
6 96 3 1

bottleneck w
32

× h
32

6 320 1 1
conv2d, 1× 1 w

32
× h

32
- 1280 1 1

avg pool, 7× 7 w
32

× h
32

- - 1 -
conv2d, 1× 1 1× 1 - 1000 1 1

ing deep CNNs to make an inference. In order to perform
learning tasks on compressed features for these dataset, we
propose to use a deconvolutional layer and a pixel shuffle
layer to upscale the image by two and then followed by a
1 × 1 convolutional layer to adjust the number of channels
to match the existing ResNet-50 or MobileNetV2 architec-
ture. For the same reason, we skip the first residual block
of the ResNet-50 or the first two inverted residual blocks
of the MobileNetV2 to reduce the number of downsizing
operations in the CNNs. It also helps to reduce the com-
putations (GFLOPS) during inference. We call the corre-
sponding learning networks ResNet-41 and MobileNetV2-
45 to indicate their number of layers. The ResNet-41 is also
served as the backbone for the segmentation networks. The
detailed learning network architecture is shown in Table 1
and we use the same notations as they are in [14, 21].

It should be noted that for real-world images with higher
resolution, the upscaling layers can be omitted and the com-
plete set of residual blocks can be used for inference from
the compressed domain.

3.3. Loss Function

The loss function of the proposed multi-task system can
be decomposed into several parts as follows,

L([θcomp, θres, θcls, θseg, . . . ]) = LCompNet

+ β1LRecNet + β2LClsNet + β3LSegNet + · · ·
(1)

where θcomp, θres, θcls, θseg, . . . are sets of trainable
weights for the compression network CompNet(x), recon-
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Figure 2. Correlation of the discrete entropy and log σ2 of the
compressed features.

struction network RecNet(z) and the learning networks
such as ClsNet(z) or SegNet(z). And β1, β2, β3 ∈ [0, 1]
are coefficient of each component. Define LRecNet as the
mean-squared-error (MSE) between x and x̂, i.e.,

LRecNet = ∥x− x̂∥2 = ∥x−RecNet(CompNet(x))∥2 .

Define LClsNet and LSegNet as the conventional loss of the
learning tasks from the RGB domain, e.g., cross-entropy
for classification and pixel-wise cross-entropy for segmen-
tation. These losses are all differentiable with respect
to the weights. On the other hand, LCompNet contains
trainable weights θcomp and it is usually estimated by the
discrete entropy of the compressed features z. Theoret-
ically, the entropy H of a discrete random variable z is
defined as LCompNet ≈ H(z) = E[− log2 P (z)] =∑

z −P (z) log2 P (z), where P (z) is the discrete probabil-
ity of z. Obviously H(z) is not differentiable with respect
to z, and thus not differentiable to θcomp. It was proposed
in [3, 6] to use a neural network to estimate H(z) from z,
which brings more complexity during the training.

We propose an efficient yet effective method to avoid
adding more weights into the training procedure. It is ob-
served that values in the compressed features usually follow
a Gaussian-like distribution and we can use a continuous
Gaussian distribution to estimate the entropy of its quan-
tized values. For a continuous Gaussian random variable
Z ∼ N (µ, σ2), the differential entropy h(Z) can be ex-
pressed in a closed form

h(Z) =
1

2
log 2πeσ2 =

1

2
log 2πe+

1

2
log σ2.

According to [7][Theorem 8.3.1], the differential entropy
h(Z) and its discrete entropy (after quantization) H(z) sat-
isfies

H(z) + log∆ → h(Z), as ∆ → 0,

where ∆ is the quantization step. Since ∆ and the term
1
2 log 2πe are both constant values in this paper, we can ap-
proximate the loss function of the compression network by

LCompNet ≈ log σ2,

where σ2 is the variance of the values in the compressed
features z = (z1, . . . , zN ) and N is the number of elements
in z. It can be expressed as σ2 = 1

N

∑
(zi − µz)

2. There-
fore, LCompNet is differentiable with respect to θcomp in
our method. Intuitively, the number of bits needed to repre-
sent a random variable should be positively correlated with
the variance of the random variable. To justify the approxi-
mation quantitatively, Fig. 2 shows the correlation between
the true discrete entropy and the approximation by log σ2

for the compressed features in Kodak dataset [18]. It is ob-
served that their linear correlation is close to 99%.

3.4. Training and inferencing the compression, re-
construction, and learning networks

3.4.1 Training flow

In this paper, we first train the compression network
CompNet(x) and the reconstruction network RecNet(z)
together by setting β2, β3, . . . to be zeros. By adjusting
β1, we can obtain different rate-distortion tradeoffs. To be
more specific, the training images are randomly resized and
cropped to 256 × 256 to train θcomp in CompNet(x) and
θres in RecNet(z). θcomp is then fixed during the training
of the learning networks LearnNet(z). We did not jointly
optimize CompNet(x) and LearnNet(z) for two reasons.
First, image compression and reconstruction is the basic
task and CompNet(x) is preferred not to be changed each
time a task (e.g., classification or segmentation) is added.
Second, joint training will possibly affect the reconstruc-
tion quality and thus it is not a fair comparison even if the
learning accuracy from the compressed domain is as good
as that from the reconstructed domain.

3.4.2 Inferencing the original image without resizing

As mentioned in Section 3.1, the proposed multi-task sys-
tem is required to accept images for different sizes. For an
image x of dimension w × h × 3, the reconstructed image
x̂ is obtained by

x̂ = RecNet(CompNet(x)),

and the learning result (e.g., the classification label of the
original image x) is obtained by

result = LearnNet(CompNet(x)).

Some widely-used CNN architectures such as ResNet-
50 and MobileNetV2 support input with variable w and h
to pass through all the convolutional layers and use an adap-
tive average pooling layer to standardize the size of feature
maps. Therefore, it is technically legitimate to inference an
original image in the proposed compression-learning net-
work without any modification. However, the learning ac-
curacy drops significantly as the CNNs are conventionally
trained with a fixed input size.
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3.4.3 Training the compression-learning network with
variable-size input

In order to improve the accuracy of the learning network
with variable-size inputs, we propose a training method to
improve the robustness of LearnNet(z) against variable-
size z. Ideally, it is better to resize each image to differ-
ent sizes during training to maximally improve the robust-
ness. However, current training framework restricts tensors
in one mini-batch to be the same shape. Therefore, we make
a tradeoff by randomly resizing the input images to differ-
ent sizes across mini-batches and keeping them the same
size within a mini-batch. In this paper, we resize and crop
the training images to a random size between 224 and 448.
These two numbers are chosen empirically due to the ob-
servation that most of the image sizes in ImageNet are lo-
cated inside this interval. This method can be generalized
to larger image dataset (if exists) by randomly resizing them
to a larger range.

3.4.4 Learning from a subset of compressed feature
maps

Observing that all 256 feature maps in the compressed do-
main exhibit large variations in the amount of information
they carry, we propose to learn from a subset of the com-
pressed domain where feature maps with richest informa-
tion are selected for the learning tasks. We define the cri-
terion of the information richness to be the variance of the
all signals in each feature map, since it is closely related to
the entropy of a feature map (see Section 3.3). In practice,
we calculate the average variance of 256 feature maps in
the ImageNet training set and select 32 and 16 static fea-
ture maps to separately train two learning networks, respec-
tively.

4. Experimental results
4.1. Experiment settings

We evaluate the compression-reconstruction/learning
networks on some widely used image datasets. First,
CompNet(x) and RecNet(z) are trained and validated on
ImageNet. Then CompNet(x) is fixed while ClsNet(z)
is trained and validated on ImageNet and SegNet(z) is
trained and validated on PASCAL VOC 2012.

Hyper-parameter tuning. Four pairs of
(CompNet(x), RecNet(z)) are trained by setting
β1 = (20, 50, 100, 200). We use Adam with initial learning
rate 0.0001. The corresponding entropy of the compression
networks are (0.098, 0.30, 0.49, 0.72) bpp for ImageNet
validation set.

Evaluation. We evaluate ClsNet(z) by top-1 and top-5
accuracy, evaluate SegNet(z) by pixel-wise mean intersec-
tion over union (mIoU), evaluate CompNet(x) by bpp, and

Table 2. Classification accuracy comparison between learning
from the compressed domain and from the reconstructed domain.

bpp Method ResNet MobileNetV2

0.72
Learn-after-recon. 74.59 70.36

Learn-from-recon.(Ours) 74.08 70.44

0.49
Learn-after-recon. 73.93 69.86

Learn-from-recon.(Ours) 73.42 70.08

0.30
Learn-after-recon. 72.76 68.24

Learn-from-recon.(Ours) 73.32 69.41

0.098
Learn-after-recon. 67.08 62.46

Learn-from-recon.(Ours) 70.37 64.81

evaluate RecNet(z) by image quality metric (PSNR).

4.2. Learning from the compressed domain for
original-size images

Table 2 shows the comparison of classification accu-
racy of ImageNet between the proposed method (learning
from the compressed domain) and the conventional method
where a standard ResNet-50 and MobileNetV2 is applied
on the reconstructed the image. The input to the proposed
compression-learning network is the original-size image in
the ImageNet validation set, making it a practical system
to learn from the compressed domain. As a comparison,
the conventional method reconstructs the image and then
resizes it to the standard input size (224×224) to a ResNet-
50 or a MobileNetV2.

As stated in Section 3.2, our ClsNet(z) is a ResNet-
41 (a subnet of ResNet-50) and MobileNetV2-45 (a sub-
net of MobileNetV2). We can see from Table 2 that for
low compression ratio (e.g., bpp=0.72 or 0.49), the pro-
posed methods can be comparative with the top-1 accuracy
of a conventional learn-after-reconstruction method (on av-
erage, -0.51% using the ResNet backbone and +0.13% us-
ing the MobileNetV2 backbone). On the other hand, for the
very high compression ratio (e.g., bpp=0.098), the proposed
methods outperform the top-1 accuracy of the conventional
methods by +3.29% using a ResNet backbone and +2.35%
using a MobileNetV2 backbone, respectively. Note that the
proposed methods achieve competitive accuracy and avoid
large amount of computation during reconstruction.

4.3. Training with variable-size input

In order to show the advantage of training with variable-
size input, we compare the results of the variable-size train-
ing with the fixed-size training in Table 3. The fixed size
is chosen to be 224 and 448, respectively, corresponding to
the minimum and maximum size for the variable-size input
training. Table 3 shows the validation accuracy of ImageNet
when the images are fed into the compression-learning net-
work with their original size. For LearnNet(z) being a
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Table 3. Classification accuracy comparison between fixed-size in-
put training and variable-size input training. All experiments are
performed with the original-size images in ImageNet.

bpp Train Input Size ResNet-41 MobileNetV2-45

0.72
fixed-224 70.23 68.90
fixed-448 71.52 69.86

variable(Ours) 74.08 70.44

0.49
fixed-224 69.81 65.04
fixed-448 70.26 66.90

variable(Ours) 73.42 70.08

0.30
fixed-224 68.73 64.33
fixed-448 69.04 65.0

variable(Ours) 73.32 69.41

0.098
fixed-224 66.15 59.30
fixed-448 66.90 60.74

variable(Ours) 70.37 64.81

avg.
Ours over fixed-224 4.07 4.29
Ours over fixed-448 3.36 3.06

ResNet-41, we observe that variable-size input training im-
proves the top-1 accuracy by 4.07% over training with a
fixed size 224 and by 3.36% over training with a fixed size
448, respectively. The improvement is averaged over four
bpps. Similar top-1 accuracy improvement of 4.29% and
3.06% are respectively observed for LearnNet(z) being a
MobileNetV2-45.

Comparing the fixed-224 and fixed-448 from Table 3, it
is observed that fixing the input size to be 448 is slightly
more robust to the variable-size input inference. Also note
that the complexity of the variable-size training lies between
the fixed-224 and fixed-448 training while achieving much
better accuracy.

4.4. Learning from a subset of compressed feature
map

Since variance of a signal usually represents the amount
of information it carry, we statically select 32 and 16 fea-
ture maps (out of 256 of the compression network intro-
duced in Section 3.2) with largest variance and train two
separate ResNet-41 as the learning networks. Note that the
number of input channels to the ResNet-41 is adjusted to
32 and 16, respectively. Table 4 shows the classification ac-
curacy of the ImageNet validation set by learning from the
subset of the features. Compared with learning with all 256
feature maps, it is observed that we can almost maintain ac-
curacy by using only 1/8 of the feature maps. This shows
that the computation and transmission may be further re-
duced. At high compression ratio (e.g., 0.098 bpp), learn-
ing from a subset of features may even outperform learning
from all features. The reason might be that those features
with low variance have contributing signals to the recon-

Table 4. Classification accuracy of statically selected subsets of
compressed features.

bpp # features Top 1(%) Top 5(%)

0.72
256 74.08 91.67
32 73.87 91.93
16 71.84 90.47

0.49
256 73.42 91.51
32 73.44 91.45
16 70.66 89.60

0.30
256 73.32 91.23
32 72.81 90.70
16 71.02 89.76

0.098
256 70.37 89.49
32 72.93 91.0
16 71.74 90.38

Table 5. Accuracy comparison between ours and cResNet-
39/51 [27] on different compression ratios, using a ResNet archi-
tecture.

Network bpp Top 1(%) Top 5(%) mIoU(%)

cResNet-39
0.64 67.17 87.47 61.85
0.33 64.14 85.46 60.78
0.098 54.31 77.65 53.51

cResNet-51
0.64 67.68 87.85 62.86
0.33 64.78 85.87 61.12
0.098 55.18 78.20 54.62

ResNet-41
(Ours)

0.72 71.71 90.53 68.44
0.49 71.12 89.93 65.44
0.30 69.29 88.55 64.50
0.098 67.72 87.88 62.87

Table 6. Accuracy comparison between ours and [27] on different
compression ratios, using a MobilenetV2 architecture.

Network bpp Top 1(%) Top 5(%)

MobileNet-45
(Ours)

0.72 69.05 91.74
0.49 67.42 88.46
0.30 65.08 86.68

0.098 59.91 82.90

struction task, but they are noise to the learning task.

4.5. Comparison with the existing work

[27] is the state-of-the-art work we are aware of to
learn from a CNN-based compressed domain but it only
provides compression-reconstruction/learning network with
fixed-size input. In this section, we compare our results
to [27]. For a fair comparison, we follow the setting
in [27], using the fixed input size with spatial resolution
224× 224 for classification on ImageNet and the fixed size
of 320× 320 for semantic segmentation on PASCAL VOC
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Figure 3. Comparison of reconstructed image quality, ImageNet
validation set.

2012. Reconstruction quality is also measured on the Ima-
geNet validation set (as in [27]).

Table 5 compares the (bpp, accuracy) of the clas-
sification and segmentation tasks between our proposed
compression-learning networks and [27]. Compared to
(0.64, 0.33, 0.098) bpps in [27], the compression efficiency
of our system is slightly better with (0.49, 0.30, 0.098)
bpps. The top-1 classification accuracy is increased from
(67.68%, 64.78%, 55.18%) to (71.12%, 69.29%, 67.72%)
and the mIoU is increased from (62.86%, 61.12%, 54.62%)
to (65.44%, 64.50%, 62.87%). The average accuracy im-
provement is 6.83% for the image classification and 4.74%
for the semantic segmentation. Note that our ResNet-41 is
shallower than the ResNet-51 in [27]. Table 6 shows the ac-
curacy of classifications from the compressed domain with
a MobileNetV2-45. It can be seen that the accuracy is still
improved over [27] by the much simpler MobileNet archi-
tecture.

Fig. 3 compares the bpps and reconstruction quality.
With the same slightly reduced bpps, the average improve-
ments of PSNR over [27] is 3.31 dB. It is also observed
that our proposed compression-reconstruction network uni-
formly outperforms JPEG and JPEG2000.

4.6. Learning from the compressed domain for large
images

In order to demonstrate the proposed methods on larger
images in the real-world, we train a ResNet-49 (a ResNet-
50 with the first stride-2 convolutional and max pooling lay-
ers removed) as the learning network with either 1) fixed-
size input (896) and 2) variable-size input (randomly cho-
sen between [672, 1120]). Table 7 shows that the proposed
system is capable of learning compressed features of large
images and outperforms the fixed-size training by 3.23%.
This argument can be fully justified when a high resolution
(e.g., over 1080p) image dataset is available in the future.

Table 7. Classification accuracy of fixed-size input training and
variable-size input training. Validated on the 3× up-scaled images
in the ImageNet validation set.

bpp Train Input Size Top 1(%) Top 5(%)

0.49
fixed-896 75.28 92.25

Ours-variable 76.26 93.04

0.30
fixed-896 75.47 92.69

Ours-variable 76.37 93.31

0.098
fixed-896 75.33 92.80

Ours-variable 76.26 93.18

5. Conclusion

In this work, we propose an end-to-end system of learn-
ing from the compressed domain. Since the compres-
sion network requires variable-size input images, the corre-
sponding compression-learning system has to accept them
as well. We introduce a training method that resizes the
training samples into different sizes across mini-batches
and significantly improves the validation accuracy when the
real-world images with a variety of sizes are fed into the
compression-learning system. We also present a model-free
entropy estimation method by Gaussian approximation. Ex-
periments show that the proposed method (learning from
the compressed domain) has competitive or even superior
accuracy to learning from the reconstructed images, while
it avoids huge amount of computation complexity during re-
construction. We also observe that the proposed system has
simultaneously improved the compression ratio (bpp), re-
construction quality (PSNR), and learning accuracy of im-
age classification and segmentation over the state-of-the-art
results.
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