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Abstract

In this paper, we propose a deep optimization prior
approach with application to the estimation of material-
related model parameters from terahertz (THz) data that is
acquired using a Frequency Modulated Continuous Wave
(FMCW) THz scanning system. A stable estimation of the
THz model parameters for low SNR and shot noise config-
urations is essential to achieve acquisition times required
for applications in, e.g., quality control. Conceptually, our
deep optimization prior approach estimates the desired THz
model parameters by optimizing for the weights of a neu-
ral network. While such a technique was shown to im-
prove the reconstruction quality for convex objectives in
the seminal work of Ulyanovet al., our paper demonstrates
that deep priors also allow to find better local optima in
the non-convex energy landscape of the nonlinear inverse
problem arising from THz imaging. We verify this claim nu-
merically on various THz parameter estimation problems
for synthetic and real data under low SNR and shot noise
conditions. While the low SNR scenario not even requires
regularization, the impact of shot noise is significantly re-
duced by total variation (TV) regularization. We compare
our approach with existing optimization techniques that re-
quire sophisticated physically motivated initialization, and
with a 1D single-pixel reparametrization method.

1. Introduction

Terahertz (THz) imaging is an emerging sensing tech-
nology with great potential for contact-free material analy-
sis and non-destructive testing not only in application ar-
eas such as quality control in the semiconductor or the
manufacturing industry, but also for civil security applica-
tions [5, 8, 15, 22, 26].
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However, current physically-interpretable material quan-
tities can only be derived reliably from THz data acquired
by highly specialized THz spectroscopic instrumentation
operating in well controlled experimental lab environments.
It is, therefore, of high practical interest to enable the esti-
mation of material-related information using 3D THz data
attained with widely used THz imaging components. Fre-
quency Modulated Continuous Wave (FMCW) THz sys-
tems [12] capture data in the frequency domain at each
pixel, for which the associated physical quantities must
be estimated according to the known THz data formation
model. After being transferred to the spatial domain, this es-
timation comprises a sophisticated, non-linear optimization
process. Due to the low signal strength of the widely used
THz sources, it takes up to hours to acquire high Signal-to-
Noise Ratio (SNR) THz image data for robust parameter
estimations, and the parameter estimation for high SNR
data already requires significant optimization efforts and
fine tuned parameter initialization. Our approach is to im-
prove the robustness of the parameter estimation process for
lower SNR THz data.

Often image analysis and reconstruction problems, such
as the THz problem stated above, are modelled such that a
quantity of interest uxy is extracted from measurements gxy
at every pixel (x, y) to match a given nonlinear data forma-
tion process A, i.e., gxy = A(uxy), yielding optimization
problems of the form

min
u

∑
xy

L(A(uxy), gxy) +R(u), (1)

where L and R are a suitable discrepancy measure (loss)
and an optional regularization, respectively. As A is com-
monly nonlinear and the problem (1) is highly nonconvex,
(1) is often solved locally with first-order descent methods.

In this paper we propose the concept of deep optimiz-
ation prior, a novel unsupervised method to solve highly
non-linear optimization problems. Deep image prior [28]
is applied to problems similar to (1), but for linear inverse
imaging problems yielding convex optimization problems
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with unique global minimizers, by reparameterizing the
original (image) variable u as the output of a CNN N (g; θ)

min
θ

∑
xy

L(A(N (g; θ)xy), gxy) +R(N (g; θ)). (2)

Subsequently, they omit the regularizer R, stop the itera-
tion early, and we conclude that the reconstruction obtained
this way is of higher quality. Our work extends deep im-
age prior to non-convex optimization problems and shows
that not only the quality of the solution increases, but also
the ability to find lower energy minima: By reparameter-
izing the originally spatially uncoupled variables u as the
output of a U-net [24] acting on the data, a gradient descent
algorithm is able to avoid undesirable local minima when
the same algorithm on the original variables gets stuck in.
Most strikingly, the quality of a classical approach (1) has
a severe dependency on a good initialization with physical
knowledge, while the common random initialization of net-
work weights seems to be sufficient for consistently finding
good local minima for (2).

Our approach comprises the following contributions:
• We propose the deep optimization prior concept, i.e.,

the reparametrization of a pixel-wise non-convex THz
model parameter estimation problem via a spatially
coupled 3D neural network.

• We theoretically show that surjective reparametriza-
tions can never eliminate critical points of the origi-
nal cost function, but merely yield a different gradient
descent path.

• We evaluate our approach and demonstrate that the
deep optimization prior approach robustly reconstructs
THz model parameters in low SNR and shot noise sit-
uations. It finds significantly better local minima com-
pared to classical optimization methods and a single-
pixel DNN, and it is very memory efficient.

2. THz Imaging Primer

In this section we briefly describe the THz FMCW scan-
ning system, the acquired data, and the THz model. For
further details we refer to the work of Wonget al. [29, 30].

Our reference FMCW THz system uses active frequency
modulated THz radiation to sense reflected signals includ-
ing phase shifts for around 1,000 frequency samples be-
tween 514–640 GHz. The imaging unit consists of a THz
transmitter that illuminates the scene, and a receiver with
optical components that capture the reflected signal. The
unit is mounted on a x − y translational platform which is
used to scan the scene pixel-by-pixel (more details in [9]).

We denote the acquired reflected electric field amplitude
and phase at lateral position (x, y) ∈ R2 with ĝ((x, y), f).
In FMCW radar signal processing, this frequency signal is

converted into time domain by a Fourier transform, yielding

gt(x, y, t) = F{ĝ(x, y, f)}. (3)

Using the speed of light, gt(x, y, t) can be directly scaled
to the resulting complex valued spatial 3D THz signal
g(x, y, z) ∈ Cnx×ny×nz , where nx, ny , nz is the num-
ber of vertical, horizontal and depth samples, respectively.
Equivalently, we may represent g by considering the real
and imaginary parts as two separate channels, resulting in a
4D real data tensor G ∈ Rnx×ny×nz×2.

After the FFT in (3), the z-direction signal envelope is an
ideal sinc function as continuous spatial signal amplitude,
giving rise to the physical THz model

A(u; z) = ê sinc (σ(z − µ)) exp (−i(ωz − ϕ)) (4)

where the THz model parameters u = (ê, µ, σ, ϕ) relate to
the electric field amplitude, the z-position of the surface, the
width of the reflected pulse, and the phase of the spatial sig-
nal g(x, y, z), respectively. While σ is a system parameter,
the THz parameters ê and ϕ are material dependent. More
details of the THz model are described in [29].

3. Prior Work

Classical Optimization Approaches Inverse problems
have been studied in the microwave and THz communi-
ties for the past two decades, with widespread use of classi-
cal, mainly gradient-based optimization approaches. Early
works proposed to estimate material thickness and reflec-
tive index for THz time domain spectroscopy (TDS) sys-
tem using a gradient descent algorithm [10], to utilize se-
quential quadratic programming and the genetic algorithm
for multilayer structure permittivity extraction [1], and to
apply a combined genetic algorithm and gradient descent
method for complex permittivity measurement for dielec-
tric multilayer structures [23]. More recent works have pro-
posed to use the limited-memory BFGS algorithm (LBFGS)
for THz-TDS multilayer imaging [3], to use the Levenberg-
Marquardt method for THz single pixel image reconstruc-
tion [4], to utilize the Gauss-Newton method for FMCW
THz complex permittivity estimation of dielectric and non-
magnetic materials [2]. Wong et al. [29] proposed to use the
Trust-Region Algorithm for FMCW THz image reconstruc-
tion and deconvolution, to use a steepest gradient descent
method and the Nelder-Mead algorithm for FMCW THz
thickness estimation [25], and to use the MUSIC algorithm
to estimate per-pixel FMCW THz model parameters [14].
Clark et al. [6] proposed to utilize a neural network for the
initialization of Gauss-Newton optimizers, in order to solve
non-linear least squares optimization problems in the appli-
cation of motion stereo.

Deep Learning Based Approaches Some research has
been conducted to apply deep learning methods to inverse
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THz problems. Liet al. [16] proposed to train a convolu-
tional neural network for THz-TDS image super-resolution.
Maoet al. [20] proposed to train a CNN architecture for
THz-TDS integrated circuit defect detection. Wonget al.
[30] proposed a per-pixel model-based autoencoder for
FMCW THz image reconstruction. Suet al. [27] applied
supervised deep learning by a standard U-net for THz to-
mographic imaging, which reconstructed 3D object from a
series of corrupted THz-TDS 2D images.

1D Per-Pixel Auto-Encoder As our deep optimization
prior approach extends the approach of Wonget al. [30], we
discuss this approach in more detail. This approach directly
estimates u = (ê, σ, µ, ϕ) from the given Rnz×2 complex
samples gx,y in the spatial domain utilizing a model-based
autoencoder network N 1D(·; θ) and the loss function

min
θ

∑
training batch b

∥A(N 1D(Gb
x,y; θ))−Gb

x,y∥22. (5)

The approach uses an unsupervised training method to fit
the THz model (4) using 80% of the pixels for training in
(5), and tests if the resulting network can directly predict the
desired parameters on the remaining 20% of the THz image
pixels. The results in [30, Tab. 1, Figs. 8c) and 8d)] show
that the matching quality of the model-based autoencoder
is comparable to the optimization approach [29] and using
the auto-encoder’s output as an initialization of a classical
optimizer yields superior loss values.

4. Proposed Method
The aim of THz model parameter estima-

tion is to extract the parameters u(x, y) =
(ê(x, y), σ(x, y), µ(x, y), ϕ(x, y)) ∈ R4 of the THz
model (4) at each pixel location (x, y) such that it
corresponds to the given FMCW THz measurements
G(x, y) ∈ Rnz×2, i.e. minu L(A(u), G(x, y)). Even with
simple choices of the loss function L such as an ℓ2-squared
loss, the resulting fitting problem is highly nonconvex.
Existing approaches [29, 30] use a simple ℓ2-squared loss

min
u

∑
x,y

∥A(ux,y)−Gx,y∥22, (6)

in order to not further exacerbate the goal of a robust THz
parameter estimation. Moreover, applying local first or-
der or quasi-Newton methods to 105 − 106 pixel optimiza-
tions (6) is already quite costly. To the best of our knowl-
edge, no regularization approaches have been applied to this
kind of THz model parameter estimation so far.

4.1. Deep Optimization Prior

Recalling the overall approach depicted in Sec. 1, the
main idea is to reparameterize the unknown (image) vari-
able ux,y in nonconvex optimization problems of the
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Figure 1: The proposed deep optimization prior approach:
Reparametrizating ux,y by a network N in combination
with the model-based autoencoder.

form (1) by the prediction of a neural network N via ux,y =
N (Gx,y; θ) for network parameters, yielding a a reformu-
lated optimization problem of the form (2).

Fig. 1 illustrates the overall deep optimization prior net-
work architecture comprising the combination of the repa-
rameterization network and the model-based autoencoder.
The proposed deep optimization prior approach is minimiz-
ing the loss function L as an optimizer during the unsuper-
vised training procedure, which is different to the unsuper-
vised training-then-prediction approach proposed by [30].
The network-based reparameterization for THz model para-
meter estimation by combining (6) and (2) is formulated as:

min
θ

∑
x,y

∥A(N (G; θ)x,y)−Gx,y∥22. (7)

Besides the data term loss function (7), a regularization
term for THz model parameter estimation can be applied.
As shown in Sec. 7, the regularization improves the THz
parameter estimation in the case of individual pixel failure,
i.e. shot noise. We add a regularizing term to (7) as follows:

min
θ

∑
x,y

∥A(N (G; θ)x,y)−Gx,y∥22 + λ∥∇N (G; θ)x,y∥1,

(8)

where ∇ is the gradient operator on neighborhood pixels
applied to the model parameter predicted by network N ,
weighted by the regularization coefficients λ.

4.2. 3D Model-based Autoencoder

As stated in [30], a model-based autoencoder allows un-
supervised learning of measurement data by resembling an
autoencoder with a learnable network based encoder and
a physical model-based decoder, and therefore able to deal
with measurement-specific distortions. However, during the
learning phase in the per-pixel learning approach, the lateral
neighborhood information is not considered. We propose

3813



182x446x446

50x223x223

20x112x112

100x56x56

210x28x28

180x446x446

260x223x223

370x112x112

370x56x56

160x446x446

160x223x223

160x112x112

160x56x56

210x56x56

100x112x112

20x223x223

50x446x446

5x446x446

conv+concat

downsample

upsample

conv

Figure 2: The proposed U-net architecture of network N
(example for 182 channels with 446×446 pixels) start from
the data tensor Gx,y (green box) to the desired parameter
ux,y = N (Gx,y; θ) (yellow box). Blue boxes represent fea-
ture maps.

the extension to a 3D model-based autoencoder which al-
lows unsupervised learning on the THz measurement data
using the proposed deep optimization prior approach for
a lateral spatial coupled optimization. Please note, that
in contrast to the 1D single pixel autoencoder [30], our
network-based reparameterization (Sec. 4.1) allows spatial
coupling even though the THz model (4) is independent in
the lateral spatial domain.

Network Architecture As the THz measurement data is
a high-dimension data in the form of a 4-D tensor, the com-
putational requirement of the network is intense. Using typ-
ical CNN architectures similar to [30] is no longer possible
because of the high memory and computational requirement
of the fully connected layers. Hence, we utilize a U-net-type
network similar to [24]. A U-net is a kind of fully convo-
lutional networks (FCN) [18], i.e. it only consists of convo-
lutional layers, and is, therefore, computational extremely
efficient, while it couples pixels in large lateral spatial re-
gions, which is an important feature in our application.

We optimized the exact structure of the U-net architec-
ture via an ablation study on one particular THz imaging
dataset MetalPCB. We made two changes to the original U-
net architecture [24] that improve the results for optimiz-
ation purposes significantly: First, we do not double the
number of channels in the encoder-part, but insert an in-
termediate bottleneck. Second, the number of channels that
are skipping from the encoder to the decoder features at the
same scale via a concatenation is increased from the com-
monly used 4 channels to 160 channels (see Fig. 2). For a
better understanding of the effects of these changes, please
consult the ablation study in the supplementary material.

In order to ensure the predicted parameters lie within the
reasonable physical scale indicated by the dataset, a sig-
moid transfer function is applied to the predicted parameter

ux,y and is linearly scaled to get ûx,y ∈ [umin, umax]. Fi-
nally, the forward model A (ûx,y) takes the projected para-
meter as input to generate the spatial THz model data.

In the per-pixel autoencoder [30], the network directly
estimate the phase angle ϕ ∈ [0, 2π] linearly, raising the
problem of the gradient computation across the 0 − 2π
phase wrap. We solve this problem by predicting two real-
valued phase components ϕc = cosϕ and ϕs = sinϕ, and
reconstructing the phase afterwards ϕ = atan2(ϕs, ϕc).
Hence, the proposed U-net architecture predicts 5 param-
eters {ê, σ, µ, ϕc, ϕs} (see Fig. 2).

For a fair comparison, we adopt the per-pixel auto-
encoder [30] by incorporating the phase unwrapping part
in evaluation in Sec. 7.1, 7.2 and 7.3.

The details of this unsupervised training procedure is
given in the supplementary material.

5. Theoretical Aspects of Reparametrizations

In this section we provide a theoretical analysis of the
proposed parameterization using neural networks and show
that it implicitly corresponds to a variable metric optimiz-
ation strategy for problem (1).

Neglecting the regularizer, problem (1) is in itself not
coupled on a pixel level. For the sake of simplicity consider
for now the general uncoupled problem

min
u∈Ω

∑
i

hi(ui), (9)

where Ω = Ωi1 × · · · × Ωin is the product space of the
pixel-wise domains and hi are (non-convex) cost functions
at pixel i. Clearly, minimizing (9) reduces to minimizing
problem hi for each pixel i as the sum of the cost func-
tions decouples on a pixel level. Therefore gradient descent
on problem (9) corresponds to gradient descent on each of
the subproblems hi. Considering a reparametrization of the
problem by a continuous function N : Θ → Ω yields

min
θ∈Θ

(H ◦ N )(θ). (10)

for H(u) :=
∑

i hi(ui), and thus generalizes (7). Although
the problems at pixel level can share a common structure,
reformulation (10) alone without knowledge of this struc-
ture is not advantageous in general due to the the preserva-
tion of local geometries, as stated in the following remark

Remark 1. Preservation of local minima. Let û be a local
minimizer of H in the range of N . Then each θ̂ ∈ N−1(û)
is also a local minimizer of H ◦ N .

Furthermore assuming differentiability of N , consider a
continuous interpretation of gradient descent, the gradient
flow w.r.t H , i.e. a θ(t) s.t. θ′(t) = −∇(H ◦ N )(θ(t)).
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Then for u(t) := N (θ(t)) it holds

u′(t) = ∇N (θ(t))T θ′(t) (11)

= −∇N (θ(t))T∇(H ◦ N )(θ(t)) (12)

= −∇N (θ(t))T∇N (θ(t))∇H(u(t)). (13)

For Ω ⊂ Rd the matrix M(t) := ∇N (θ(t))T∇N (θ(t)) ∈
Rd×d is positive seme-definite and hence −M(t)∇H(u(t))
is a descent direction. We hypothesize that for certain prob-
lem classes hi as studied in the numerical experiments the
temporally changing implicit gradient preconditioning with
M(t) is advantageous in terms of training dynamics. In par-
ticular, networks with a large receptive field such as a U-net
typically yield dense matrices ∇N (θ(t))T∇N (θ(t)) and
thus induce changes in predictions uxy even if ∂H

∂uxy
= 0.

6. Experimental Setup

Datasets We evaluate the optimization performance of
classical approaches and the proposed method on syntheti-
cally simulated and measured THz datasets:

• MetalPCB: Measured THz image dataset from [30].
• SynthUSAF: Ground truth THz model parameters are

synthetically generated and the raw THz data is syn-
thetized using (4).

• SynthObj: Ground truth parameters are synthetically
simulated from an 3D object from [11].

To simulate different noise level, we use two synthetic noise
models:

• +AWGN: adding Additive White Gaussian Noise
(AWGN) by −20 to 10dB peak-SNR (PSNR) to the
frequency domain signal, with a static background
noise level and a varying signal power.

• +ShotNoise: On top of the AWGN, a random salt-and-
pepper noise signal with 60dB higher power is added
for 10% of the pixels.

All synthetic datasets are generated using the size of
MetalPCB, i.e. 446× 446× 91.

Choice of optimizer Commonly used optimization meth-
ods for the THz inverse problem can be categorised as (see
Sec. 3): Hessian based methods (second order gradient),
which include Levenberg Marquardt [21], Trust Region Al-
gorithm [7], and LBFGS [17]; Gradient descent methods
(first order gradient), which include gradient descent, and
steepest gradient descent.

We optimize the deep optimization prior loss functions
(7) and (8) using the AdamW optimizer as implemented in
PyTorch with GPU acceleration. To ensure a fair compar-
ison we phrase the classical optimization (1) as the min-
imization of a ”network” that does not receive any input
node, but instead only outputs the learnable parameters u to
avoid any differences in implementation. As a second base-
line, we additionally evaluate the LBFGS [17] optimizer

for the classical approach to exclude a systematic advantage
of the specific AdamW method for optimization problems
with a deeply nested structure. All formulations and op-
timizers are run for 1200 iterations (i.e. full-batch epochs
in machine learning terminology). Moreover, we compare
them to the per-pixel autoencoder [30]. In order to have a
fair comparison, we changed the optimization algorithm of
the per-pixel autoencoder from Adam in [30] to AdamW.

Initialization Descent-based nonconvex optimization
methods depend on the selected parameter initialization.
As random parameter initialization yields very bad results
for classical optimization (see Sec. 7.1), we also apply
the physics based initialization from [29] for AdamW and
LBFGS. For the random network initialization, we adopted
the method from [13] for the per-pixel autoencoder and
for the proposed 3D autoencoder. To verify the robustness
of random initialization, each setting that is related to
random initialization of the model parameters or to random
initialization of the network parameters is run 5 times.

Hyperparameter optimization In order to respect these
physical meaning of the THz model parameters (see Sec. 2,
we retain the original data scale for training and optimiz-
ation. However, the large variance of numeric ranges of
these parameters leads to a diverging optimal hyperparam-
eter for network training and optimizer. We, therefore, op-
timize the hyperparameters via a grid search for 4 learning
rates from 10−3 to 100 for all approaches individually using
the MetalPCB dataset, and the corresponding optimal learn-
ing rate (see Tab. 1, column LR) is applied for all datasets.

For the regularization coefficients λ, we empirically
maximize the coefficients but not blurring the parameter im-
ages based on visual inspection for all optimizers (LBFGS,
AdamW and the proposed method) using the shot noise
model. Further technical details on the choice of optimizer,
initialization and hyperparameter optimization are given in
the supplementary material.

7. Evaluation
In this section, we evaluate optimizers and the proposed

method according to objective loss function, parameter ac-
curacy, visual quality, and computational requirement.

7.1. Evaluation on Loss

Measurement dataset Table 1 shows the average ℓ2-
squared loss in (7) using MetalPCB and MetalPCB+AWGN
dataset by optimizers per-pixel autoencoder [30],
LBFGS [17] and AdamW [19] to the proposed method.

The proposed method obtains the lowest loss for the
measurement MetalPCB dataset. For the additional AWGN
noise levels, our method is overall the best optimizer, ex-
cept for a marginal gap to the per-pixel autoencoder at
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Average Normalized Loss (×10−6)
Optimizer PPAE LBFGS AdamW Proposed

Initial. Random Physics Random Physics Random Random
MetalPCB

Opt. LR 0.001 0.01 0.1 0.001 0.01 0.01
measured 3372.63 218.02 15465.89 61.32 12677.52 57.56

MetalPCB+AWGN at PSNR Level
-20dB 34927.94 39766.81 105352.48 36100.08 49608.79 30871.59
-10dB 3232.18 10488.53 85814.26 7380.64 21591.09 3271.89
0dB 408.61 1967.64 63289.90 965.00 18226.71 400.09

10dB 112.16 240.86 27453.51 135.92 17439.26 111.22

Table 1: Comparison of average ℓ2-squared loss in (7) us-
ing MetalPCB and MetalPCB+AWGN dataset by optimiz-
ers Per-pixel autoencoder, LBFGS and AdamW to the pro-
posed 3D autoencoder. The given ℓ2-squared loss is nor-
malized by the signal power. The best optimizers (lower is
better) are highlighted.

Average Normalized Loss (×10−6)
Optimizer PPAE LBFGS AdamW Proposed

SynthUSAF+AWGN by PSNR level
Optimal LR 0.001 0.01 0.01 0.01

-20dB 38843.38 38624.05 35838.50 29802.03
-10dB 19326.69 15620.10 9243.03 3058.49
0dB 8107.89 3730.37 3698.46 317.82

10dB 7750.62 1220.81 1190.69 40.82
SynthObj+AWGN at PSNR level

Optimal LR 0.001 0.001 0.01 0.01
-20dB 30163.70 49725.60 36259.96 29729.65
-10dB 13342.05 13370.01 10202.86 3276.31
0dB 5170.08 7027.83 4032.16 387.28

10dB 2741.44 16733.44 1711.49 106.93

Table 2: Comparison of average ℓ2-squared loss in (7) using
SynthUSAF and SynthObj datasets with AWGN.

−10dB PSNR noise level. Moreover, the minimum and
maximum of multiple runs are relatively stable for the pro-
posed method, while the per-pixel autoencoder obtains a
huge variation in the measurement dataset and at −20dB
noise level (see statistics in the supplementary material).

For the initialization, the classical optimizers LBFGS
and AdamW obtain very high loss by using random initial-
ization, while the proposed method achieves very good re-
sults, i.e., the proposed method is robust to the initialization.

As the physics based initialization for LBFGS and
AdamW is clearly a better optimizer than random based ini-
tialization, we use physics based initialization for LBFGS
and AdamW from here on for the entire evaluation section.

Synthetic dataset with AWGN Table 2 shows that the
proposed method achieves the lowest average loss for both
synthetic datasets and at all noise levels significantly. The
statistics of synthetic datasets with the AWGN noise model
can be found in the supplementary material.

Datasets with shot noise model Table 3 shows the av-
erage loss with regularization in (8) using MetalPCB,
SynthUSAF and SynthObj dataset at 0dB AWGN and 10%
shot noise respectively. To make a fair comparison, all op-

Average Normalized Loss (×10−6) at 0dB PSNR Level
Optimizer LBFGS AdamW Proposed

Learning Rate 1 0.1 0.01
MetalPCB+ShotNoise 2034.9 1670.4 967.3

SynthUSAF+ShotNoise 10953.1 5036.5 4831.2
SynthObj+ShotNoise 7771.8 4329.7 4271.7

Table 3: Comparison of average loss with regularization
in (8) using MetalPCB, SynthUSAF and SynthObj datasets
with shot noise model. The learning rate is selected based
on optimal learning rate of MetalPCB+ShotNoise

timizers use the same set of regularization coefficient λ.
Note, that we only include LBFGS, AdamW and the pro-
posed method in this table as the per-pixel autoencoder can-
not optimize the loss function with total variation regular-
ization. The additional min/max values are given in the sup-
plementary material.

As we can see, the proposed method obtains the lowest
loss among all optimizers. Note that AdamW also achieves
a marginally worse, second best optimizer for synthetic
dataset, while the proposed method still achieves a signifi-
cantly lower loss for measurement dataset MetalPCB.

Discussion Given the fact that all these optimizers are op-
timizing the same loss function (7) and (8) respectively, the
result shows that the proposed method find lower energy
minima by avoiding undesirable local minima stuck in the
gradient descent algorithm.

7.2. Evaluation on Parameter Accuracy

In addition, we evaluate classical optimizers, the per-
pixel autoencoder and the proposed method according to
the parameter accuracy during optimization in (7) and (8).
To estimate the model parameter accuracy, we evaluate the
Root Mean Square Error (RMSE) of the estimated parame-
ters regarding the ground truth parameters for the synthetic
datasets SynthUSAF and SynthObj. Due to the variation
in signal power of different noise levels, the RMSE of the
model parameter ê is normalized by the signal power given
by the individual dataset.

7.2.1 Synthetic Dataset with AWGN

Numerical comparison Figure 3 plots the RMSE
of model parameters ê, estimated by per-pixel auto-
encoder, LBFGS, AdamW and the proposed method using
SynthUSAF and SynthObj dataset respectively. We provide
all model parameters plots in the supplementary material.

Overall, the proposed method has the most accurate
(lowest RMSE) estimation for all model parameters. The
per-pixel autoencoder occasionally achieves more accurate
parameters at low noise level (0dB and 10dB), but the error
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Figure 3: Comparison of RMSE of model parameter ê us-
ing dataset SynthUSAF and SynthObj at AWGN noise level
from −20 to 10dB. Bars and whiskers indicate minimum,
median and maximum RMSE among 5 runs.

bars show its instability. Given all optimizers are optimiz-
ing the same loss function, the parameter accuracy gap be-
tween all 3 per-pixel optimizers and the proposed method
shows that the proposed deep optimization prior approach
significantly improves the accuracy of model parameter es-
timation by overcoming the undesired local minima.

Qualitative comparison To check the quality of the es-
timated model parameters, Fig. 4 depicts the correspond-
ing model parameter images for ê and µ (the other model
parameter images are given in the supplementary material).
The given ê and µ parameter images are extracted from the
run that obtained the median RMSE (median quality run) at
0dB PSNR noise level for the SynthUSAF dataset, and the
highest RMSE (worst quality run) for SynthObj dataset.

As we can see from the µ images for SynthUSAF, per-
pixel autoencoder and the proposed method both estimate
generally accurate parameters, while the proposed method
has slightly more accurate µ values than the per-pixel auto-
encoder in the middle of the structure. However, when we
compare the µ images of SynthObj obtained by the worst
run, the proposed method performs significantly better than
the per-pixel autoencoder and AdamW. This performance
difference shows that the per-pixel autoencoder is sensitive
to the network initialization, while the proposed method can
overcome undesired local minima given the fact that both
autoencoders utilize the same initialization scheme [13].

7.2.2 Synthetic Dataset with Shot Noise

Numerical comparison As we can see from Table 4,
the proposed method obtains the most accurate parameters

RMSE (Median of 5 runs)
Optimizer LBFGS AdamW Proposed

SynthUSAF+ShotNoise at 0dB PSNR
LR 1 0.1 0.01
ê 0.2125 0.1346 0.1274
µ 0.3606 0.1642 0.1393
σ 0.00877 0.00584 0.00372
ϕ 0.7067 0.4872 0.4572
SynthObj+ShotNoise at 0dB PSNR

LR 1 0.1 0.01
ê 0.2233 0.1098 0.1079
µ 0.3083 0.2344 0.3129
σ 0.00495 0.00508 0.00435
ϕ 0.602 0.4029 0.387

Table 4: Comparison of model parameters RMSE using
SynthUSAF and SynthObj datasets with shot noise model.

with a slight margin to AdamW for the SynthUSAF dataset,
which achieves better accuracy for µ.

Qualitative comparison Fig. 4 (last two columns)
shows the median run parameter images ê and µ for
SynthUSAF+ShotNoise and SynthObj+ShotNoise. (Other
model parameter images are shown in the supplementary
material.)

By visual comparison of the SynthUSAF µ images, we
observe that the proposed method removes shot noise sig-
nificantly, while the AdamW optimizer still retains more
shot noise. The visual comparison of the SynthObj µ im-
ages shows that the proposed method obtains less shot noise
than the AdamW optimizer.

Discussion By evaluation on the parameter image quality
in Sec. 7.2.1 and Sec. 7.2.2, we can see that the quality of
the optimization solution is improved significantly. How-
ever, we notice that in rare cases the proposed 3D auto-
encoder approach generates artefacts in the corner of the
single parameter image, such as in the top-left corner of the
ê image for the SynthUSAF+AWGN dataset (Fig. 4).

7.3. Timing and Memory

Average Time in seconds
Optimizer PPAE LBFGS AdamW Proposed

Optimizer without regularization
MetalPCB †5012.0+3.0 1650.3 71.9 225.2

MetalPCB+AWGN †4339.2+3.1 1835.8 71.6 223.8
Optimizer with regularization

MetalPCB+ShotNoise *N/A 5503.5 223.2 367.4
SynthUSAF+ShotNoise *N/A 5829.8 225.0 371.3
SynthObj+ShotNoise *N/A 4853.8 225.1 371.4

† This is average training time and prediction time for PPAE
∗ Not available: PPAE is not available for regularization.

Table 5: Runtime comparison.

Table 5 compares the optimization time for all meth-
ods. As the per-pixel autoencoder is trained by the classical
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training-then-prediction approach, the training and predic-
tion times are stated individually. Note that datasets with
the shot noise model are optimized by an additional regu-
larization term using (8), which include local dependence.

The proposed method has a drastically improved training
time compared to the per-pixel autoencoder, from 1.4 hours
to 3.7 minutes, i.e., a factor of 22.2.

However, we can see that AdamW is the fastest opti-
mizer in general. It is faster than the proposed method by a
factor of 3.1, when the optimization problem is pixel-wise
operation without regularization. However, AdamW does
out-perform the proposed method only by a factor of 1.6
when the optimization problem includes regularization.

To compare the memory requirement for the per-pixel
autoencoder and the proposed method, we record the graph-
ics memory requirement of the network by PyTorch Pro-
filer. For the per-pixel autoencoder, the graphics memory
requirement for a 446 × 446 batch size is 10.53GB, while
the proposed method only requires 2.20GB. This shows that
the proposed method is more efficient in computation and

memory requirement than the per-pixel autoencoder.

8. Conclusion
In this paper, we propose a deep optimization prior ap-

proach with application to THz model parameters estima-
tion. Comparing to classical first order (AdamW), second
order (LBFGS) optimizers and a single-pixel model-based
autoencoder method, the proposed approach shows supe-
rior ability to robustly find better local optima in the highly
non-convex energy landscape, and it enhances the quality
of the desired model parameters. Experiments demonstrate
that the proposed deep optimization prior approach robustly
reconstructs THz model parameters in low SNR and shot
noise situation without relying on sophisticated physically
motivated initializations. Moreover, the proposed U-net en-
coder architecture results in a network that is computational
and memory-wise highly efficient compared to the state-
of-art 1D convolutional neural network structure. Future
research will include exploiting more application to other
non-convex optimization problems.
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