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Abstract

A detailed analysis of a plant’s phenotype in real field

conditions is critical for plant scientists and breeders to un-

derstand plant function. In contrast to traditional pheno-

typing performed manually, vision-based systems have the

potential for an objective and automated assessment with

high spatial and temporal resolution. One of such systems’

objectives is to detect and segment individual leaves of each

plant since this information correlates to the growth stage

and provides phenotypic traits, such as leaf count, cover-

age, and size. In this paper, we propose a vision-based

approach that performs instance segmentation of individ-

ual crop leaves and associates each with its corresponding

crop plant in real fields. This enables us to compute relevant

basic phenotypic traits on a per-plant level. We employ a

convolutional neural network and operate directly on drone

imagery. The network generates two different representa-

tions of the input image that we utilize to cluster individual

crop leaf and plant instances. We propose a novel method to

compute clustering regions based on our network’s predic-

tions that achieves high accuracy. Furthermore, we com-

pare to other state-of-the-art approaches and show that our

system achieves superior performance. The source code of

our approach is available1.

1. Introduction

Crop production is key for our society to provide feed,

food, and other resources. During the growth of a plant, the

development of its functional body is affected by a dynamic

process between its genotype, the performed management,

and the environment [4]. Thus, plant scientists and breed-

ers continuously assess phenotypic traits as an expression of

the genotype for individual plants to generate new genetic

variations of crops that show desired traits. Outside green-

houses, this in-field assessment is conventionally done man-

ually, which is time-consuming [20]. In contrast, vision-

based systems have the prospect to perform this assessment

at a large scale, in less time, and more objectively [30].

1https://github.com/PRBonn/leaf-plant-instance-segmentation

Figure 1: Our approach takes images of real fields (top) and pro-

vides an instance segmentation for individual crop leaves (middle)

and plants (bottom), each represented by a particular color.

A key target of these systems is to predict the total num-

ber of leaves per plant. This information is commonly

used to describe plant growth stages, which are linked to

yield potential and plant performance [13]. However, when

studying the plant growth in more detail, it is also essential

to segment individual leaves in order to determine the leaf

size and shape to get a clearer response [29]. At the same

time, obtaining this refined information on a per-pixel level

is challenging, particularly in uncontrolled in-field condi-

tions with multiple plants. In this environment, each seg-

mented leaf needs to be associated with a specific plant on

the field to enable a reliable analysis on a per-plant level.

In this paper, we address the problem of automated,

vision-based phenotyping to detect and segment individual

leaves of crops based on images taken from real agricultural

fields that we associate to specific crop plants to extract rel-

evant basic phenotypic traits on a per-plant level. This pro-

vides plant scientists and breeders with reproducible pheno-

typing information with a high spatial and temporal resolu-

tion in contrast to manual field assessments.

The main contribution of this work is a vision-based ap-

proach that performs a simultaneous instance segmentation

of individual crop leaves and plants, as shown in Fig. 1. We

target sugar beets as crops. Our approach computes binary
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segmentation masks for all crop leaves in the field and as-

sociates them with their corresponding plant. This enables

us to compute relevant basic phenotypic traits for individ-

ual crops. Our method is a bottom-up approach based on an

end-to-end trainable single-shot convolutional neural net-

work (CNN). We generate two different representations of

the input image that are eligible to cluster individual crop

leaf and plant instances within a predicted clustering region.

We make the following four claims about our approach.

First, our bottom-up approach accurately performs a si-

multaneous instance segmentation of individual crop leaves

and plants on real agricultural fields based on a single-shot

CNN. Second, this allows us to derive relevant basic phe-

notypic traits for individual crops in the field. Third,

in both tasks, our approach is competitive with differ-

ent state-of-the-art methods. Fourth, for the clustering of

crop leaves and plant instances, we present a novel method

to specify clustering regions by full covariance matrices

predicted by our network that shows superior performance

compared to previous methods.

2. Related Work

There has been significant progress towards vision-based

methods for semantic and instance segmentation in real

agricultural fields. However, most methods for image-based

phenotyping have been applied in laboratory environments.

Semantic Segmentation. Most recent approaches use

CNNs to perform semantic segmentation based on images

of real fields and provide a pixel-wise classification. Lottes

et al. [15] propose a crop-weed classification system based

on sequential image data recorded by agricultural robots,

which exploits the spatial arrangement of crops and weeds

to perform robust pixel-wise labeling. McCool et al. [17]

propose a method for crop-weed classification that learns

lightweight CNN models, which are appropriate to run on

robotic platforms and achieve high accuracy for the task

of weed segmentation. Milioto et al. [19] perform se-

mantic segmentation of crops based on RGB and near-

infrared (NIR) images but also compute multiple vegetation

indices in a preprocessing step to support the training. Un-

like our approach, these methods do not detect leaf or plant

instances, which is key to extract morphological plant traits.

Instance Segmentation. Contrary, recently proposed

image-based instance segmentation methods aim at detect-

ing and segmenting individual plants. Champ et al. [3] rely

on Mask R-CNN [8] to perform instance segmentation for

different crops and weeds on real fields based on RGB im-

ages to target weed control. In contrast, Milioto et al. [18]

propose a vision-based, two-stage approach, which first de-

tects single plants based on RGB and NIR information and

feeds each to a CNN classifying whether it is a crop or

weed. Opposite to these plant-based methods, Morris [21]

performs detection and segmentation of overlapping leaves

in dense foliage images based on a pyramid CNN, which

detects and discriminates leaf boundaries from interior tex-

tures. In contrast to our approach, these methods exclu-

sively detect and segment plant or leaf instances but not

both simultaneously. Thus, these methods are incapable of

extracting per-plant leaf count.

Phenotyping. Most methods extract morphological

plant traits based on images or 3D models of plants ac-

quired individually in the laboratory. Kulikov [12] presents

an instance segmentation approach to detect leaves based on

images of single plants captured in the laboratory. He pro-

poses a two-stage method that first specifies target embed-

dings, which are subsequently learned by a CNN and allow

for a clustering approach at inference time to recover each

instance. In contrast, Shi et al. [30] rely on a multi-view

approach that performs semantic and instance segmentation

based on Mask R-CNN for multiple images of single tomato

plants. They combine the predictions of different view-

points to 3D point clouds and perform instance segmenta-

tion of leaves, stems, and nodes. Magistri et al. [16] aim at

an automated tracking of phenotypic traits over time based

on 3D models of individual growing plants. Itzhaky et

al. [10] propose a CNN to generate a heatmap of leaf key-

points for images of single plants and feed this map to a

non-linear regression model to predict the total number of

leaves per plant. In contrast to these methods, our approach

does not rely on images of single plants but is applied in

real fields. Weyler et al. [32] jointly detect the bounding

box of individual plants and per-plant leaf keypoints based

on a single-shot detection approach in images of real fields

to compute the total number of leaves per plant. However,

this method does not segment individual leaves nor plants

but provides coarse keypoints that are not suitable to deter-

mine leaf size and shape. In contrast, our approach obtains

refined information on a per-pixel level instead of coarse

leaf keypoints. This setting is challenging since images of

real fields usually contain multiple plants. Thus, each seg-

mented leaf needs to be associated with a specific plant on

the field to compute relevant basic phenotypic traits on a

per-plant level. To account for this association problem, our

approach has some relations to work on human pose esti-

mation [23]. However, they assume that the number of parts

per instance is known a priori, which is not reasonable for

plants in different growth stages.

3. Our Approach

The main objective of our approach is to generate a bi-

nary segmentation mask for each leaf of a crop and to asso-

ciate it with a specific crop plant based on images of real

agricultural fields. Thus, we perform a simultaneous in-

stance segmentation of individual crop leaves and plants.

Accordingly, we can determine the shape and size of indi-

vidual leaves but also the number of leaves per crop, which
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Figure 2: The network architecture of our approach. Based on RGB images, we predict offset maps ∆L and ∆P that translates each pixel

of a crop leaf and plant into a clustering region around its associated center. The clustering regions are specified by covariance matrices.

We compute the covariance matrices for crop leaf instances based on the predicted feature maps ΘL, Λ1

L, and Λ
2

L and the covariance

matrices for crop plant instance based on ΘP , Λ1

P , and Λ
2

P . Besides, we predict the feature map SL and SP to recover the centers of

individual crop leaf and plant instances, respectively. We exploit our network’s predictions to generate two different representations (A, B)
of the input image in an automated postprocessing step that we utilize to cluster individual crop leaf and plant instances.

is highly relevant to perform phenotyping [20, 29].

To achieve this twofold instance segmentation, we pro-

pose a bottom-up approach based on a CNN whose archi-

tecture is described in Sec. 3.1. Our network takes an RGB

image as input, which we feed into an encoder-decoder ar-

chitecture based on ERFNet [26] to compute dense predic-

tions. We split the decoder into two branches, which are

labeled as (a) and (b) in Fig. 2. We design the first decoder

(a) to predict offsets that enforce pixels of individual crop

leaves to point into a leaf-specific region around the leaf

center they belong to. Simultaneously, we predict another

set of offsets that enforces pixels of individual crop leaves

to point into a plant-specific region around the plant cen-

ter they belong to (Sec. 3.2). In addition, this decoder pre-

dicts the parameters required to compute clustering regions

around each center (Sec. 3.3). Based on the prediction of the

second decoder (b), we predict the center locations of each

instance (Sec. 3.4). Finally, we generate two different rep-

resentations of the input image based on these predictions

that we utilize to cluster each crop leaf and plant instance

with an automated post-processing step (Sec. 3.5) applied

after the CNN, as shown at the bottom of Fig. 2.

3.1. General Architectural Concept

Inspired by the recent success of bottom-up approaches

for instance segmentation [2, 23], we design an enhanced

version of the method proposed by Neven et al. [22] that

enables a simultaneous instance segmentation of individ-

ual crop leaves and their corresponding plant. We explic-

itly model the instance segmentation of a crop plant as the

union of the binary masks of its associated leaves. The orig-

inal method [22] does not allow to model a simultaneous in-

stance segmentation and is also more restricted in the design

of clustering regions (Sec. 3.3).

The objective of our proposed twofold instance seg-

mentation is to cluster a set of 2D pixel coordinates

X = {0, 1, ...,W − 1} × {0, 1, ..., H − 1} into a set of

crop leaf instances L = {L0, L1, ..., LK−1} and crop plant

instances P = {P0, P1, ..., PJ−1}, where Lk ⊂ X and

Pj ⊂ X . Let W and H denote the image width and height,

respectively. Since, by nature, each leaf Lk is associated

with a specific plant Pj on the field, we argue that each plant

instance is defined as the union of its associated leaves.

To achieve the desired clustering, we learn two offset

vectors ∆li and ∆pi for each pixel xi = (xi, yi) ∈ X

such that the resulting spatial embeddings li = xi +∆li
and pi = li +∆pi (Fig. 3) point into a clustering region

around the corresponding crop leaf center CLk
and crop

plant center CPj
, respectively. The centers correspond to

the centroids of the kth leaf or jth plant.

Note that the spatial embedding pi depends on the leaf

embedding li. Thus, to cluster an individual crop plant, we

first translate each corresponding pixel to the center of its

associated leaf and next to the center of its associated plant,

see Fig. 3. Underlying this is that we consider sugar beet

leaves to be easier to cluster due to their blob-like shape.

To perform the clustering, we propose two Gaussian

functions φLk
(·) and φPj

(·) for each crop leaf Lk and plant

Pj , which convert the distance between the embeddings li
or pi to their corresponding center CLk

or CPj
into a score
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of belonging to that instance as:

φLk
(li)=exp

(

−
1

2
(li −CLk

)
⊤
Σ−1

Lk
(li −CLk

)

)

, (1)

φPj
(pi)=exp

(

−
1

2

(

pi −CPj

)⊤
Σ−1

Pj

(

pi −CPj

)

)

, (2)

where φLk
(li) ∈ [0, 1] and φPj

(pi) ∈ [0, 1]. A high score

indicates that the embedding li or pi is associated with the

kth crop leaf Lk or jth plant instance Pj accordingly. In con-

trast, a low score indicates that this embedding is associated

with a background pixel or another instance.

Note that we specify for each crop leaf and plant instance

a specific covariance matrix ΣLk
∈ R

2×2 and ΣPj
∈ R

2×2,

which determines the clustering region around the corre-

sponding center for which spatial embeddings are consid-

ered to be part of the instance. These covariance matrices

are learned in addition to the spatial embeddings by our pro-

posed CNN and give the network the capability to adopt the

clustering region around an object’s center to its shape and

orientation. This accounts for the nature of leaves that have

a relatively blob-like shape in a variety of orientations.

During training, we optimize the intersection over

union (IoU) between the predicted and the ground truth

mask by feeding them to the LovÂasz Hinge loss [1]:

Lleaves =
1

K

K−1
∑

k=0

LovÂasz
(

FLk
, y∗Lk

)

, (3)

Lplants =
1

J

J−1
∑

j=0

LovÂasz
(

FPj
, y∗Pj

)

, (4)

where y∗Lk
∈ {−1, 1}

H×W
and y∗Pj

∈ {−1, 1}
H×W

denote

the binary ground truth mask for each crop leaf and plant,

respectively. Let FLk
∈ R

H×W be the output scores of the

model for the kth crop leaf and FPj
∈ R

H×W the output

scores of for the jth crop plant defined as:

FLk
[yi, xi] = 2φLk

(xi +∆li)− 1 ∀xi ∈ X, (5)

FPj
[yi, xi] = 2φPj

(xi +∆li +∆pi)− 1 ∀xi ∈ X. (6)

Here, we transform the scores to the range [−1, 1]
such that the predicted binary masks ŷLk

and ŷPj

can be efficiently obtained by ŷLk
= sign (FLk

) and

ŷPj
= sign

(

FPj

)

. This follows the definition of the LovÂasz

Hinge loss [1] and sets the score threshold effectively to 0.5.

Based on Eq. (1) and Eq. (2) the network has multiple

options to optimize the IoU between the predicted and the

ground truth mask. First, the network can translate the pixel

embeddings close to the desired centers and predict a small

clustering region around an object’s center specified by its

covariance matrix. Second, the network can adapt the co-

variance matrix to the object’s shape and orientation and

predict minor translations for the spatial embeddings.

Figure 3: Clustering approach to perform instance segmentation

for individual crop leaves (left) and plants (right). Our network

predicts all entities to enforce pixels xi to point into a clustering

region (specified by covariance matrices ΣLk
and ΣPj

) around

each crop leaf CLk
and plant center CPj

and to perform the clus-

tering. Note that we sample only a few pixels for visualization.

3.2. Spatial Embeddings

To translate individual pixels xi towards their associ-

ated crop leaf and plant center, we apply the previously

mentioned 2D offset vectors ∆li and ∆pi, respectively.

Thus, our network predicts two offset maps denoted as

∆L ∈ R
2×H×W and ∆P ∈ R

2×H×W . The channels con-

tain the predicted offsets in x- and y-direction for all pixels.

In Fig. 2, we show the orientation of these offsets encoded

in a color scheme, e.g., the offsets in ∆L point towards leaf

centers and in ∆P towards plant centers.

Since in our case W = 1024 px and H = 512 px, we

generate a pixel coordinate map [22] Mcoord ∈ R
2×H×W

that scales the x-coordinates of all pixels into the range

[0, 2] and the y-coordinates into the range [0, 1]. We apply

a tanh(·) activation function to the predicted offset maps to

restrict its values to the range [−1, 1].
First, we compute Mcoord +∆L to generate a represen-

tation of the image where all pixels belonging to a crop

leaf are translated towards its associated center. Second,

we compute Mcoord +∆L +∆P to generate another rep-

resentation where all pixels belonging to a crop plant are

translated towards its associated center, as shown in Fig. 3.

Note that during training, we do not compute gradients for

∆L but only for ∆P in the second step.

3.3. Instance Covariance Matrices

Our clustering functions described in Eq. (1) and Eq. (2)

define each a clustering region around the instance centers

determined by the associated covariance matrix. Thus, we

propose a network architecture, which enables us to com-

pute valid covariance matrices for each instance. In con-

trast, the original method proposed by Neven et al. [22] is

restricted to predict diagonal covariance matrices and thus

limited in the representation of clustering regions.

By definition, a valid covariance matrix needs to be sym-

metric, positive semi-definite, and square [6]. We must en-

sure that these properties hold for the predictions of our

network. Thus, we exploit the properties of the spectral

theory in linear algebra [7], which states that a symmet-
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ric matrix Σ ∈ R
n×n can be decomposed as Σ = RDR⊤

or Σ−1 = RD−1R⊤. Let R ∈ R
n×n be an orthogonal

matrix, which contains the normalized eigenvectors stacked

as columns and D ∈ R
n×n be a diagonal matrix containing

the eigenvalues of Σ. Since covariance matrices are positive

semi-definite, all eigenvalues need to be non-negative [31].

First, we define R ∈ R
2×2 as a 2D rotation matrix R (θ)

determined by the angle θ. Since R (θ) ∈ SO(2) is an or-

thogonal matrix [6] it meets the constraint mentioned above.

Second, we determine the diagonal matrix D ∈ R
2×2 by

the two eigenvalues λ1 and λ2 as follows:

D (λ1, λ2)=

(

λ1 0
0λ2

)

→D−1(λ1, λ2)=

(

λ−1
1 0
0 λ−1

2

)

, (7)

with the constraint that λ1 and λ2 are non-negative to ac-

count for positive semi-definiteness. Thus, a valid covari-

ance matrix is determined by three values for our 2D case.

Note that the eigenvalues and eigenvectors of Σ com-

pletely determine the shape of our clustering region. In the

case of θ = 0 and λ1 = λ2, the region’s shape is circular.

In contrast it is elliptical but axis-aligned if λ1 ̸= λ2. If in

addition θ ̸= 0, it is rotated w.r.t. the axis as well.

Accordingly, we design our network to predict three val-

ues at each pixel location xi to compute the covariance ma-

trices ΣLk
or ΣPj

for each crop leaf or plant. However, we

directly predict the inverse matrix Σ−1
Lk

or Σ−1
Pj

since these

are required in Eq. (1) and Eq. (2).

Our network predicts three feature maps denoted as ΘL,

Λ1
L, and Λ2

L which are ∈ R
H×W . The feature map ΘL

predicts the angles θi, Λ
1
L predicts the first set of inverse

eigenvalues λ−1
1,i , and Λ2

L predicts the second set of inverse

eigenvalues λ−1
2,i for each pixel. We apply an exponen-

tial activation function to the feature maps Λ1
L and Λ2

L to

enforce non-negative values to account for positive semi-

definiteness. Besides, we multiply ΘL by π
2

to encourage

the network to predict appropriate angles. We show these

maps in a color-encoded representation in Fig. 2.

For training, we exploit the ground truth masks to set the

parameters θLk
, λ−1

1,Lk
, and λ−1

2,Lk
of a crop leaf Lk to the

average of all predictions belonging to this instance:

θLk
=
∑

θi∈Lk

θi

|Lk|
, λ−1

1,Lk
=

∑

λ
−1

1,i
∈Lk

λ−1
1,i

|Lk|
, λ−1

2,Lk
=

∑

λ
−1

2,i
∈Lk

λ−1
2,i

|Lk|
. (8)

At inference, we predict an instance center’s location

(Sec. 3.4) and at the same location we extract the three val-

ues from the associated feature maps.

Finally, we compute the inverse covariance matrix of the

kth crop leaf instance for the Gaussian in Eq. (1) as follows:

Σ−1
Lk

= R (θLk
)D−1 (λ1,Lk

, λ2,Lk
)R⊤ (θLk

) . (9)

To compute the inverse covariance matrix Σ−1
Pj

of a crop

plant instance Pj , we predict three additional feature maps

ΘP , Λ1
P , and Λ2

P and follow the same procedure.

3.4. Instance Centers

During training, we compute the centers of each crop

leaf and plant based on the ground truth masks. However,

at inference time, we need to recover these centers to per-

form the clustering based on Eq. (1) and Eq. (2). Since the

loss functions described in Eq. (3) and Eq. (4) enforce the

spatial pixel embeddings li and pi to lie close to their as-

sociated instance center, we need to sample an appropriate

embedding for each crop leaf and plant and set them as their

corresponding instance centers at inference time to perform

the clustering. By appropriate embeddings, we refer to spa-

tial embeddings which have a high score under the Gaus-

sian function φLk
(·) or φPj

(·), since these are close to the

ground truth center by definition of Eq. (1) and Eq. (2).

During training, we generate a score map for each crop

leaf and plant instance by passing all li and pi to the cor-

responding function φLk
(·) and φPj

(·), respectively. We

exploit these computations to train our network to predict

two score maps that imitate these maps and thus are suit-

able to recover the centers of all crop leaves and plants. In

the following, we denote these map as SL ∈ R
H×W and

SP ∈ R
H×W , as illustrated in Fig. 2. The map SL should

be equal to the score map computed for all crop leaf in-

stances during training. Thus, it contains values close to 0
for all pixels whose associated embedding li belongs to the

background and values close to 1 if the corresponding em-

bedding lies close to a crop leaf center. The same holds for

the map SP but in contrast for all crop plant instances and

their associated embeddings pi. We achieve this objective

by the following regression loss functions [22]:

LCL
=

1

N

N−1
∑

i=0

{

w (sL,i − φLk
(li))

2
, if sL,i ∈ Lk

s2L,i , otherwise
(10)

LCP
=

1

N

N−1
∑

i=0

{

w
(

sP,i − φPj
(pi)

)2
, if sP,i ∈ Pj

s2P,i , otherwise
(11)

where sL,i defines the network’s output of the previously

defined map SL for the ith pixel, N is the total number of

pixels, and w is a weight factor set to 10 in all experiments.

The upper term in Eq. (10) regresses the ith output of SL

to the score of the Gaussian function for the kth crop leaf

instance if and only if the ith pixel belongs to this instance.

Otherwise, we regress it to 0, as in that case the ith pixel

belongs to the background. The same applies to Eq. (11) but

in this regard we consider crop plant instances. We apply a

sigmoid activation function to the map SL and SP such that

their values are in [0, 1]. During training, we compute the

gradients only for sL,i and sP,i [22]. In Sec. 3.5, we provide

more details about how to recover instance centers.
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3.5. Postprocessing

At inference, we employ an automated clustering ap-

proach based on our network’s predictions to perform in-

stance segmentation. First, we cluster all crop leaves and

subsequently merge these into clusters of individual crop

plants. Thus, we consider a plant as the union of its leaves.

First, to predict the semantic mask of each crop leaf, we

compute their spatial embeddings by Mcoord +∆L but do

not consider pixels which have a score ≤ 0.5 in the pre-

dicted map SL since we judge them as background. Sub-

sequently, we sample the pixel with the highest score in SL

and set the location of its associated embedding li as the

center CL1
of the first leaf instance L1. This is in accor-

dance with Eq. (1). The confidence score of L1 is equal to

the score extracted from SL. At the same location we ex-

tract the predicted angle θL1
and both inverse eigenvalues

λ−1
1,L1

and λ−1
2,L1

from ΘL, Λ1
L, and Λ2

L to compute Σ−1
L1

according to Eq. (9). We use these entities to compute the

Gaussian in Eq. (1) for all spatial embeddings li and as-

sign each pixel to L1 if and only if the score φL1
(li) > 0.5.

Then, we mask out all pixels assigned to this instance and

do not consider them for clustering of other leaves to avoid

multiple assignments. We repeat this process until all pixels

in SL with a score sL,i > 0.5 are consumed. Thus, we do

not need to specify the number of clusters explicitly.

Second, to predict the semantic mask of each crop plant,

we iterate over the set of previously detected leaves and

compute their spatial embeddings pi = li +∆pi, where

∆pi is extracted from the predicted offset map ∆P . This

translates all previously computed crop leaf clusters towards

the center of their associated crop plant, as shown on the

right side of Fig. 3. Subsequently, we select the pixel with

the highest score in SP and set the location of its associated

embedding pi as the center CP1
of the first crop plant P1.

This is in accordance with Eq. (2). The confidence score

of P1 is equal to the score extracted from SP . We compute

Σ−1
P1

in the same way as we did for leaves but based on ΘP ,

Λ1
P , and Λ2

P . Finally, we compute the Gaussian in Eq. (2)

for all embeddings pi associated with a leaf Lk and assign

a leaf to the plant P1 if and only if for more than 50% of

its embeddings φP1
(pi) > 0.5 holds true. Thus, we asso-

ciate a crop leaf with a specific crop plant if the majority of

its pixels point into the clustering region of this plant. As

before with the leaves, we mask out pixels assigned to this

plant and do not consider them in the further procedure. We

repeat this process until all pixels in SP with sP,i > 0.5 are

consumed, or all leaves are associated with a plant. Conse-

quently, crop leaves are only associated with a single plant.

Finally, we obtain two image representations, shown at

the bottom of Fig. 2. These allow for an instance segmenta-

tion of all crop leaves and plants (Fig. 1). Simultaneously,

this operation associates each leaf with a specific crop plant

and enables us to compute relevant basic phenotypic traits.

4. Experimental Evaluation

We present our experiments to show the capabilities of

our approach and to support our key claims, which are: Our

bottom-up approach (i) performs a simultaneous instance

segmentation of individual crop leaves and plants on real

agricultural fields, (ii) allows to compute relevant basic phe-

notypic traits, (iii) is competitive w.r.t. to state-of-the-art ap-

proaches, and (iv) our design decision to use full covariance

matrices to specify clustering regions shows superior per-

formance in contrast to related work.

Implementation Details. In all experiments, we train

our network for 512 epochs using Adam optimizer [11] with

a learning rate of 1 · 10−3 and a polynomial learning rate

decay (1− epoch

max epoch
)0.9. We define a multi-task loss as sum

of Eq. (3), Eq. (4), Eq. (10), and Eq. (11).

Datasets. We evaluate our method on RGB images of

sugar beet fields. The dataset contains 1316 images with a

size of 1024 px× 512 px and a ground sampling distance

of 1 mm
px

. The images are recorded with an unmanned aerial

vehicle (UAV) equipped with a PhaseOne iXM-100 cam-

era mounted in nadir view. We captured the images in real

fields in uncontrolled conditions that cause shadows and

variable illumination, as shown in Fig. 1. Thus, this data is

more challenging compared to images captured in the lab-

oratory [10, 12]. For training, we use 60% of the entire

dataset and 20% to validate the hyperparameters. To evalu-

ate the final metrics, we rely only on the remaining 20%.

In addition, we evaluate our method on the small but de-

manding CVPPP Leaf Segmentation Challenge (LSC) [28]

as a popular benchmark. We follow best practice and use

the sequence A1 with the highest number of baselines.

Evaluation Metrics. To evaluate the performance of

our approach and to compare it with state-of-the-art meth-

ods, we calculate the average precision (AP) and average

recall (AR) that are commonly used for instance segmenta-

tion [5]. We provide these metrics separately for crop leaves

and plants since our approach computes a simultaneous in-

stance segmentation for both. We differ between instances

with an area scale a < 1024 px2 and a ≥ 1024 px2 to ac-

count for different object sizes denoted as APS and APM.

Besides, we adopt the evaluation metrics commonly used

for leaf segmentation in phenotyping [29]. We evaluate the

Absolute Difference in Count (|DiC|) to measure the leaf

count performance between the predicted and ground truth

number of leaves. In contrast, Percentage Agreement (Pa)

is the number of times the predicted leaf count matches the

ground truth. The Symmetric Best Dice (SBD) measures the

leaf segmentation accuracy by the average overlap between

the predicted and ground truth mask for all leaves. In con-

trast, the Foreground-Background Dice (FBD) measures the

plant segmentation accuracy. The values of Pa, SBD, and

FBD values are ∈ [0, 1], where higher values indicate more

accurate predictions. For more details we refer to [29].
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Figure 4: Qualitative results of our approach and both baselines.

Note that we show cropped images and do not show the predicted

bounding boxes of Mask R-CNN for reasons of clarity.

The performance of competing methods on the LSC is

commonly specified in terms of SBD and |DiC| [2, 12].

4.1. Comparison with the State of the Art

The first experiments evaluate the performance of our ap-

proach in comparison with other state-of-the-art methods.

First, we show that our approach is superior in com-

parison with Mask R-CNN [8, 34], a two-stage top-down

method for instance segmentation. For comparison, we use

models pre-trained on the COCO dataset [14] that lever-

age a ResNet50 model [9] and fine-tune it to our task. To

provide a fair comparison, we train two networks based

on Mask R-CNN. We train the first network with the ob-

jective to detect and segment all crop leaf instances and the

second network to detect and segment all crop plants. Thus,

both networks are experts for the specific task. However,

we emphasize that our method performs both tasks at once.

In Tab. 2, we show the results in terms of phenotypic metrics

on the test set. Our proposed approach outperforms Mask

R-CNN in all metrics. We achieve higher performance in

terms of leaf count (|DiC|, Pa) per crop plant. In addition,

the predicted masks for crop leaves of our method outper-

form the baseline by a wide margin in terms of SBD. Fur-

thermore, our predicted masks for crop plants also have a

Figure 5: Qualitative results of our approach for the CVPPP LSC.

higher accuracy regarding FBD. In Fig. 4, we highlight that

our predicted masks for crop leaves and plants are consis-

tent since we explicitly model a crop plant as the union of

its associated leaves (Sec. 3.5). In contrast, the predicted

masks of Mask R-CNN are inconsistent. These results are

supported in Tab. 1 in terms of AP and AR where our ap-

proach outperforms the baseline in most metrics. In Fig. 4,

we show that our approach is less prone to confuse crop

leaves and plants with leaves or plants of weeds which are

commonly present on real agricultural fields.

Second, we show that our approach is competitive

with another state-of-the-art method proposed by Ku-

likov [12] tailored to instance segmentation on biologi-

cal images. This two-stage bottom-up method achieves

state-of-the-art results on the popular CVPPP LSC. Similiar

to Mask R-CNN it does not allow to perform a simultane-

ous instance segmentation of crop leaves and plants. Thus,

we train two expert networks for each task. We denote

this method as Harmonic Embeddings. In Tab. 2, we show

that the performance in terms of predicted masks for crop

leaves (SBD) and crop plants (FBD) only varies marginally

in comparison with our method. We support these results

visually in Fig. 4 and show that segmented crop leaves and

plants differ only slightly. However, our approach achieves

a higher performance in terms of leaf count per crop plant

w.r.t. |DiC| and Pa. Note that the method of Kulikov [12]

does not predict confidence scores for object instances and

thus does not support an evaluation in terms of AP and AR.

4.2. Performance on CVPPP LSC

The next experiments are designed to show that our ap-

proach achieves high performance on a popular leaf in-

stance segmentation benchmark [28], see Fig. 5. In Tab. 3,

we show that the performance of our method is on par with

competing algorithms. Concerning the SBD metric, only

the approach proposed by Wu et al. [33] achieves higher

performance. However, their results rely on the ground-

truth foreground masks, which we do not use.

We note that this competition addresses a less complex

problem than our dataset since each image contains only a

single plant. All competing methods are restricted to this as-

sumption. In contrast, our network is also applicable to im-

ages of real fields that contain an arbitrary number of crops.

The results convey that our approach covers a broader range

of applications than competing methods but still achieves

high performance in their targeted, restricted domain.
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Table 1: Comparison of our method with Mask R-CNN based on average precision (AP) and average recall (AR) on our dataset.

Approach AP AP50 AP75 APS APM AR ARS ARM

Ours (crop leaves, Σfull) 48.7 82.5 54.6 46.8 78.2 57.3 55.6 81.4

Ours (crop leaves, Σdiag) 42.9 78.8 44.1 41.1 71.8 53.9 52.4 74.9
Mask R-CNN (crop leaves) 41.3 78.5 39.5 39.6 73.8 50.2 48.8 76.5

Ours (crop plants, Σfull) 60.4 93.8 73.5 28.1 63.7 68.0 43.7 71.1

Ours (crop plants, Σdiag) 56.5 93.1 67.2 25.6 60.2 65.6 43.8 68.4
Mask R-CNN (crop plants) 51.8 93.8 56.3 24.4 54.8 59.5 46.3 61.5

Ours (crop leaves, no ∆ + Σfull) 31.5 70.5 19.3 29.7 51.8 37.7 36.5 54.0

Ours (crop leaves, no ∆ + Σdiag) 24.3 68.7 5.7 22.9 41.7 31.4 30.6 42.8

Table 2: Evaluation of our dataset based on phenotypic metrics.

Approach |DiC| (std.)↓ Pa↑ SBD↑ FBD↑

Ours (Σfull) 0.60 (0.83) 0.55 0.79 0.90
Ours (Σdiag) 0.69 (0.94) 0.51 0.77 0.89
Mask R-CNN 1.53 (1.70) 0.30 0.68 0.86
Harmonic Emb. 0.68 (0.90) 0.51 0.80 0.92

Ours (no ∆ + Σfull) 1.01 (0.96) 0.32 0.66 0.78

Ours (no ∆ + Σdiag) 1.00 (1.08) 0.36 0.63 0.73

Table 3: Evaluation on CVPPP LSC.

Approach SBD↑ |DiC| (std.)↓

Recurrent IS + CRF [27] 66.6 1.1 (0.9)
IPK [24] 74.4 2.2 (1.3)
Discriminative Loss [2] 84.2 1.0 (-)
Recurrent with Attention [25] 84.9 0.8 (1.0)
Harmonic Emb. [12] 89.9 3.0 (-)
W-Net [33] 91.9 -

Ours (crop leaves, Σfull) 91.1 1.8 (2.4)

4.3. Ablation Studies

A key contribution of our method is the prediction of

full covariance matrices based on the output of our CNN

(Sec. 3.3) to compute clustering regions. This representa-

tion gives our network the capability to adjust the clustering

region to an instance shape and orientation. To demonstrate

its contribution, we train two different networks with the

same hyperparameters. The former predicts full covariance

matrices. For the latter, we remove the feature maps ΘL and

ΘP and hence enforce diagonal covariance matrices ΣLk

and ΣPj
similar to Neven et al. [22]. Thus, we constrain

axis-aligned clustering regions, which cannot adapt to an

instance orientation. In Tab. 1 and Tab. 2 we show that the

former network outperforms the latter in most metrics since

it provides more degrees of freedom.

We also train two networks without the offsets ∆L

and ∆P . Hence, these networks have to adapt the clustering

region to an instance shape and orientation to minimize the

objectives in Eq. (3) and Eq. (4). We also predict full covari-

ance matrices for the former network and diagonal covari-

Figure 6: Image representation of the input image (top) after post-

processing based on the network’s predictions for crop leaves,

when trained without offsets but Σfull (middle) or Σdiag (bottom).

ance matrices for the latter. In the center of Fig. 6, we show

that the former network effectively adjusts the clustering re-

gion to the orientation of each leaf and thus outperforms the

latter network in most metrics, see Tab. 1 and Tab. 2.

These results convey that our predictions of full covari-

ance matrices increase the segmentation performance and is

superior to previous, more restricted representations [22].

5. Conclusion

In this work, we presented a novel vision-based approach
to perform a simultaneous instance segmentation of crop
leaves and plants using UAV-recorded images of real agri-
cultural fields. Our proposed method generates two differ-
ent image representations suitable to cluster individual crop
leaves and plants within a predicted clustering region. We
exploit these predictions to compute relevant basic pheno-
typic traits for individual crops in the field. Our thorough
experimental evaluation using data from real agricultural
fields suggests that our method outperforms multiple state-
of-the-art approaches. We also show that our novel method
to specify the clustering region based on full covariance ma-
trices improves the overall performance in comparison with
representations presented in related work.
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