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Abstract

We propose a new approach for paragraph recognition in
document images by spatial graph convolutional networks
(GCN) applied on OCR text boxes. Two steps, namely line
splitting and line clustering, are performed to extract para-
graphs from the lines in OCR results. Each step uses a β-
skeleton graph constructed from bounding boxes, where the
graph edges provide efficient support for graph convolution
operations. With pure layout input features, the GCN model
size is 3∼4 orders of magnitude smaller compared to R-
CNN based models, while achieving comparable or better
accuracies on PubLayNet and other datasets. Furthermore,
the GCN models show good generalization from synthetic
training data to real-world images, and good adaptivity for
variable document styles.

1. Introduction
Document image understanding is a task to recognize,

structure, and understand the contents of document images,
and is a key technology to digitally process and consume
such images, which are ubiquitous and can be found in nu-
merous applications. Document image understanding en-
ables the conversion of such documents into a digital for-
mat with rich structure and semantic information and makes
them available for subsequent information tasks.

A document can be represented by its semantic structure
and physical structure [13]. The task to recover the seman-
tic structure is called logical layout analysis [5] or semantic
structure extraction [35] while the task to recover the phys-
ical structure is called geometric (physical, or structural)
layout analysis [5]. These tasks are critical subproblems
of document image understanding.

A paragraph is a semantic unit of writing consisting of
one or more sentences that usually develops one main idea.
Paragraphs are basic constituents of semantic structure and
thus paragraph boundary estimation is an important build-
ing block of logical layout analysis. Moreover, paragraphs
are often appropriate as processing units for various down-
stream tasks such as translation and information extraction

Figure 1. Examples of paragraphs in printed text. Paragraphs may
have complex shapes when wrapped around figures or other types
of document entities.

because they are self-contained and have rich semantic in-
formation. Therefore, developing a generic paragraph esti-
mation algorithm is of great interest by itself.

Paragraphs are usually rendered in a geometric layout
structure according to broadly accepted typographical rules.
In this work, we exclude semantic paragraphs that can span
over multiple text columns or pages, and only consider
physical/geometrical paragraphs. There are usually clear
visual cues to identify such paragraphs, but the task of esti-
mating paragraphs is non-trivial as shown in Fig. 1.

Previous studies have attempted to develop a paragraph
estimation method by defining handcrafted rules based on
careful observations [23, 29, 4, 28] or by learning an object
detection model to identify the regions of paragraphs from
an image [35, 38]. For the former approaches, it is usu-
ally challenging to define a robust set of heuristics even for
a limited domain, and hence machine-learning-based solu-
tions are generally preferable. The latter approaches tend
to have difficulty dealing with diverse aspect ratios and text
shapes, and the wide range of degradations observed in real-
world applications such as image skews and perspective dis-
tortions.

In this paper, we propose to apply graph convolutional
networks (GCNs) in a post-processing step of an optical

493



character recognition (OCR) system for paragraph recogni-
tion. Recent advancements in graph neural (convolutional)
networks [26, 34] have enabled deep learning on non-
Euclidian data. GCNs can learn spatial relationships among
entities combining information from multiple sources and
provide a natural way to learn the non-linear mapping from
OCR results to paragraphs.

More specifically, we design two classifiers based on
GCNs — one for line splitting and one for line clustering.
A word graph is constructed for the first stage and a line
graph for the second stage. Both are constructed based on
the β-skeleton algorithm [15] that produces a graph with
good connectivity and sparsity.

To fully utilize the models’ capability, it is desirable to
have a diverse set of document styles in the training data.
We create synthetic data sets from web pages where the
page styles are randomly modified in the web scraping en-
gine. By leveraging open web sites like Wikipedia [1] for
source material to render in randomized styles, we have ac-
cess to practically unlimited document data.

We evaluate the 2-step models on both the PubLayNet
[38] and our own datasets. We show that GCN based mod-
els can be small and efficient by taking OCR produced
bounding boxes as input, and are also capable of generating
highly accurate results. Moreover, with synthesized training
data from a browser-based rendering engine, these models
can be a step towards a reverse rendering engine that recov-
ers comprehensive layout structure from document images.

2. Related Work
2.1. Page Segmentation

A lot of previous work have studied the page segmen-
tation task, including CRF based approaches [22, 30, 18],
CNN based approaches [35, 17] and mixed algorithms [21].

While the pixel masks from a segmentation can tell us
where the paragraphs are, they do not produce individual
paragraphs. For example, when text is dense and paragraphs
are only hinted by subtle indentations, the adjacency graph
in [21] produces many false positive edges that form multi-
paragraph text components.

As a result, the problem we are trying to solve is dif-
ferent. Our work takes OCR result (text lines and words)
rather than the image as input, and the goal is to recognize
the paragraphs among the lines so as to improve the overall
structure of the OCR engine output.

2.2. Geometric and Rule-based Approaches

Early studies have proposed geometric methods [4, 3]
and rule-based methods [23, 29, 28]. Both categories have
algorithms to find column gaps by searching for white
space [3] or text alignment [28].

Limitations of these approaches include susceptibility

Figure 2. Example of multiple short paragraphs densely packed
and rotated into a non axis-aligned direction. The right side shows
the region proposal boxes for object detection models.

to input noise and false positive column boundaries from
monospace font families. Especially when handling scene
text with perspective distortions from camera angles, rule
based algorithms can be fragile and inconsistent.

2.3. Image Based Detection

The PubLayNet paper [38] provides a large dataset for
multiple types of document entities, as well as two object
detection models F-RCNN [24] and M-RCNN [11] trained
to detect these entities. Both show good metrics in evalua-
tions, but with some inherent limitations.

• Cost: Object detection models are typically large in
size and expensive in computation. When used to-
gether with an OCR engine to retrieve text paragraphs,
it seems wasteful to bypass the OCR results and at-
tempt to detect paragraphs independently.

• Quality: Paragraph bounding boxes may have high
aspect ratios and are sometimes tightly packed. In
Fig. 2, several short paragraphs are printed with
dense text and rotated by 45 degrees. The region
proposals required to detect all the paragraphs are
highly overlapped, so some detections will be dropped
by non-maximum suppression (NMS). Rotational R-
CNN models [14] can mitigate this issue by inclined
NMS, but further increase the computational cost
while still facing a more difficult task with rotated or
warped inputs.

2.4. Graph Neural Networks

Graph neural/convolutional networks have been used
to extract document entities like tables [25] and curved
lines [37, 20]. These work show that graph neural net-
works are flexible for handling various types of entities with
complex shapes. One possible limitation from these ap-
proaches is on graph construction – the axis-aligned visi-
bility graph in [25] can usually handle scanned documents
but not scene text with image rotations and distortions, and
the KNN graph in [37, 20] can form isolated components
that restrict graph operations.
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Input image Text lines
Text lines and 

words
Text lines, words 
and paragraphs

You      Don’t
matter.  give up.

1. Text detection 
& grouping

2. Line classification 
& recognition

3. Line splitting 
& clustering

You      Don’t
matter.  give up.

You      Don’t
matter.  give up.

You      Don’t
matter.  give up.

Figure 3. Overview workflow of a typical OCR engine (stage 1
and 2) and our post-OCR paragraph recognition (stage 3). Lines
are shown in green boxes, words in blue, and paragraphs in orange.

3. Proposed Method
A typical general purpose OCR engine produces a set of

text lines with recognized transcriptions [33]. To find para-
graphs, we can consider a bottom-up approach to cluster
text lines into paragraphs.

As shown in Fig. 3, the detected lines from stage 1 pro-
vide rudimentary layout information, but may not match
the true text lines. The image in this example contains 2
text columns, each column containing a sentence which also
forms a paragraph. The text line detector (stage 1) tries to
find the longest curved fitted baselines, thus not able to split
the lines by the 2-column layout. It is after stage 2 when the
word boxes are available that we can perform a post-OCR
layout analysis. We propose a 2-step process, namely line
splitting and line clustering, to cluster the words and lines
into paragraphs.

Both the line splitting and line clustering are non-trivial
tasks for general-purpose paragraph estimation – the input
images can be skewed or warped, and the layout styles can
vary among different types of documents, e.g. newspapers,
books, signs, web pages, handwritten letters, etc. Even
though the concept of paragraph is mostly consistent across
all document categories, the appearance of a paragraph can
differ by many factors such as word spacing, line spacing,
indentation, text flowing around figures, etc. Such varia-
tions make it difficult, if not impossible, to have a straight-
forward algorithm that identifies all the paragraphs.

We design the two steps based on graph convolutional
neural networks (GCN) [34, 8] that takes input features
from the coordinate values of OCR output boxes, together
with a β-skeleton graph [15] constructed from these boxes.
Neither the original image nor text transcriptions are in-
cluded in the input, so the models are small, fast, and en-
tirely focused on the layout structure.

• Step 1: Line splitting. Raw text lines from OCR line
detectors may cross multiple columns, and thus need
to be split into shorter lines. A GCN node classifier
takes word boxes to predict splitting points in lines.

• Step 2: Line clustering. The refined lines produced by

step 1 are clustered into paragraphs. A GCN edge clas-
sifier takes line boxes to predict clustering operations
on pairs of neighboring lines.

Output of each model is applied to the OCR text lines,
with some additional error-correction heuristics (e.g. lines
too far apart should not be clustered).

3.1. β-skeleton on Boxes

A graph is a key part of the GCN model input. We want a
graph with high connectivity for effective message passing
in graph convolutions, while also being sparse for computa-
tional efficiency.

Visibility graphs have been used in previous studies
[7, 25], where edges are made by “lines-of-sight”. How-
ever, they are unsuitable for our models because of the edge
density. Fig. 4(a) shows the visibility graph built on two
rows of boxes, where any pairs of boxes on different rows
are connected. This means word connections between text
lines may get O(n2) number of edges. If we limit the lines-
of-sight to be axis aligned like Fig. 4(b), then the graph be-
comes too sparse, even producing disconnected components
in some cases. In comparison, k-nearest-neighbor graphs
used in [37, 20] are more scalable, but can also produce
dense and isolated components.

(a) Free line-of-sight or 
 10-nearest-neighbor

(b) Axis-aligned line-of-sight

(c) β-skeleton (β=1)

Figure 4. Comparison among different types of graphs constructed
on an example set of boxes.
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Figure 5. Building a box β-skeleton from point based β-skeleton.
Left side: intersecting boxes are first connected with edges of
length 0. Right side: Non-internal peripheral points (in green)
are connected with β-skeleton edges which are then collapsed into
box edges. Edge lengths are approximate. The middle line points
are added so that no edges can go through the boxes.
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By changing “lines-of-sight” into “balls-of-sight” in vis-
ibility graphs, we get a β-skeleton graph [15] with β = 1.
In such a graph, two boxes are connected if they can both
touch a circle that does not intersect with any other boxes. It
provides a good balance between connectivity and sparsity.
As shown in Fig. 4(c), a β-skeleton graph does not have
excessive connections between rows of boxes. With β = 1,
it is a subgraph of a Delaunay triangulation [2] with number
of edges bounded by O(n). Yet, it provides good connec-
tivity within any local cluster of boxes, and the whole graph
is guaranteed to be one connected component.

The original β-skeleton graph is defined on a point set.
To apply it to rectangular boxes, we build a graph on pe-
ripheral points of all the box as in Fig. 5, and keep at most
one edge between each pair of boxes.

3.2. Message Passing on Graphs

Our graph convolutional network resembles the message
passing neural network (MPNN) [9] and GraphSage [10].
We use the term “message passing phase” from [9] to de-
scribe the graph level operations in our models. In this
phase, repeated steps of “message passing” are performed
based on a message function M and node update function
U . At step t, a message M(ht

v, h
t
w) is passed along every

edge evw in the graph where ht
v and ht

w are the hidden states
of node v and w. Let N(v) denote the neighbors of node v
in the graph, the aggregated message by average pooling
received by v is

mt+1
v =

∑
w∈N(v) M(ht

v, h
t
w)

|N(v)|
(1)

and the updated hidden state is

ht+1
v = U(ht

v,m
t+1
v ) (2)

Alternatively, we can use attention weighted pooling
[32] to enhance message aggregation. Consequently, the
model is also called a graph attention network (GAT), where
calculation of mt+1

v is replaced by

mt+1
v =

∑
w∈N(v) exp(e

t
vw)M(ht

v, h
t
w)∑

w∈N(v) exp(e
t
vw)

(3)

and etvw is computed from a shared attention mechanism a,
for which we use the dot product self-attention in [31]. So

etvw = a(ht
v, h

t
w) = K(ht

w) ·Q(ht
v) (4)

where K is a shared key function and Q is a shared query
function.

3.3. Splitting Lines

When multi-column text blocks are present in a docu-
ment page, splitting lines across columns is a necessary
first step [4, 28]. Note that the horizontal spacings be-
tween words is not a reliable signal for this task, as when
the typography alignment of the text is “justified,” i.e. the
text falls flush with both sides, these word spacings may be
stretched to fill the full column width. In Fig. 8, the 2nd-to-
last left line has word spacings larger than the column gap.
This is common in documents with tightly packed text such
as newspapers.

We use the GCN model shown in Fig. 6 to predict the
splitting points, or tab-stops as in [28]. Each graph node is
a word bounding box. Graph edges are the β-skeleton edges
built as described in section 3.1. The model output contains
two sets of node classification results – whether each word
is a “line start” and whether it is a “line end”.

Fig. 8 shows a β-skeleton graph constructed from the
word bounding boxes. Since words are aligned on either
side of the two text columns, a set of words with their left
edges all aligned are likely on the left boundary of a column,
i.e. these words are line starts. Similarly, a set of words
with right edges aligned are likely on the right boundary,
i.e. they are line ends. The β-skeleton edges can connect
aligned words in neighboring lines, and pass box alignment
signals for the effective learning of the GCN model.

…

Input word 

bounding boxes and 

the β-skeleton graph
Graph convolution 

step

M              U

Graph convolution 

step

M              U
Fully 

connected 

per node

Node predictions 

“Line start” 

“Line end”
…

Figure 6. Overview of the line splitting model. In the output, line start nodes are marked green and line end nodes are marked orange.
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…

Input line 

 bounding boxes and 

the β-skeleton graph
Graph convolution 

step

M              U

Graph convolution 

step

M              U
Fully 

connected 

per node
Edge predictions 

“Should cluster”
… Node-to-

edge

M’              

Figure 7. Overview of the line clustering model. In the output, positive edges are marked pink.

Right aligned, 
 end of lines

Left aligned, 
start of lines

Figure 8. Line splitting signal from word box alignment propagat-
ing through β-skeleton edges. The resulting predictions are equiv-
alent to tab-stop detection.

3.4. Clustering Lines

After splitting all the lines into “true” lines, the remain-
ing task is to cluster them into paragraphs. Again we use
a GCN, but each graph node is a line bounding box, and
the output is edge classification similar to link predictions
in [19, 36]. We define a positive edge to connect two con-
secutive lines in the same paragraph. Note that it is possible
to have non-consecutive lines in the same paragraph being
connected by a β-skeleton edge. Such edges are defined as
negative to make the task easier to learn.

Fig. 7 is an overview of the line clustering model. The
input consists of line bounding boxes, and an additional
“node-to-edge” step is added for the final edge output:

m′
e=(v,w) =

M ′(hv, hw) +M ′(hw, hv)

2
(5)

The model predicts whether two lines belong to the same
paragraph on each pair of lines connected with a β-skeleton
edge. The predictions are made from multiple types of con-
text like indentations (Fig. 9) and line spacings.

4. Experiments
We experiment with the 2-step GCN models and evaluate

the end-to-end performance on both the open PubLayNet
dataset, our synthetic web-scraped set, and a human anno-
tated image set. The OCR engine is from Google Cloud Vi-
sion API DOCUMENT TEXT DETECTION v2021, and
GCN setup details are in the appendix.

Figure 9. Example of paragraph line clustering by indentations.
Light blue edges indicate the β-skeleton constructed on line
bounding boxes, and pink edges indicate that the connected lines
are clustered into paragraphs.

The GCN models are compared against other ap-
proaches. Besides the F-RCNN and M-RCNN from [38],
we train an F-RCNN model with additional quadrilateral
outputs for rotated boxes, denoted by “F-RCNN-Q” in fol-
lowing subsections. It uses a ResNet-101 [12] backbone at
∼200MB in size. In contrast, the GCN models are only
∼100KB each. A rule-based heuristic algorithm in our pro-
duction system is also used as baseline.

4.1. Datasets

4.1.1 PubLayNet

PubLayNet [38] contains a large amount of document im-
ages with ground truth annotations: 340K in the training set
and 12K in the development/validation (dev) set. The test-
ing set ground truth has not been released at the time of this
writing, so we use the dev set for evaluation.

4.1.2 Web Synthetic Page Layout

Data diversity is a crucial necessity for handling all types
of inputs. By taking advantage of high quality and publicly
available web documents, as well as a powerful rendering
engine used in modern browsers, we can generate synthetic
training data with a web scraper.

We use a browser-based web scraper to retrieve a list
of Wikipedia [1] pages, where each result includes the im-
age rendered in the browser as well as the HTML DOM
(document object model) tree. The DOM tree contains the

497



Figure 10. Training data example from web scraping with random-
ized style changes and data augmentation. Green boxes indicate
line ground truth labels and yellow boxes indicate multi-line para-
graph ground truth labels.

complete document structure and detailed locations of all
the rendered elements, from which we can reconstruct the
ground truth line bounding boxes. Each line bounding box
is an axis-aligned rectangle covering a line of text. For para-
graph ground truth, the HTML tag <p> conveniently indi-
cates a paragraph node, and all the text lines under this node
belong to this paragraph.

By running extension scripts in the browser, we can ran-
domly change layout styles of web pages and diversify our
data. For example, to generate double-column text for a cer-
tain division of a page, we can use “div.style.columnCount
= 2.” And to emulate the effect of camera angles on scene
text, we further augment the data by perform randomized
rotations and perspective projections on each scraped page.
These methods produce a great variety of layout styles that
can be encountered in the real word. Fig. 10 shows an ex-
ample page from the augmented web synthetic data.

4.1.3 Human Annotated Paragraph Dataset

We have a human annotated set with real-world images –
25K in English for training and a few hundred for testing
in each available language. The images are collected from
books, documents or objects with printed text, and sent to
a team of raters who draw ground truth polygons for para-
graphs. Example images are shown in Fig. 13, 14 and 15.

4.2. Evaluation Metrics

We measure the end-to-end performance of our OCR-
GCN models by IoU based metrics such as the COCO
mAP@IoU[.50:.95] used in [38] so the results are compa-
rable. The average precision (AP) for mAP is usually cal-
culated on a precision-recall curve. But since our models
produce binary predictions, we have only one output set
of paragraph bounding boxes, i.e. only one point on the
precision-recall curve. So AP = precision× recall.

IoU 0.721

IoU 0.782

Figure 11. A paragraph detection example on an image from Pub-
LayNet [38]. Yellow boxes are correct detections in terms of en-
closed words, the red box is a wrong detection and the green box
is ground truth. A single-line correct detection has lower IoU than
a multi-line wrong one, which calls for F1var score with variable
IoU thresholds.

For a better evaluation on paragraphs, we introduce an
F1-score of variable IoU thresholds (F1var for short). As
shown in Fig. 11, a single-line paragraph has a lower IoU
even though it is correctly detected, while a 4-line detec-
tion (in red) has a higher IoU with a missed line. This is
caused by boundary errors at character scale rather than at
paragraph scale. This error is larger for post-OCR meth-
ods since the OCR engine is not trained to fit the paragraph
training data. If we have line-level ground truth in each
paragraph, and adjust IoU thresholds Tiou by

Tiou = min(1− 1

1 + #lines
, 0.95) (6)

the single-line paragraph will have IoU threshold 0.5, the
5-line one will have IoU threshold 0.833, and both cases in
Fig. 11 can be more reasonably scored.

Both PubLayNet [38] and our web synthetic dataset have
line level ground truth to support this F1var metric. For the
human annotated set without line annotations, we fall back
to a fixed IoU threshold of 0.5.

4.3. PubLayNet Evaluations

The PubLayNet dataset has five types of layout elements:
text, title, list, figure and table. For our task, we take text
and title bounding boxes as paragraph ground truth, and set
all other types as “don’t-care” for both training and testing.

Table 1 shows that F-RCNN-Q matches the mAP scores
in [38]. The GCN models are worse in this metric because
there is only one point in the precision-recall curve, and the
OCR engine is not trained to produce bounding boxes that
match the ground truth. In the bottom row of Table 1, “OCR
+ Ground Truth” is computed by clustering OCR words into
paragraphs based on ground truth boxes, which is the upper
bound for all post-OCR methods. For mAP scores, even
the upper bound is lower than the scores of image based
models. However, if we measure by F1var scores defined
above, OCR + GCNs can match image based models with
a slight advantage. Fig. 12 shows some GCN produced
examples.
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Table 1. Paragraph mAP@IoU[.50:.95] score and F1var score
comparisons. All models are tested on the PubLayNet develop-
ment set. Numbers for mAP in the first 2 rows are from [38].

Model Training Set mAP F1var

F-RCNN [38] PubLayNet training 0.910 -
M-RCNN [38] PubLayNet training 0.916 -
F-RCNN-Q PubLayNet training 0.914 0.945
Tesseract [27] - 0.571 0.707
OCR + Heuristic - 0.302 0.364
OCR + GCNs Augmented web synthetic 0.748 0.867
OCR + GCNs PubLayNet training 0.842 0.959
OCR + Ground Truth - 0.892 0.997

Oversplitting

Figure 12. Representative PubLayNet examples of paragraphs
from OCR and GCN line splitting + clustering. The left one gets
all the correct predictions, whereas the right one has a line splitting
error at section 1’s title.

The high F1var score on “OCR + Ground Truth” also
shows that the OCR engine we use has a very high recall
on text detection. The only reason it is lower than one is
from ground truth variations – a small fraction of single-
line paragraphs have IoU lower than 0.5.

4.4. Web Synthetic Evaluations

The synthetic dataset from web scraping gives a more
difficult test for these models by its aggressive style vari-
ations. Data augmentation further increases the difficulty
especially for image based detection models.

In Table 2, we can see the F1var score of the image based
F-RCNN-Q model decreases sharply as the task difficulty
increases. At “Augmented web synthetic” with images like
Fig. 10, detection is essentially broken, not only from non-
max suppression drops shown in Fig. 2, but also from worse
box predictions.

In contrast, the GCN models are much less affected by
layout style variations and data augmentations. The F1var
score change is minimal between augmented and non-
augmented datasets. So GCN models will have a greater
advantage for scene text when input images are rotated.

Table 2. Paragraph F1var score comparison across different types
of models and datasets. Data difficulty increases monotonically
from PubLayNet to Augmented web synthetic.

Model Data Source for Training & Test F1var

F-RCNN-Q PubLayNet 0.945
Web synthetic 0.722

Augmented web synthetic 0.547

OCR + GCNs PubLayNet 0.959
Web synthetic 0.830

Augmented web synthetic 0.827

Table 3. Paragraph F1-scores tested on the real-world test set with
paragraph annotations. Fixed IoU threshold 0.5 is used since there
is no line-level ground truth to support variable thresholds.

Model Training Data F1@IoU0.5

F-RCNN-Q Augmented web synthetic 0.030
F-RCNN-Q Annotated data (pre-trained 0.607

on PubLayNet)
OCR + Heuristic - 0.602
OCR + GCNs Augmented web synthetic 0.614
OCR + GCNs Annotated data 0.671
OCR + GCNs Augmented synthetic + Annotated 0.671
OCR + Ground Truth - 0.960

4.5. Real-word Dataset Evaluations

The human annotated dataset can potentially show the
models’ performance in real-world applications. The anno-
tated set is relatively small, so the F-RCNN-Q model needs
to be pre-trained on PubLayNet, while the GCN models are
small enough to be trained entirely on this set. Evaluation
metric for this set is F1@IoU0.5.

Table 3 shows comparisons across different models and
different training sets. Note that Faster R-CNN trained from
synthetic web data does not work at all for real-world im-
ages, whereas the OCR+GCN models can generalize well.

Fig. 13 and Fig. 14 show some examples of OCR +
GCNs produced paragraphs. The right image in Fig. 13
shows the effectiveness of the augmented web synthetic
data, as there are no similar images in the annotated set. On
the other hand, the right table in Fig. 14 is not recognized
since our models only takes bounding box coordinates as
input. Using GCNs for table detection like [25] is another
interesting topic but out of the scope of this paper.

To verify the robustness of the GCN models for language
and script diversity, we test them on a multi-language evalu-
ation set. The GCN models are trained with additional syn-
thetic data from Wikipedia pages in Chinese, Japanese and
Korean. Table 4 once again shows the generalizability of
GCN models. F-RCNN-Q is not trained in the three Asian
languages for the lack of training data.

The GCN models are also flexible in handling text
lines written in vertical directions, which are common in
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(a) (b) (c)
Figure 13. Representative examples of real-world images with OCR followed by GCN line splitting and line clustering. Paragraphs shown
in yellow boxes, lines in green and words in blue. Pink line segments indicate positive line clustering predictions.

(a) (b) (c)
Figure 14. Paragraph errors in real-word images. (a) Line under splitting. (b) Line over splitting. (c) Over clustering table elements.

Japanese and Chinese, and also appear in Korean. Although
we don’t have much training data with vertical lines, the
bounding box structures of lines and symbols in these lan-
guages remain the same when the lines are written verti-
cally, as if they were written horizontally while the image
is rotated clockwise by 90 degrees. Fig. 15 shows such an
example. Since our models are trained to handle all rotation
angles, such paragraphs can be correctly recognized.

5. Conclusions and Future Work
We demonstrate that GCN models can be powerful and

efficient for the task of paragraph recognition. Provided
with a good OCR engine, they can match image based

Table 4. F1@IoU0.5 scores tested on the multi-language evalua-
tion set.

OCR + F-RCNN OCR + OCR +
Language Heuristic -Q GCNs Ground Truth

English 0.429 0.513 0.544 0.890
French 0.438 0.557 0.553 0.885
German 0.427 0.538 0.566 0.873
Italian 0.455 0.545 0.556 0.862
Spanish 0.449 0.597 0.616 0.885

Chinese 0.370 - 0.485 0.790
Japanese 0.398 - 0.487 0.772
Korean 0.400 - 0.547 0.807

Figure 15. Example of paragraphs from text lines with vertical
writing direction.

models with much lower requirement on training data and
computation resources, and significantly beat them on non-
axis-aligned inputs with complex layout styles. The graph
convolutions in these models give them unique advantages
in dealing with different levels of page elements and their
structural relations.

Future work include extending the GCN models to find
more types of entities and extract document structural in-
formation. Joining image based CNN backbones with GCN
may work better for entities with non-text components like
checkboxes and grid lines. In addition, reading order among
entities will be helpful if we want to identify semantic para-
graphs that span across multiple columns/pages.
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