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Abstract

Many works focus on the model’s static parameter opti-
mization (e.g., filters and weights) for CNN inference accel-
eration. Compared to parameter sparsity, feature map spar-
sity is per-input related which has better adaptability. The
practical sparsity patterns are non-structural and randomly
located on feature maps with non-identical shapes. How-
ever, the existing feature map sparsity works take computing
efficiency as the primary goal, thereby they can only remove
structural sparsity and fail to match the above characteris-
tics. In this paper, we develop a novel sparsity computing
scheme called FalCon, which can well adapt to the practi-
cal sparsity patterns while still maintaining efficient com-
puting. Specifically, we first propose a decomposed convo-
lution design that enables a fine-grained computing unit for
sparsity. Additionally, a decomposed convolution comput-
ing optimization paradigm is proposed to convert the sparse
computing units to practical acceleration. Extensive exper-
iments show that FalCon achieves at most 67.30% theoret-
ical computation reduction with a neglected accuracy drop
while accelerating CNN inference by 37%.

1. Introduction

Although Convolutional Neural Networks (CNNs) are
widely applied in the image-related machine learning ap-
plications [1, 2, 43], it is still impractical to deploy them
on the resource-limited embedded devices due to the bulky
computation cost [20, 26]. To tackle this problem, many
compression techniques have been devoted in eliminating
CNN redundancy so as to reduce the computation work-
load [13, 17, 19, 30, 33, 48, 53–57].

As the most computation-intensive operation in CNN,
convolution involves two basic components: model fil-
ters and feature maps (a.k.a, activation). Therefore, CNN
redundancy can be eliminated from dual sides, i.e., fil-
ter redundancy or feature map redundancy. Previously
CNN optimization works mainly targets static model pa-
rameter redundancy removal including many pruning tech-
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niques. Compared to static model parameter sparsity, dy-
namic feature map sparsity is only proposed recently, which
is less explored but has demonstrated its superior perfor-
mance [10, 20, 23, 24, 30, 44, 51, 56, 57]. The feature map
sparsity is adaptively identified for each individual input
while model parameter sparsity is unified on the entire
dataset. Therefore, feature map sparsity could generally
yield higher sparsity ratios.

However, the sparsity granularity on feature map still re-
main many performance potentials. As shown in Fig. 1,
due to per-input adaptability, the practical sparsity patterns1

such as background (sky and ground, indicated by grey pat-
terns on the feature heatmaps) demonstrate three character-
istics: 1) they are non-structural regarding input (i.e. var-
ious object shapes); 2) they are randomly located; 3) they
are non-identical across channel due to the channel function
variety. However, driven by computing efficiency, the per-
formance gain of the current feature map sparsity works can
only be achieved from structural feature sparsity removal.
As shown in Fig. 1 as orange blocks, such structural com-
puting schemes don’t consider the above characteristics and

1Can be measured with various criteria such as activation-norm [56],
similarity [19], and etc.
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thereby fail to match the practical sparsity patterns, suffer-
ing from low sparsity removal performance [38]. This is-
sue will be more serious for dynamic layer/block-dropping
methods [8,47,49,52]. Therefore, the essential challenge in
our work is to develop a novel sparsity computing scheme
that can adapt to the practical sparsity patterns while main-
taining an efficient computing.

In this paper, we first propose a convolution decomposi-
tion design to enable a fine-grained computing unit that can
adapt to the randomness, non-structure, and non-identity of
the practical sparsity patterns. Specifically, we decouple the
traditional convolution operation along channel-wise, and
thereby can obtain the single-channel computing freedom
(i.e. each feature map can execute an individual convolu-
tion). Therefore, as shown in Fig. 1, the minimum com-
puting unit for sparsity is refined to the kernel-size fea-
ture areas (green blocks) on each single feature map. Such
kernel-wise sparse computing units can be further com-
posed together to well match the practical sparsity patterns
and achieves a fine-grained computing foundation.

When matching the practical sparsity patterns, our
kernel-wise sparse computing units will introduce non-
structural sparsity computing (they randomly distribute on
each feature map with unbalanced sparsity ratios). In order
to convert computing units from non-structural to structural
for better computing efficiency, we propose a decompose
convolution computing optimization paradigm. Specifi-
cally, through three technical steps, we can first eliminate
the randomness and unbalance sparsity ratios of computing
units and achieve structural sparsity computing. Further-
more, such structural sparsity can be efficiently removed
from computing to achieve a practical speedup.

We further implement our decomposed convolution
computing scheme on a sparsity pruning framework. The
extensive experiments on multiple benchmarks demonstrate
that our proposed method can achieve at most 67.30% com-
putation workload reduction with neglected accuracy drop.
In term of speedup, our computing scheme could also ef-
fectively translate the sparsity into run-time saving, accel-
erating CNN inference by 33.98% and 37.13% on GPU and
CPU, respectively.

2. Background and Related Works

2.1. Convolution Decomposition

Assume the input feature maps and the filters on a tra-
ditional convolution layer are defined as: IF(w, h, c) ∈
Rw∗h∗C and W(k, k, c, j) ∈ Rk∗k∗c∗J (here, w, h and C
is feature map width, height, and the total channel num-
ber, k represents the kernel size and J is the filter num-
ber). The traditional convolution operation is filter-based,
namely, each filter with size k ∗ k ∗ c slides on all feature
maps with full depth C and conducts inner-product. Finally,

J filters will generate J output feature maps OF . Since
feature maps are bound together during computing, it is im-
possible to explore a fine-grained computing unit that can
flexibly distribute on each feature map. Therefore, to ex-
plore a fine-grained sparsity on each single feature map, we
need to decompose the traditional convolution process.

Currently, there are some convolution decomposition
works that leverage matrix factorization methods to decom-
pose filters, such as Depth-wise Convolution [3], Network
Decoupling [12], and DCFNet [42]. Since the goal of these
works is computation reduction, the decomposed convolu-
tion is an approximation to the original ones, suffering from
accuracy drop. Different with these previous works, we de-
compose convolution from the perspective of feature map
for exploring a fine computing granularity. Therefore, the
output feature maps in our proposed decomposed convolu-
tion are same as the original ones without any accuracy loss.

2.2. CNN Inference Speedup

Matching the practical sparsity patterns will introduce
randomly distributed and unbalanced zero values during
computing, generating nonconsecutive storage address dur-
ing memory access. And it further causes memory bus and
computing unit (e.g. GPU warps) under-utilization [21,36].

Currently, to tackle such data noncontiguous issue, most
works propose specific hardware/compiler designs, e.g.
sparse accelerators [14, 39]. However, they require heavy
design efforts and cannot leverage the existing commod-
ity CNN computing libraries such as cuBLAS and MKL. A
few works solve the above issue from softwave-level: they
leverage matrix transformation techniques to eliminate the
zero values on the sparse weight matrix [4, 11, 21]. How-
ever, these works focus on weight sparsity and introduce an
overhead: when applying transformation on weight matrix,
they also need to reorganize feature map matrix to achieve
real computation reduction.

Our work overcomes data noncontiguous issue also via
software-level, but targets on feature maps. We propose
a decomposed convolution computing paradigm to elim-
inate the randomly distributed zero values on each fea-
ture map matrix. Therefore, the sparse convolution still
can be fully supported by the current General Matrix
Multiplication (GEMM) acceleration libraries without any
hardware/compiler-level modifications. Different from the
previous works, our reorganization only involves feature
maps. Filter matrices during our optimization doesn’t need
to be regulated, avoiding extra overheads.

3. Decomposed Convolution for Practical
Sparsity Matching

In this section, we introduce a lossless decomposed
convolution that achieves per-channel computing freedom.
Consequently, a kernel-wise fine-grained computing unit is

351



FiltersInput Feature Maps
C

ha
nn

el C1
C2
C3

C1 C2 C3

Decompose
∗

im2col

col2im
Re-compose for Parallelism

GEMM
=

Convolution

Kernel-size 
Computing Unit
∗ ∗ ∗

× × ×

×

IFc

IF’c

Kernels

Figure 2: Decomposed Convolution with
Kernel-wise Computing Unit

C1 C2 C3

×

im2col

Sparsity 
Reordering

Matrix 
Truncation

Same Size

Channel–wise Sparsity Regulation for 
Balanced Sparsity Ratio

Sparsity

S1 S2

IF’c
N

N-R R

N-R N-R N-R

S1
S1S2

S2

S1 S2 S2 S2S1 S1

S1S2 S1S2 S1S2

∗ ∗ ∗

× ×







Figure 3: Sparse Decomposed Convolution
Optimization Paradigm

identified. By combining multiple computing units, we can
well match the practical input sparsity patterns.

3.1. Fine-grained Computing Unit with
Decomposed Convolution Design

We decompose the traditional convolution operation
along the channel dimension. As demonstrated in Fig. 2,
we first split the input feature maps IF(w, h, c) (3D ten-
sor) to C single feature map IFc (2D matrix). Then, each
IFc only conducts convolution operation with kernels be-
long to channel c from all filters (represented by the specific
color). In that case, the basic unit is changed from the single
filter in the traditional convolution to the individual feature
map, thereby realize per-channel computing freedom. Our
decomposed convolution process can be formulated as:

OF =

C∑
c=1

IFc(w, h, 1) ∗Wc
j (k, k, 1),

j = 1, 2, · · · , J ; and c = 1, 2, · · · , C.

(1)

Here, ∗ represents convolution operation. IFc(w, h, 1)
and Wc

j (k, k, 1) indicates one feature map channel and the
corresponding kernel of the filter.

∑C
c=1(·) denotes the

element-wise addition across C output feature maps.
The convolution operation in the traditional convolution

is realized via a GEMM between feature map matrix and
filter weight matrix, which is well supported by the compil-
ers/hardware with high parallelism. After decomposition,
each IFc ∗Wc

j generates an individual GEMM. Iteratively
executing them in a loop mode will sacrifice the original
parallelism. To tackle this issue, we further re-compose fea-
ture map together to maintain a complete GEMM (as shown
in the bottom of Fig. 2). Therefore, element-wise addition
in Eq. 1 will be replaced by a matrix concatenate operation.

Since each feature map conducts individual convolution
after decomposition, the basic operation unit is refined to
kernel-size feature areas (k × k) on each single channel2,
shown as the red block in Fig. 2. Such kernel-size area
will be further unfolded to a single column on the feature
map matrix IF ′c during im2col, it can be identified as the
minimum computing unit in the convolution process. Com-
pared to the previous channel- or column-wise structure, our
kernel-wise computing unit has much finer computing gran-
ularity. It should be noted that, although single activation on
the feature map has the finest-granularity, it which will in-
troduce extremely noncontiguous data structure and require
specific hardware designs [21]. By contrast, our kernel-wise
computing unit not only provides a fine computing granular-
ity but also can be removed via the computing optimization
scheme proposed in Section 4 to achieve inference speedup.

3.2. Matching Practical Sparsity Patterns

By decomposing convolution, a fine-grained computing
unit is identified on each feature map which can be used to
match practical sparsity patterns. During convolution com-
puting, the practical sparsity patterns will be unfolded as
random and non-structural zero value distribution on each
feature map matrix IF ′c via im2col. Under such condition,
our proposed kernel-wise computing units can well adapt to
these practical sparsity patterns because of two main rea-
sons: 1) Flexible location: since kernels are sliding on each
feature map, our kernel-wise computing units can locate at
any column of feature map matrix. 2) Small size: Most
widely-used neural networks usually adapt a small kernel
size (3×3 or even 1×1 for point-width convolution). On

2The computation unit in the traditional convolution is stacked kernel-
size areas across C channels.
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the contrary, for most image dataset such as ILSVRC [5] or
PASCAL [7], the width/length of feature maps on most lay-
ers are much larger than kernel size (i.e. 224 or 112). Com-
pared to the size of entire feature map matrix, our kernel-
wise computing unit is fine-grained enough. Therefore, we
can combine computing units on different location of fea-
ture map matrix together to approximate any zero distribu-
tion patterns that are generated by the practical sparsity.

4. Decomposed Convolution Computing
Optimization for Speedup

The proposed decomposed convolution provides a fine-
grained computing unit to match the practical sparsity
patterns. However, by matching the randomness, non-
structure, and non-identity of practical sparsity patterns, our
kernel-wise sparse computing units will randomly distribute
on each feature map with unbalanced sparsity ratios (indi-
cated by the interleaved zero columns (grey) and non-zero
columns (color) in Fig. 3), becoming non-structural and
computing-inefficient. Therefore, in order to convert com-
puting from non-structural to structural, we further propose
a computing optimization paradigm to reorganize sparse
computing unit distribution on feature maps, thereby can
improve computing efficiency.

4.1. Computing Optimization Paradigm

Computing Flow Overview: The central goal of our com-
puting optimization paradigm is to preserve the theoretical
gains of sparsity while diminishing its randomness and un-
balance on input feature matrix, thereby maintains the sup-
posed parallelism on the decomposed convolution. Specif-
ically, as shown in Fig. 3, to solve unbalanced sparsity ra-
tios, we proposed Channel-wise Sparsity Regulation to en-
able each feature map has an identical sparsity ratio. To
tackle the random distribution issue, we proposed sparsity
reordering and matrix truncation to convert the random
sparse feature map matrix to a smaller dense one, thereby
decomposed convolution with sparsity can still be calcu-
lated by a dense GEMM and fully supported by hardware.
1⃝ Channel-wise Sparsity Regulation: In order to achieve

re-composition, the sparsity ratio on each channel should be
identical, which can be denoted as γs = R

N (N and R is the
total and sparse computing units number, respectively).

The sparsity regulation in the previous methods is usu-
ally realized by multiplying a zero-one masking matrix on
each feature map IFc and thus the sparse activation val-
ues will permanently become zeros [35, 48, 56]. Our sparse
computing unit is kernel-size, zeroing an activation value
inside it may affect other adjacent non-sparse computing
unit (the kernel-size area that has partial overlapping with
S1/S2), causing information loss. This is because that an
activation value will be included into multiple surrounding
kernel-size areas during kernel sliding.

Considering the fact that each column on the feature map
matrix is exactly unfolded by one kernel-size area, we can
regulate our sparsity ratio by applying masking operation
on the unfolded feature map matrix instead of the original
feature map. By doing that, assigning zeros to one kernel-
size area will not affect its neighbours, thereby maintaining
a better model accuracy. As shown in the bottom of Fig. 2,
with our regulation, matrices have identical sizes.

2⃝ Sparsity Reordering: As shown in Fig. 3, the zero
columns (represented by S1 and S2) are randomly dis-
tributed on each feature map matrix IF ′c, introducing
Sparse Matrix Multiplication (SpMM) during feature map
computing, which is data non-continuous and not appli-
cable for the realistic speedup [9]. To mitigate it, we
eliminate randomness and non-continuity of these sparse
columns through sparsity reordering, which is demonstrated
in Fig. 3: assume the original column index on each IF ′c is
Dc = {d1, d2, ..., dN}, e.g. S1 on the first IF ′c is denoted
as d1. The total number of zero columns is R (R = 2 in our
figure). During sparsity reordering, all the zero columns
are shifted to the most right side of matrix IF ′c. However,
with iterative shifting-mode, index Dc needs to be updated
K times, introducing large indexing overhead.

We optimize the shifting process with a parallelism
mode: first, we extract all index di of zero columns; then
we reorder all non-zero and zero columns from 0 to N −R
and from N − R + 1 to N , respectively. In that case, Dc

only needs to be updated once, saving indexing cost.

3⃝ Matrix Truncation: We further reduce the dimension
of the feature map matrix IF ′c to decrease the computa-
tion workload during GEMM after re-composing, provid-
ing speedup potential. Specifically, as shown in Fig 3, we
remove the entire zero blocks with size R × k2 on each
channel. Thus, the size of the remained dense matrix is
(N − R) × k2. By truncation operation, the sparse de-
composed convolution computing is still realized by a dense
GEMM with less computation workload. The overall com-
puting optimization paradigm is summarized in Algorithm.
1 in Supplementary.

As Fig. 3 shows, after truncation, the feature map ma-
trices IF ′ are smaller than the expected ones due to the
exclusion of zero columns. Therefore, during col2im pro-
cess, we need to further reshape them back to the original
size. This process can be done by using index Dc and Dc

′.

4.2. Corner Case Discussion

Corner Case Definition: The proposed channel-wise spar-
sity regulation address unbalanced sparsity issue for ma-
trix re-composition. However, when the unbalanced level
is extremely high, as shown in Fig. 4: the first feature map
matrix are entirely sparse (becoming channel-wise sparsity)
while the other two feature map matrices only have 25%
sparsity ratio (two zero columns S1 and S2). If we still
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regulate all feature maps with an unified sparsity ratio (e.g.
25%), such unbalanced situation will introduce a significant
sparsity mismatching issue on the first feature map: a lot
of potential sparsity cannot be correctly converted to zero
columns, degrading the sparsity performance.
Computing Optimization for Corner Case: In order to
tackle this issue, we slightly optimize the proposed sparse
convolution computing paradigm. In the channel-wise spar-
sity regulation step, we adapt two different sparsity ratios:
setting γs

1 as 100% for those entirely sparse feature maps
(e.g. green in Fig. 4) while still keeping the rest feature
maps (yellow and blue) with an unified sparsity ratio γs

2 . In
the sparsity reordering and truncation steps, since entirely
sparse feature maps will be converted as full-zero matri-
ces, we can directly remove all of them. At last, as demon-
strated in figure, the recomposed tensor is still a dense ma-
trices, and can be calculated via dense GEMM. Therefore,
our sparse convolution computing paradigm shows better
generality that can well support channel-wise sparsity.

5. Decomposed Convolution Application on
Sparsity Pruning

We apply our decomposed convolution on feature map
sparsity pruning. Most existing pruning works are targeting
proposing novel pruning criteria, while our proposed de-
composed convolution computing scheme is orthogonal to
them. By introducing our schemes, these works can be fur-
ther boosted regarding pruning performance. In our paper,
to show the performance gain of our proposed scheme, we
only adopt several common-used pruning settings.
Pruning Criteria: Two simple pruning criteria (norm-
based [28, 56] and variance-based [29]) are applied in our
method implementation. They indicate the activation sum
and distribution in a target kernel-size activation area, which
can be formulated as: IFc is defined as:

Norm−based: Acon=

r2∑
i

al
i,

Variance−based: Acon=
1

r2

r2∑
i=1

(al
i−µ), µ=

1

r2

r2∑
i=1

al
i

(2)

where ali is the ith feature activation value inside each
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Figure 5: The pruning performance comparison between
two metrics on VGG16.

kernel-size area and lower Acon value represents the cor-
responding area should be sparse. The only optimization of
criterion selection here is that we apply variance-based cri-
terion for lower-layers while applying norm-based criterion
for higher-layers. The reason behind this is the layer func-
tion diversities [16]. Fig. 5 shows an example: on the low-
level layer (Conv1 1 in the figure), the first criterion always
illustrates a better pruning performance than the second cri-
terion regarding pruned model inference accuracy and vice
versa for the high-level layer (Conv5 1).
Sparsity Ratio and Training Strategy: In FalCon, since
different layers/blocks of model can have various sparsity
levels, they show distinct accuracy robustness w.r.t sparsity
ratio γs. For a given model, we first analyze the layer/block
robustness sensitivities and divide the entire model into sev-
eral groups where each group shares the same γs. The in-
fluence of different group numbers regarding model accu-
racy will be evaluated in the ablation study and more de-
tails about sparsity ratio selection are provided in Supple-
mentary. Although a higher pruning ratio can significantly
benefit the CNN computing performance, directly applying
our method on a pre-trained model in the CNN inference
may introduce considerable accuracy loss. Therefore, we
can either train the model from scratch or fine-tune a pre-
trained model with the proposed sparse decomposed convo-
lution computing scheme. During the training, network can
gradually learn to focus on the important feature areas and
neglect the non-important ones. We evaluate the effective-
ness of our training-phase optimization in our ablation study
and compare the performance of two training initialization
strategies in Supplementary.

6. Experiment
In this section, we evaluate FalCon in three aspects: ac-

curacy, theoretical FLOPs reduction, and realistic speedup.

6.1. Experiment Setup

Models and Datasets: We evaluate FalCon for single-
branch networks (VGGNet [46] and MobileNetV1 [22])
and multiple-branch networks (ResNet [15] and Mo-
bileNetV2 [45]) on three benchmarks: CIFAR-10, CIFAR-
100 [27] and ILSVRC-2012 [5].
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Table 1: Experiment Results on CIFAR-10 Datasets

CNN
Models

Pruning
Methods

Baseline
Accuracy(%)

Final
FLOPs

FLOPs
Reduction(%)

Final
Accuracy(%)

Accuracy
Drop(%)

VGG16

Taylor* [37] 93.30 1.75E+08 44.10 92.30 1.00
GM* [19] 93.58 2.00E+08 35.90 93.23 0.35
FO* [41] 93.40 1.75E+08 44.10 93.30 0.10

TiNet** [34] 93.99 1.56E+08 50.00 93.85 0.14
SFP** [17] 93.99 1.56E+08 50.00 93.85 0.14
CP** [20] 93.99 1.56E+08 50.00 93.67 0.32

DCP** [57] 93.99 1.56E+08 50.00 94.16 -0.17
TS** [50] 93.44 1.56E+08 50.00 93.63(±0.06) -0.19
LP [25] 92.77 1.07E+08 64.50 90.87 1.90

HRank [31] 93.96 1.08E+08 65.30 92.34 1.62
Ours1 93.32(±0.09) 1.56E+08 50.00 93.63(±0.07) -0.31
Ours2 93.32(±0.09) 1.02E+08 67.30 91.92(±0.05) 1.40

ResNet32

MIL† [6] 92.33 4.71E+07 31.20 90.74 1.59
SFP† [17] 92.63(±0.07) 4.03E+07 41.50 92.08(±0.08) 0.55
GM [19] 92.63(±0.07) 3.23E+07 53.20 91.93(±0.30) 0.70

LFPC† [16] 92.63(±0.07) 3.27E+07 52.60 92.12(±0.32) 0.51
DC [48] 93.81 3.43E+07 50.00 92.50 1.31
Ours1 92.20(±0.10) 3.23E+07 53.20 91.94(±0.12) 0.26
Ours2 92.20(±0.10) 2.46E+07 59.96 91.40(±0.08) 0.80

ResNet110

MIL† [6] 93.63 8.23E+07 34.20 93.44 0.19
SFP† [17] 93.68(±0.32) 7.50E+07 40.00 93.38(±0.30) 0.30
GM† [19] 93.68(±0.32) 7.40E+07 40.80 93.74(±0.10) -0.06
TS** [50] 93.49 7.50E+07 40.00 93.69(±0.28) -0.2

LFPC† [16] 93.68(±0.32) 4.96E+07 60.30 93.79(±0.38) -0.11
Ours1 93.68(±0.30) 4.96E+07 60.30 93.79(±0.28) -0.11
Ours2 93.68(±0.30) 4.17E+07 62.25 93.63(±0.33) 0.05

MobileNetV1

WM⋆ [57] 93.96 2.62E+07 42.86 93.48 0.48
Random DCP⋆ [57] 93.96 2.62E+07- 42.86 93.39 0.57

DCP⋆ [57] 93.96 2.62E+07 42.86 94.18 -0.22
Ours1 93.01(±0.41) 2.62E+07 42.86 93.42(±0.08) -0.41
Ours2 93.01(±0.41) 2.36E+07 45.11 92.73(±0.17) 0.68

*,**, †, and ⋆: the methods’ performances are referred from [56], [50], [16], and [57], respectively.

Ours1: uses the FLOPs reduction ratio that is the highest one in the previous works. Ours2: uses the distribution median value of accuracy drop among the previous methods.

Training Setting: The entire FalCon is implemented on Py-
torch1.4 [40]. On CIFAR-10 and CIFAR-100, we use SGD
optimizer and CosineAnnealing scheduler [32] with an ini-
tial learning rate of 0.1 and the training epoch is set as 200.
The batch size is set as 256 for both training and inference.
On ILSVRC-2012, the parameter setting and training sched-
ule is the same as [19]. Specifically, the training epoch is
set as 250. Moreover, the data argumentation strategies we
use for ILSVRC-2012 is the same as PyTorch official ex-
amples. The training strategy we used here is fine-tuning a
pre-trained model.

Baselines: We compare our method with other existing
state-of-the-art CNN inference optimization works, e.g.
Taylor [37], GM [19], Antidote [56], TiNet [34], FO [41],
SFP [17], CP [20], DCP [57], TS [50], MIL [6], LFPC [16],

AMC [18], HRank [31], LP [25], and DC [48].

6.2. Evaluation on CIFAR Dataset

CIFAR-10: For CIFAR-10 dataset, we test our FalCon
on VGG16, ResNet32, ResNet110, and MobileNetV1. A
smaller accuracy drop and a larger FLOPs reduction indi-
cates a better optimization performance. We evaluate our
method with two separate settings, which is shown in be-
low of Table. 1.

As shown in Tab. 1, the experimental results clearly
show the effectiveness of our proposed method. For ex-
ample, for VGG16, in order to obtain an acceptable ac-
curacy drop, most state-of-the-art methods can only real-
ize the FLOPs reduction below 50%. When keeping the
same 50% ratio, our method (ours1) even achieves 0.2%
accuracy improvement, which outperforms other methods
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Table 2: Experiment Results on CIFAR-100 Datasets

CNN
Models

Pruning
Methods

Baseline
Accuracy(%)

Final
FLOPs

FLOPs
Reduction(%)

Final
Accuracy(%)

Accuracy
Drop(%)

VGG16

Taylor* [37] 73.10 1.96E+8 37.30 72.50 0.60
FO* [41] 73.10 1.96E+8 37.30 73.20 -0.10

Antidote* [56] 73.10 1.72E+8 44.90 72.90 0.20
Ours1 73.12(±0.25) 1.72E+8 44.90 72.95(±0.18) 0.17
Ours2 73.12(±0.25) 1.56E+8 49.96 72.79(±0.33) 0.33

ResNet56

MIL† [6] 71.33 7.63E+7 39.30 68.37 2.96
SFP† [17] 71.40 5.94E+7 52.60 68.79 2.61
GM† [19] 71.41 5.94E+7 52.60 69.66 1.75

LFPC† [16] 71.41 6.08E+7 51.60 70.83 0.58
Ours1 71.55(±0.07) 5.94E+7 52.60 71.10(±0.09) 0.45
Ours2 71.55(±0.07) 5.24E+7 58.28 70.66(±0.09) 0.89

* and † indicates the methods’ performances are referred from [56] and [16], respectively.

Table 3: Experiment Results on ILSVRC-2012 Datasets

CNN
Models

Pruning
Methods

Baseline Accuracy(%)
Top-1 (Top-5)

Final
FLOPs

FLOPs
Reduction(%)

Final Accuracy(%)
Top-1 (Top-5)

Accuracy Drop(%)
Top-1 (Top5)

ResNet50

SFP† [17] 76.15 (92.87) 2.03E+9 41.80 62.14 (84.60) 14.01 (8.27)
GM† [19] 76.15 (92.87) 1.62E+9 53.50 74.83 (92.32) 1.32 (0.55)
TS [50] 76.10 (-) 1.75E+9 50.00 72.80 (-) 3.30 (-)
Ours1 75.83 (92.78) 2.03E+9 53.50 74.59 (92.51) 1.24 (0.27)
Ours2 75.83 (92.78) 1.28E+9 63.38 73.55 (91.99) 2.28 (0.79)

MobileNetV2

TiNet [34] 70.11 (-) 1.96E+8 44.70 63.71 (-) 6.40 (-)
DCP [57] 70.11 (-) 1.96E+8 44.70 64.22 (-) 5.89 (-)
AMC [18] 71.80 (-) 2.49E+8 30.00 70.80 (-) 1.00 (-)

Ours1 71.60 (90.41) 1.96E+8 44.70 69.45 (89.31) 2.15 (1.10)
† indicates the methods’ performance is referred from [16].

Table 4: Realistic Acceleration Evaluation

Model
(Dataset)

Computing
Unit

Baseline
Latency

(ms)

Optimized
Latency

(ms)

Realistic
Acceleration

(%)
MobileNetV1
(CIFAR-10)

Titan XP 10.32 7.11 31.10
i7-6700K 65.62 41.25 37.13

ResNet32
(CIFAR-10)

Titan XP 18.51 12.22 33.98
i7-6700K 36.81 24.23 34.14

MobileNetV2
(ILSVRC-2012)

Titan XP 45.51 34.12 25.03
i7-6700K 152.10 113.84 25.15

regarding accuracy drop. Furthermore, our method with
the second setting (ours2) can aggressively achieve 67.30%
FLOPs reduction with 1.40% accuracy drop while HRank
and LP show 1.90% and 1.60% accuracy loss. As for
ResNet32, GM [19] shows the best computation reduction
performance (53.20%) among several baselines. However ,
our method with the same ratio (53.20%) has a much lower
accuracy drop (0.26% ). Also, with only 0.70% accuracy
loss, ours2 can achieve the highest FLOPs reduction per-
formance (59.96%). For MobileNetV1 which is designed
to be lightweight, our method shows the best accuracy per-

formance. In terms of computation efficiency, our method
achieves around 2.25% more FLOPs reduction ratio com-
pared to other methods. These results validate the effective-
ness of our proposed method that can accurately identify
and remove the redundancy in model inference.

CIFAR-100: We also test our method with VGG16 and
ResNet56 on CIFAR-100. From the Tab. 2 can find that
our method achieve around 5%∼12% and 6%∼20% more
FLOPs reduction compared to three state-of-the-art meth-
ods with negligible accuracy loss, which also demonstrates
our method’s performance effectiveness.

We also observed the distinct FLOPs reduction ratio
among different models. This is because that for a given
dataset, each model has a specific redundancy and our spar-
sity can well identify such redundancy.

6.3. Evaluation on ILSVRC-2012 Dataset

For ILSVRC-2012, we test FalCon on two models:
ResNet50 and MobileNetV2. we leverage layer sensitivity
analysis discussed in Section 5.2 to select proper sparsity
ratio for each block on the two models.

Tab. 3 summarizes the evaluation results. On ResNet50,
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Figure 6: Layer-wise Matrix Multiplication Acceleration
Evaluation for MobileNetV1

with same computation reduction ratio (53.50%), our
method can outperform SFP [17], GM [19], TS [50] in
terms of accuracy drop. When keeping a median accuracy
loss, the FLOPs reduction gain of our method is the largest
compared to other candidate algorithms. This is because
FalCon can accurately identify each redundant convolu-
tion operation with the finest granularity. On MobileNetV2,
compared to TiNet [34] and DCP [57], our method can re-
duce the similar computation workload while maintaining
a higher accuracy level. AMC [18] has a similar accuracy
drop, but it can only achieve the lowest FLOPs reduction.

We can find the input size is another key factor for
our sparsity performance: since the proposed granularity is
kernel-size, increasing input size will generate a larger fea-
ture map, thereby our granularity can match the ideal spar-
sity pattern better.

6.4. Speedup Evaluation

Layer-wise Matrix Multiplication Acceleration: We first
evaluate the speedup performance of the proposed sparsity
reordering and matrix truncation inside the CNN model in-
ference. Specifically, we compare each layer’s matrix mul-
tiplication latency of MobileNetV1 on CIFAR-10 with/with-
out our computing optimization, and the results are shown
in Fig. 6. When FLOPs reduction ratio increases from 0.1
to 0.5, the original SpMM without optimization shows neg-
ligible speedup. On the contrary, our method brings sig-
nificantly acceleration for most layers (e.g. 42% reduction
in layer 1), thereby proves its efficiency. Layer 13 has less
computation load, thereby its potential acceleration margin
is relatively lower when considering the computing over-
head (reordering, truncation, etc.).

Model-wise End-to-End Acceleration: We further evaluate
the proposed method’s realistic acceleration performance
on GPU (Titan XP) and CPU (I7-6700K), respectively. The
results are shown in Tab. 4 with MobileNetV1, ResNet32,
and MobileNetV2 on both CIFAR-10 and ILSVRC-2012.
Baseline is the time cost without applying our sparse con-
volution computing paradigm. We can find, after applying
FalCon, the end-to-end inference time will achieve 31.10%
∼ 37.13%, 33.98% ∼ 34.14%, and 25.03% ∼ 25.15% ac-
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Figure 7: Accuracy of ResNet32 on CIFAR-10 regarding
Different Hyper-parameters

celeration on MobileNetV1, ResNet32, and MobileNetV2.
As discussed in [19], the acceleration gap between theo-
retical FLOPs reduction and realistic acceleration is caused
by the overhead of sparsity reordering and re-composition,
and the limitation of IO delay as well.

6.5. Ablation Study

In ablation study, we will further explore the perfor-
mance of our training-phase optimization and layer sparsity
ratio setting discussed in Section 5.
Influence of Training Optimization: Fig. 7 shows the the
influence of our propose training optimization scheme in
terms of inference accuracy. If pruning the CNN inference
directly from a pre-trained model, the inference accuracy
will drop dramatically when reduced FLOPs ratio larger
than 0.3 due to the pre-trained model cannot fit the spar-
sity. On the contrary, by applying our training optimization,
the network can gradually learn to focus on the important
kernel-size areas and neglect the non-important ones.
Influence of Layer Sparsity Ratio: As aforementioned in
Section 5, we let a certain number of layers (residual blocks)
in the plain (branch) networks as a group and assign each
group a certain γs. To further investigate the influence
of group number size, we increase the layer/residual block
number in each group, represented as setting 1 and compare
it with our default setting. Fig. 5 shows the comparison re-
sults. We can easily find that keeping more blocks with the
same pruning ratio will degrade the sparsity identification
performance, thereby introduce a larger accuracy drop.

7. Conclusion
In this paper, we proposed FalCon, a sparsity comput-

ing scheme for CNN inference speedup. By decomposing
the traditional convolution from channel-wise, we identified
a fine computing granularity that can well match the prac-
tical sparsity patterns. We further proposed a decomposed
convolution computing optimization paradigm to enable our
sparse computing units can bring realistic acceleration. Ex-
periments demonstrate that the proposed FalCon achieves
superior performance regarding model accuracy, theoretical
FLOPs reduction, and inference speedup.
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