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Abstract

Though manifold-based clustering has become a popu-
lar research topic, we observe that one important factor
has been omitted by these works, namely that the defined
clustering loss may corrupt the local and global structure
of the latent space. In this paper, we propose a novel Gen-
eralized Clustering and Multi-manifold Learning (GCML)
framework with geometric structure preservation for gener-
alized data, i.e., not limited to 2-D image data and has a
wide range of applications in speech, text, and biology do-
mains. In the proposed framework, manifold clustering is
done in the latent space guided by a clustering loss. To over-
come the problem that the clustering-oriented loss may de-
teriorate the geometric structure of the latent space, an iso-
metric loss is proposed for preserving intra-manifold struc-
ture locally and a ranking loss for inter-manifold struc-
ture globally. Extensive experimental results have shown
that GCML exhibits superior performance to counterparts
in terms of qualitative visualizations and quantitative met-
rics, which demonstrates the effectiveness of preserving
geometric structure. Code has been made available at:
https://github.com/LirongWu/GCML.

1. Introduction
Clustering, a fundamental tool for data analysis and vi-

sualization, has been an essential research topic in data sci-
ence. This paper focuses on generalized clustering, which
takes vector data as input and is applicable to data with var-
ious dimensions, not limited to 2-D image data. Conven-
tional clustering algorithms such as K-Means [11], Gaus-
sian Mixture Models [1], and Spectral Clustering [19] per-
form clustering based on distance or similarity measures.
However, handcrafted distance or similarity measures are
rarely reliable for large-scale high-dimensional data, mak-
ing it increasingly challenging to achieve effective cluster-
ing. An intuitive solution is to transform the data from the
high-dimensional input space to the low-dimensional latent
space and then to cluster the data in the latent space. This
can be achieved by applying manifold-based dimensional-

ity reduction techniques, such as t-SNE [10], and UMAP
[13]. However, since these methods are not specifically de-
signed for clustering tasks, some of their properties may be
contrary to our expectations, e.g., two data points from dif-
ferent manifolds that are close in the input space will be
closer in the latent space learned by UMAP. Therefore, the
first question here is how to perform multi-manifold learn-
ing for dimensionality reduction that favors clustering?

The two main points for the multi-manifold learning are
Point (1) preserving the local geometric structure within
each manifold and Point (2) ensuring the discriminability
between different manifolds. Most previous works seem
to start with the assumption that data labels are known, and
then design the algorithm in a supervised manner. However,
it is challenging to decouple complex crossover relations
and ensure discriminability between different manifolds, es-
pecially in unsupervised settings. One natural strategy is
to achieve Point (2) through clustering to get pseudo-labels
and then performing single-manifold learning for each man-
ifold. However, the clustering-oriented loss may deteriorate
the geometric structure of the latent space1, and hence clus-
tering is somewhat contrary to Point (1) (this will be de-
tailed in Sec. 3.3). Therefore, it is important to alleviate
this contradiction so that clustering helps both Point (1) and
Point (2). Thus, the second question here is how to cluster
data that favors multi-manifold learning?

In this paper, we propose to jointly perform general-
ized clustering and multi-manifold learning with geometric
structure preservation. Inspired by [24], the clustering cen-
ters are defined as a set of learnable parameters, and we use
a clustering loss to simultaneously guide the separation of
data points from different manifolds and the learning of the
clustering centers. To prevent clustering loss from deterio-
rating the latent space, an isometric loss and a ranking loss
are proposed to preserve the intra-manifold local structure
and inter-manifold global structure. Finally, we achieve the

1This claim was first made by IDEC [4], but they did not provide any
experiment or analysis to support it. In this paper, however, we show that
the geometric structure of the latent space is indeed corrupted by extensive
visualizations (Fig. 3 and Fig. 4) and statistical analysis (Fig. 6).
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following three goals related to clustering, geometric struc-
ture preservation, and multi-manifold learning: (1) Clus-
tering helps to ensure inter-manifold discriminability (Point
2); (2) Local structure preservation (Point 1) can be com-
patible with clustering; (3) Geometric structure preservation
helps to cluster. The contributions are summarized as:

• Proposing to combine generalized deep clustering and
multi-manifold learning into a unified framework with
local and global structure preservation.

• Setting the clustering centers as a set of learnable pa-
rameters and achieve global structure preservation in
a faster, more efficient, and easier to optimize manner
by applying ranking loss to the clustering centers.

• Pointing out contradictions between two optimization
goals of clustering and local structure preservation and
proposing an elegant training strategy to alleviate it.

2. Related Work
Clustering Analysis. As a fundamental tool in machine

learning, clustering has been widely applied in various do-
mains. One branch of classical clustering is K-Means and
Gaussian Mixture Models (GMM), which are fast, easy
to understand, and can be applied to a large number of
problems. However, limited by Euclidean measures, their
performance on high-dimensional data is often unsatisfac-
tory. Spectral clustering and its variants (such as SC-Ncut
[1]) extend clustering to high-dimensional data by allowing
more flexible similarity measures. However, limited by the
computational efficiency of the full Laplace matrix, spectral
clustering is challenging to extend to large-scale datasets.

Deep Clustering. The success of deep learning has
contributed to the growth of deep clustering [2, 9]. One
branch of deep learning performs clustering after learning
low-dimensional embeddings. For example, [21] uses au-
toencoder to learn low-dimensional features and then runs
K-Means to get clustering results (AE+K-Means). In-
stead, N2D [12] applies UMAP to find the best cluster-
able manifold of the learned embeddings, and then runs
K-Means to discover higher-quality clusters. The other
category of algorithms tries to optimize clustering and di-
mensionality reduction jointly. The closest work to us is
DEC [24], which learns a mapping from the input space to
a low-dimensional latent space through iteratively optimiz-
ing clustering-oriented objective. As a modified version of
DEC, while IDEC claims to preserve the local structure of
data, their contribution is nothing more than adding a re-
construction loss. Besides, JULE [26] unifies representa-
tion learning with clustering, which can be considered as a
neural extension of hierarchical clustering. Instead, Spec-
tralNet [18] directly embeds the input into the Laplacian
eigenspace in which clustering is performed. DSC [27] de-
vises a dual autoencoder to embed data into latent space,

and then deep spectral clustering is applied to obtain la-
bel assignments. Moreover, DDC [16] proposes to use a
density-based clustering algorithm to initialize cluster cen-
ters and then perform image cluster discovery.

To avoid any possible misunderstanding, we would like
to highlight that generalized deep clustering and visual self-
supervised learning (SSL) are two different research fields.
SSL typically uses more powerful CNN architecture (ap-
plicable only to 2-D image data) and applies sophisticated
techniques such as contrastive learning [6], data augmenta-
tion, and clustering [28, 22] for better performance on large-
scale datasets, such as ImageNet. For example, ASPC-DA
[5] combines data augmentation with self-paced learning to
encourage the learned embeddings to be cluster-oriented.
Besides, ClusterGAN [14] trains a generative adversarial
network jointly with a clustering-specific loss to achieve
clustering in the latent space. The generalized deep cluster-
ing, on the other hand, uses a generalized MLP architecture
(applicable to all kinds of data with various dimensions, not
limited to 2-D image data) and has a very wide range of
applications in images, text, and biology domains.

Manifold Learning. The manifold assumption hypoth-
esizes that a low-dimensional manifold is embedded in a
high-dimensional space, and the manifold learning aims to
achieve dimensionality reduction via a nonlinear mapping
that preserves the geometric structure. Isomap, as a clas-
sical algorithm of single-manifold learning, aims to seek
a global optimal subspace that best preserves the geodesic
distance between data points [20]. In contrast, some algo-
rithms, such as the Locally Linear Embedding (LLE) [17],
are more concerned with the preservation of local neigh-
borhood information. Furthermore, multi-manifold learning
has been proposed to obtain intrinsic properties of different
manifolds. [25] proposes a supervised discriminant isomap
where data points are partitioned into different manifolds
according to label information. Similarly, [29] proposes a
semi-supervised learning framework that applies the labeled
and unlabeled training samples to perform the joint learning
of local-preserving features. In most previous work, it is as-
sumed that the label is known or partially known, which sig-
nificantly simplifies the problem. However, it is challenging
to decouple multiple overlapping manifolds in unsupervised
settings, and that is what this paper aims to explore.

3. Proposed Method
Consider a dataset X with N samples, and each sam-

ple xi ∈ Rd is sampled from C different manifolds
{Mc}Cc=1. Assume that each category in the dataset lies
in a compact low-dimensional manifold, and the number
of manifolds C is prior knowledge. Define two nonlin-
ear mapping zi = f(xi, θf ) and yi = g(zi, θg), where
zi ∈ Rm is the embedding of xi in the latent space,
and yi is the reconstruction of xi. The j-th cluster cen-
ter is denoted as µj ∈ Rm, where {µj}Cj=1 is defined
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Figure 1. The GCML framework. The encoder, decoder, latent space, and cluster centers are marked as blue, red, green, and purple.

as a set of learnable parameters. We aim to find opti-
mal parameters θf and {µj}Cj=1 so that the embeddings

{zi}Ni=1 can achieve clustering with local and global struc-
ture preservation. To this end, a denoising autoencoder
shown in Fig. 1 is first pre-trained in an unsupervised man-
ner to learn an initial latent space. Denoising autoen-
coder aims to optimize the self-reconstruction loss LAE =
MSE(x̂, y), where the x̂ is a copy of x with Gaussian
noise added, that is, x̂ = x + N(0, σ2). Then the autoen-
coder is fine-tuned by optimizing the following clustering-
oriented loss {Lcluster(z, µ)} and structure-oriented losses
{Lrank(x, µ), LLIS(x, z), Lalign(z, µ)}. Since the cluster-
ing should be performed on features of clean data, instead
of noised data x̂ that is used in denoising autoencoder, the
clean data x is used for fine-tuning.

3.1. Clustering-oriented Loss

First, the cluster centers {µj}Cj=1 in the latent space Z
are initialized (the initialization method will be introduced
in Sec. 4.1). Then the similarity between the embedded
point zi and cluster centers {µj}Cj=1 is measured by Stu-
dent’s t-distribution, as follows

qij =

(
1 + ‖zi − µj‖2

)−1
∑

j′

(
1 + ‖zi − µj′‖2

)−1 (1)

The auxiliary target distribution is further designed to
help manipulate the latent space, defined as:

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

, where fj =
∑
i

qij (2)

where fj is the normalized cluster frequency, used to bal-
ance the size of different clusters. Then the encoder is opti-
mized by the following objective:

Lcluster = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(3)

The gradient of Lcluster with respect to each learnable
cluster center µj can be computed as:

∂Lcluster

∂µj
= −

∑
i

(
1 + ‖zi − µj‖2

)−1 · (pij − qij) (zi − µj)

(4)
where Lcluster facilitates the aggregation of data points
within the same manifold, while data points from differ-
ent manifolds are kept away from each other. However,
we found that the clustering-oriented losses may deteriorate
the geometric structure of the latent space. To prevent this
deterioration, we introduces three other structure-oriented
losses to preserve the local and global manifold structures.

3.2. Structure-oriented Loss
Intra-manifold Isometry Loss. The intra-manifold lo-

cal structure is preserved by optimizing the objective as:

LLIS =

N∑
i=1

∑
j∈NZ

i

|dX (xi, xj)− dZ (zi, zj)| · π(l(xi) = l(xj))

(5)
where NZ

i represents the neighborhood of data point zi in
the latent space Z, and the kNN is applied to determine
the neighborhood. π(·) ∈ {0, 1} is an indicator function,
and l(xi) is a manifold determination function that returns
the manifold si where sample xi is located, that is, si =
l(xi) = argmaxj pij . Then we can derive C manifolds
{Mc}Cc=1 by Mc = {xi; si = c, i = 1, 2, ..., N}. The loss
LLIS constrains the isometry within each manifold.

Inter-manifold Ranking Loss. The inter-manifold
global structure is preserved by optimizing the objective as:

Lrank =

C∑
i=1

C∑
j=1

∣∣dZ (µi, µj)− κ · dX
(
vXi , v

X
j

)∣∣ (6)

where {vXj }Cj=1 is defined as the ground-truth centers of
different manifolds in the input space X with vXj =

1
|Mj |

∑
i∈Mj

xi (j = 1, 2, ..., C). The parameter κ deter-
mines the extent to which different manifolds move away
from each other. The larger κ is, the further away the dif-
ferent manifolds are from each other. The derivation for
the gradient of Lrank with respect to each learnable cluster
center µj is placed in Appendix A.2. Note that Lrank is
optimized in an iterative manner, rather than by initializing
{µj}Cj=1 once and then separating different clusters based
only on initialization results. Additionally, contrary to us,
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the conventional methods for dealing with inter-manifold
separation typically impose push-away constraints on all
data points from different manifolds [29, 25], defined as:

Lsep = −
N∑
i=1

N∑
j=1

dZ (zi, zj) · π(l(xi) 6= l(xj)) (7)

The main differences between Lrank and Lsep are as fol-
lows: (1) Lsep imposes constraints on embedding {zi}Ni=1,
which indirectly affects the network parameters θf . In
contrast, Lrank imposes constrains directly on parameters
{µj}Cj=1 in the form of regularization item. (2) Lrank is
easier to optimize, faster to process, and more accurate.
Lsep is imposed on all data points from different mani-
folds, which involves N×N point-to-point relationships.
This means that each point may be subject to the push-away
force from other manifolds, but at the same time, each point
has to meet the isometry constraint with its neighboring
points. Under these two constraints, optimization is diffi-
cult and it is easy to fall into a local optimal solution. In
contrast, Lrank is imposed directly on the clustering cen-
ters, involving only C×C cluster-to-cluster relationships,
which avoids the above problem and makes it easier to op-
timize. (3) The parameter κ introduced in Lrank allows us
to control the extent of separation between manifolds.

Alignment Loss. Global ranking loss Lrank is imposed
directly on {µj}Cj=1, so optimizing Lrank only updates

{µj}Cj=1 rather the encoder’s parameter θf . However, the

optimization of {µj}Cj=1 not only relies on Lrank, but is
also constrained by Lcluster, which ensures that data points
remain roughly distributed around cluster centers and do not
deviate significantly from them during the optimization pro-
cess. Alignment loss Lalign, as an auxiliary term, aims to
help align learnable centers {µj}Cj=1 with the ground-truth
centers {vZj }Cj=1 and make this binding stronger, defined as

Lalign =
C∑

j=1

||µj − vZj || (8)

where {vZj }Cj=1 are defined as vZj = 1
|Mj |

∑
i∈Mj

zi.
The derivation for the gradient of Lalign with re-
spect to center µj is placed in Appendix A.2. As
shown in Fig. 1, three structure-oriented losses
{Lrank(x, µ), LLIS(x,z), Lalign(z, µ)}, form a closed
loop between input x, embeddings z, and cluster centers µ.

3.3. Training Strategy
Contradiction. The contradiction between clustering

and local structure preservation is analyzed from the forces
analysis perspective. As shown in Fig. 2 (a), we assume
that there exists a data point (red point) and its three near-
est neighbors (blue points) around a cluster center (gray
point). When clustering and local structure preserving are
optimized simultaneously, it’s easy to fall into a local opti-
mum, where the data point is in steady-state, and the resul-

tant force from its three nearest neighbors is equal in mag-
nitude and opposite to the gravitational forces of the cluster.

Alternating Training. To solve the above problem and
integrate the goals of clustering and local structure preserva-
tion into a unified framework, we take an alternating train-
ing strategy. Within each epoch, we first optimize Lcluster

and Lrank in a mini-batch, with joint loss defined as

L1 = αLcluster + Lrank (9)

Then at each epoch, we jointly optimize isometry loss LLIS

and Lalign on the whole dataset, defined as

L2 = βLLIS + Lalign (10)

Weight Continuation. At different stages of training,
we have different requirements for clustering and struc-
ture preservation. At the beginning of training, to success-
fully decouple the overlapping manifolds, we hope that the
Lcluster will dominate and LLIS will be auxiliary. When the
margin between different manifolds is sufficiently large, the
weight α for Lcluster can be gradually reduced, while the
weight β for LLIS can be gradually increased, focusing on
the preservation of the local isometry. The whole algorithm
is summarized in Algorithm 1.

Algorithm 1 Algorithm for GCML
Input: Input samples: X; Number of clusters: C; Number of batches: B;

Number of iterations: E.
Output: Autoencoder’s weights: θf and θg ; Cluster labels {si}Ni=1;

Trainable cluster centers {µj}Cj=1.

1: Initialize the weight {µj}Cj=1, θf and θg , and obtain initialized soft

label assignment {si}Ni=1.
2: for epoch ∈ {0,1,· · · ,E-1} do
3: Compute embedded points {zi}Ni=1 and distribution Q;
4: Update target distribution P ;
5: Compute soft cluster centers

{
vXi

}C

i=1
and

{
vZi

}C

i=1
.

6: for batch ∈ {0,1,· · · ,B} do
7: Pick up one batch of samples Xbatch from X;
8: Compute corresponding distribution Qbatch and
9: it’s reconstruction Ybatch;

10: Pick up target distribution batch Pbatch from P ;
11: Compute loss Lae, Lcluster and Lrank;
12: Update the weight θf , θg and {µj}Cj=1.
13: end for
14: Compute Liso and Lalign on all samples;
15: Update the weight θf and {µj}Cj=1;

16: Assign new soft labels {si}Ni=1.
17: end for
18: return θf , θg , {si}Ni=1, {µj}Cj=1.

Three-stage Explanation. The training process can be
roughly divided into three stages, as shown in Fig. 2 (b), to
explain the training strategy more vividly. Also, we provide
the learning curves of key losses Lcluster, Lrank, LLIS on
the MNIST-test dataset in Fig. 2 (c). At first, four differ-
ent manifolds overlap. At Stage 1, Lcluster dominates, thus
data points within each manifold converge towards cluster
centers to form spheres, but the local structure of manifolds
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(a) (b) Schematic of training strategy
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Figure 2. Fig. 2 (a) is the force analysis of the contradiction between clustering and local structure preservation. Fig. 2 (b) is the schematic
of training strategy, where four different colors and shapes represent four intersecting manifolds, and three stages involve the manifold
clustering, separation, and geometric recovery. Fig. 2 (c) is the learning curve of losses Lcluster , Lrank, LLIS on the MNIST-test dataset.

is corrupted. At Stage 2, Lrank dominates, thus different
manifolds in the latent space move away from each other
to increase the manifold margin and enhance the discrim-
inability. At stage 3, these manifolds gradually recover their
original local structure from the spherical shape with LLIS

dominating. Note that the above losses may coexist rather
than being completely independent at different stages, but
the role played by different losses varies due to the alternat-
ing training and weight continuation strategies.

4. Experiments

4.1. Experimental Setups

In this section, the effectiveness of GCML is evaluated
in 7 benchmark datasets: MNIST-full, MNIST-test, USPS,
Fashion-MNIST, REUTERS-10K, HAR, and Pendigits on
which GCML is compared with 12 other methods in 8 eval-
uation metrics including metrics specifically designed for
clustering and multi-manifold learning. The brief descrip-
tions of the datasets are given in Appendix A.1.

Evaluation Metrics. Two standard evaluation met-
rics: Accuracy (ACC) and Normalized Mutual Informa-
tion (NMI) are used to evaluate clustering performance.
Besides, six evaluation metrics are adopted in this pa-
per to evaluate the performance of multi-manifold learn-
ing, including Relative Rank Error (RRE), Trustworthiness
(Trust), Continuity (Cont), Root Mean Reconstruction Error
(RMRE), Locally Geometric Distortion (LGD) and Cluster
Rank Accuracy (CRA). Limited by space, their precise def-
initions are available in Appendix A.3.

Parameters Settings. The encoder structure is d-500-
500-500-2000-10 where d is the dimension of the input
data, and the decoder is its mirror. After pretraining, to
initialize the learnable clustering centers, the t-SNE is ap-
plied to find the best clustable manifold in the latent space
Z, and then the K-Means algorithm is run to obtain the la-
bel assignments for each data point. The centers of each
category in the latent space Z are set as initial cluster cen-
ters {µj}Cj=1. Besides, Adam optimizer with learning rate
λ=0.001 is used, the batch size is set to 256, the epoch is set
to 300, the parameter k for nearest neighbor is set to 5, and

the parameter κ is set to 3 for all datasets. Sensitivity anal-
ysis for parameters k and κ is available in Appendix A.4.
As described in Sec. 3.3, the weight continuation is applied
to train the model. The weight parameter α for Lcluster

decreases linearly from 0.1 to 0 within epoch 0-150. In
contrast, the weight parameter β for LLIS increases linearly
from 0 to 1.0 within epoch 0-150. In this paper, each set of
experiments is run 5 times with different random seeds, and
the results are averaged into the final performance metrics.

4.2. Evaluation of Clustering

Quantitative Comparison. The metrics ACC/NMI of
different methods are reported in Tab. 1. For those meth-
ods whose results are not reported or experimental settings
are not clear, we run the released code with the same pro-
vided hyperparameters and mark them with (*). Moreover,
we mark those methods that are only applicable to 2-D im-
age data as (-) on the vector dataset. While ASPC-DA
achieves the best performance on three datasets (MNIST-
test, MNIST-full, and USPS), its performance gains do
not come directly from clustering, but from sophisticated
modules such as data augmentation and self-paced learn-
ing. Once these modules are removed, there is large per-
formance degradation. For example, with Data Augmenta-
tion (DA) removed, ASPC achieves less competitive perfor-
mance, e.g., an accuracy of 0.931 (vs 0.988) on MNIST-full,
0.813 (vs 0.973) on MNIST-test and 0.768 (vs 0.982) on
USPS. Since ASPC-DA is based on the MLP architecture,
its image-based augmentation cannot be applied directly to
vector data, which explains why ASPC has no performance
advantage (even compared to DEC and IDEC) on the vector
datasets, such as REUTERS-10K and HAR datasets.

In a fair comparison (without considering ASPC-DA and
marking its results in Tab. 1 as gray color), we find that
GCML outperforms K-Means, GNN, and SC-Ncut by a
significant margin and surpasses the other nine compared
DNN-based algorithms on all datasets except MNIST-test.
Nevertheless, even with the MNIST-test dataset, GCML
still ranks second, outperforming the third by 0.9%. In
particular, we obtain the best performance on the Fashion-
MNIST, REUTERS-10K, and HAR datasets, and more no-
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Table 1. Clustering performance (ACC/NMI) of different algorithms on seven datasets. The best metrics are marked in bold.

Algorithms MNIST-full MNIST-test USPS Fashion-MNIST REUTERS-10K HAR pendigits
K-Means [1] 0.532/0.500 0.546/0.501 0.668/0.601 0.474/0.512 0.599/0.375* 0.599/0.588 0.666/0.681
SC-Ncut [1] 0.656/0.731 0.660/0.704 0.649/0.794 0.508/0.575 0.658/0.401* 0.538/0.741 0.724/0.784
GMM [1] 0.389/0.333 0.464/0.465 0.562/0.540 0.463/0.514 0.613/0.388* 0.585/0.648 0.673/0.682
AE+K-Means [21] 0.818/0.747 0.815/0.784* 0.662/0.693 0.566/0.585* 0.721/0.432* 0.674/0.670* 0.713/0.733*
DEC [24] 0.903/0.854* 0.885/0.851* 0.889/0.873* 0.554/0.576* 0.773/0.528* 0.759/0.695* 0.679/0.671*
IDEC [4] 0.918/0.868* 0.876/0.817* 0.893/0.876* 0.572/0.601* 0.785/0.541* 0.786/0.718* 0.739/0.757*
VaDE [7] 0.945/0.876 0.287/0.287 0.566/0.512 0.578/0.630 0.795/0.556* 0.801/0.720* 0.762/0.743*
DEPICT [3] 0.965/0.917 0.963/0.915 0.899/0.906 0.392/0.392 - - -
JULE [26] 0.964/0.913 0.961/0.915 0.950/0.913 0.563/0.608 - - -
DSC [27] 0.978/0.941 0.980/0.946 0.869/0.857 0.662/0.645 - - -
ASPC-DA [5] 0.988/0.966 0.973/0.936 0.982/0.951 0.591/0.654 - - -
ASPC (w/o DA) [5] 0.931/0.886* 0.813/0.792* 0.768/0.803* 0.576/0.632* 0.692/0.418* 0.769/0.682* 0.769/0.751*
N2D [12] 0.969/0.928* 0.954/0.897* 0.954/0.898* 0.671/0.678* 0.784/0.536* 0.807/0.721* 0.847/0.808*
GCML (ours) 0.980/0.946 0.972/0.930 0.958/0.902 0.710/0.685 0.836/0.590 0.844/0.762 0.855/0.814

(a) AE+K-mean (b) DEC (c) IDEC (d) JULE (e) DSC (f) N2D (g) GCML (Ours)

Figure 3. Visualization of the embeddings learned by different algorithms on the MNIST-full dataset.

(a) Epoch 0 (b) Epoch 9 (c) Epoch 19 (d) Epoch 29 (e) Epoch 69

(f) Epoch 119 (g) Epoch 159 (h) Epoch 209 (i) Epoch 249 (j) Epoch 299

Figure 4. Clustering visualization at different stages during the training process on the MNIST-full dateset.

tably, our clustering accuracy exceeds the current SOTA
method by 3.9%, 4.1%, and 3.8%, respectively.

Clustering Visualization. The visualization of GCML
with comparison methods is shown in Fig. 3 (visualized us-
ing UMAP). Among all methods, only DEC, IDEC, and
GCML can hold clear boundaries between different clus-
ters, while the cluster boundaries of the other methods are
indistinguishable. Though DEC and IDEC successfully
separate different clusters, they group many data points
from different classes into the same cluster. Most impor-
tantly, due to the use of the clustering-oriented loss, the em-
bedding learned by these algorithms (especially DSC) tend
to form spheres and disrupt the original topological struc-
ture. Instead, GCML overcomes the above problems and
achieves almost perfect separation between different clus-

ters while preserving the local and global structure.

The embeddings of the latent space during the training
process are visualized in Fig. 4 for explaining how both
clustering and structure-preserving are achieved. We can
see that the different clusters initialized by the pre-trained
autoencoder are closely adjacent. In the early stage of train-
ing, with clustering loss Lcluster and global ranking loss
Lrank, different manifolds are separated from each other,
but each manifold loses its local structure, and all of them
degenerate into spheres. As the training progresses, the
weight α for Lcluster gradually decreases, while the weight
β for LLIS increases and the optimization is gradually fo-
cused from global to local, with each manifold gradually
recovering its original geometric structure from the sphere.
These visualizations show that clustering-oriented loss does
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(a) AE+K-mean (b) DEC (c) IDEC (d) JULE (e) DSC (f) N2D (g) GCML (Ours)

Figure 5. Visualization of the embeddings learned from testing samples on the MNIST-full dataset.
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Figure 6. Statistical analysis for evaluating the capability of geometric structure preservation from the input space to the latent space.

deteriorate the geometric structure of the latent space, and
the designed structure-oriented losses help to recover it.

Generalizability Evaluation. Tab. 2 demonstrates that
a learned GCML can generalize well to unseen data with
high clustering accuracy. Taking MNIST-full as an exam-
ple, GCML was trained using 50,000 training samples and
then tested on the remaining 20,000 testing samples using
the learned model. In terms of the metrics ACC and MNI,
GCML is optimal for both training and testing samples.
More importantly, there is hardly any degradation in the per-
formance of GCML on the testing samples compared to the
training samples, while all other methods show a significant
drop in performance, e.g., DEC from 84.1% to 74.8%. This
demonstrates the importance of geometric structure preser-
vation for good generalizability. The visualization results
of the testing samples are shown in Fig. 5; even for test-
ing samples, GCML still shows distinguishable inter-cluster
discriminability, while other methods couple different clus-
ters together, which shows GCML’s great generalizability.

Table 2. Generalizability evaluated by ACC/NMI.
Algorithms training samples testing samples
AE+K-Means 0.815/0.736 0.751/0.711
DEC 0.841/0.773 0.748/0.704
IDEC 0.845/0.860 0.826/0.842
JULE 0.958/0.907 0.921/0.895
DSC 0.975/0.939 0.969/0.921
N2D 0.974/0.930 0.965/0.911
GCML (ours) 0.978/0.941 0.978/0.941

4.3. Evaluation of Multi-Manifold Learning

Quantitative Metrics. Though many previous works
have claimed that they brought clustering and dimensional-
ity reduction into a unified framework, unfortunately, they
all lacked an analysis of the effectiveness of the learned

embeddings. In this paper, we compare GCML with the
other five methods in six quantitative metrics on seven
datasets. Limited by space, only the results of MNIST-full
and Fashion-MNIST are provided on the left side of Tab. 3
and more results are in Appendix A.5. The results show
that GCML outperforms all other methods, especially in the
CRA metric, which is not only the best on all datasets but
reaches 1.0, which means that the “rank” between different
manifolds in the latent space is completely preserved and
proves the effectiveness of the global ranking loss Lrank.

Statistical Analysis. The statistical analysis is per-
formed to show the extent to which local and global struc-
ture is preserved in the latent space for each algorithm. Tak-
ing MNIST-full as an example, the statistical analysis of
the global rank-preservation is shown in Fig. 6 (a)-(f). For
the i-th cluster, if the rank (in terms of Euclidean distance)
between it and the j-th cluster is preserved from the input
space to the latent space, then the grid in the i-th row and
j-th column is marked as blue, otherwise yellow. As shown
in the figure, only GCML can fully preserve the global rank
between different clusters, while all other methods fail.

Moreover, we perform statistical analysis for the local
isometry property of each algorithm. For each sample xi, it
forms a number of point pairs with its neighborhood sam-
ples {(xi, xj)|i = 1, 2, ..., N ;xj ∈ NX

i }. We compute the
differences in the distance of these point pairs from the in-
put space to the latent space {dZ(xi, xj) − dX(xi, xj)|i =
1, 2, ..., N ;xj ∈ Ni}, and plot them as a histogram. As
shown in Fig. 6 (g), the curve of GCML are distributed on
both sides of the 0 value, with maximum peak height and
minimum peak-bottom width, respectively, which indicates
that GCML achieves the best local isometry. Though IDEC
[4] claims that they can preserve the local structure well,
their results are still far from ours.

Downstream Tasks. Numerous deep clustering algo-
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Table 3. Performance for multi-manifold learning (left) and downstream tasks (right) on the MNIST-full and Fashion-MNIST datasets.
Datasets Algorithms RRE↓ Trust↑ Cont↑ d-RMSE↓ LGD↓ CRA↑ MLP↑ RFC↑ SVM↑ LR↑

MNIST-full

DEC 0.09988 0.84499 0.94805 44.8535 4.37986 0.28 0.8647 0.8706 0.8707 0.8566
IDEC 0.00984 0.99821 0.97936 24.5803 1.71484 0.33 0.9797 0.9737 0.9852 0.9650
JULE 0.02657 0.93675 0.98321 28.3412 2.12955 0.27 0.9802 0.9825 0.9787 0.9743
DSC 0.09785 0.87315 0.92508 6.98098 1.19886 0.23 0.9622 0.9501 0.9837 0.9752
N2D 0.01002 0.99243 0.98466 5.7162 0.69946 0.21 0.9796 0.9803 0.9799 0.9792
GCML (ours) 0.00567 0.99978 0.98716 5.4986 0.69168 1.00 0.9851 0.9874 0.9869 0.9841

Fashion-MNIST

DEC 0.04787 0.93896 0.95450 39.3274 3.87731 0.37 0.6268 0.9853 0.6377 0.6245
IDEC 0.01089 0.99683 0.97797 25.4024 1.91385 0.27 0.8367 0.9918 0.8607 0.7514
JULE 0.03013 0.97732 0.97923 15.2213 1.43642 0.43 0.8541 0.9892 0.8566 0.7723
DSC 0.05168 0.95013 0.96121 17.2201 1.42091 0.36 0.8084 0.9823 0.8618 0.7676
N2D 0.00894 0.99062 0.98054 14.49079 1.28180 0.26 0.8412 0.9493 0.8230 0.7753
GCML (ours) 0.00836 0.99868 0.98203 13.3788 1.33893 1.00 0.8642 0.9942 0.8468 0.7768

Table 4. Ablation study of loss items and training strategies used in the proposed GCML framework.
Datasets Methods ACC/NMI↑ RRE↓ Trust↑ Cont↑ d-RMSE↓ LGD↓ CRA↑

w/o SL 0.976/0.939 0.0093 0.9967 0.9816 24.589 1.6747 0.32
w/o CL 0.814/0.736 0.0004 0.9998 0.9990 7.458 0.0487 1.00
w/o WC 0.977/0.943 0.0065 0.9987 0.9860 5.576 0.6968 0.98
w/o AT 0.978/0.944 0.0069 0.9986 0.9851 5.617 0.7037 0.96

MNIST-full

full model 0.980/0.946 0.0056 0.9997 0.9871 5.498 0.6916 1.00
w/o SL 0.706/0.682 0.0108 0.9964 0.9781 25.954 1.8936 0.30
w/o CL 0.576/0.569 0.0004 0.9994 0.9995 7.654 0.0523 1.00
w/o WC 0.702/0.695 0.0084 0.9972 0.9814 13.238 1.3474 1.00
w/o AT 0.708/0.694 0.0097 0.9975 0.9798 13.354 1.3611 1.00

Fashion-MNIST

full model 0.710/0.685 0.0083 0.9986 0.9820 13.378 1.3389 1.00

rithms have recently claimed to obtain meaningful low-
dimensional embeddings; however, they have not analyzed
and experimented with the “meaningful” ones. Therefore,
we are interested in whether these proposed methods can
really learn manifold embeddings that are useful for down-
stream tasks. Four different classifiers, including a linear
classifier (Logistic Regression; LR), two nonlinear classi-
fiers (MLP, SVM), and a tree-based classifier (Random For-
est Classifier; RFC) are used as downstream tasks, all of
which use default parameters and default implementations
in sklearn [15] for a fair comparison. The learned embed-
dings are frozen and used as input for training. The classifi-
cation accuracy evaluated on the test set serves as a metric
to evaluate the effectiveness of learned embeddings. Lim-
ited by space, only the results of MNIST-full and Fashion-
MNIST are provided on the right side of Tab. 3 and more
results are in Appendix A.5. The results show that GCML
outperforms the other methods overall on all seven datasets,
with MLP, RFC, and LR as downstream tasks.

4.4. Ablation Study

Tab. 4 evaluates the effectiveness of the proposed loss
terms and training strategies with 5 sets of experiments:
the model without (A) Structure-oriented Loss (SL); (B)
Clustering-oriented Loss (CL); (C) Weight Continuation

(WC); (D) Alternating Training (AT), and (E) the full
model. Limited by space, only the results MNIST-full and
Fashion-MNIST are provided and more results are in Ap-
pendix A.6. After analyzing the results, we can conclude:
(1) CL is the most important factor for obtaining excellent
clustering performance, the lack of which leads to unsuc-
cessful clustering, hence the numbers in the table are not
meaningful and marked in gray color. (2) SL not only brings
subtle improvements in clustering performance but greatly
improves the performance of multi-manifold learning. (3)
The training strategies (WC and AT) both improve the per-
formance of clustering and multi-manifold learning to some
extent, especially on metrics such as RRE, Trust, CRA, etc.

5. Conclusion
The proposed GCML framework imposes clustering-

oriented and structure-oriented constraints to optimize the
latent space for simultaneously performing clustering and
multi-manifold learning with geometric structure preserva-
tion. Extensive experiments demonstrate that GCML is
not only comparable to the SOTA clustering algorithms but
learns effective manifold embeddings, which is beyond the
capability of those algorithms that only care about cluster-
ing accuracy. Finally, GCML is appliable to generalized
data with various dimensions, not limited to 2-D image data.
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