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Abstract

In this work, we consider the problem of self-supervised
Moving Object Detection (MOD) in video, where no ground
truth is involved in both training and inference phases. Re-
cently, an adversarial learning framework is proposed [32]
to leverage inherent temporal information for MOD. While
showing great promising results, it uses single scale tem-
poral information and may meet problems when dealing
with a deformable object under multi-scale motion in dif-
ferent parts. Additional challenges can arise from the mov-
ing camera, which results in the failure of the motion inde-
pendence hypothesis and locally independent background
motion. To deal with these problems, we propose a Multi-
motion and Appearance Self-supervised Network (MASNet)
to introduce multi-scale motion information and appear-
ance information of scene for MOD. In particular, a moving
object, especially the deformable, usually consists of mov-
ing regions at various temporal scales. Introducing multi-
scale motion can aggregate these regions to form a more
complete detection. Appearance information can serve as
another cue for MOD when the motion independence is
not reliable and for removing false detection in background
caused by locally independent background motion. To en-
code multi-scale motion and appearance, in MASNet we
respectively design a multi-branch flow encoding module
and an image inpainter module. The proposed modules and
MASNet are extensively evaluated on the DAVIS dataset to
demonstrate the effectiveness and superiority to state-of-
the-art self-supervised methods.

1. Introduction
Moving object detection (MOD) is a fundamental abil-

ity of human visual system, which can be used in a wide

*This work was done during the internship of Fan Yang with United
Imaging Intelligence.

range of real-world applications, such as autonomous ve-
hicle, video surveillance, activity recognition, road con-
dition monitoring, airport safety, monitoring of protection
along marine border [7]. The works on MOD in video
can be roughly divided into three categories in terms of
the differences in training and inference protocol: super-
vised train/unsupervised 1 inference [27, 15, 26, 8], super-
vised train/ semi-supervised inference [6, 30], unsupervised
train/ unsupervised inference [17, 21, 29, 32]. Note that
the unsupervised here indicates no any ground truth label
and supervised pretrained information (e.g.,, model weights
trained on ImageNet[11]) are involved in both training and
inference phases. Although supervised and semi-supervised
methods have achieved excellent performance, they heavily
rely on a large amount of fine labeled data, which is scarce
and expensive. To alleviate these problems, more and more
efforts are spent on how to effectively explore the inherent
information of unlabeled data to supervise model training.

It is a considerable challenging task to perform MOD
without constraints on the presence of annotation, super-
vised pretrained model, stationary camera, and clean back-
ground. Impressively, Yang et al. [32] creatively pro-
pose a Contextual Information Separation (CIS) principle
to achieve a first fully unsupervised deep neural network
based MOD. This framework is built on a hypothesis that
moving regions are independent from contextual regions in
motion space. In particular, the motion information (i.e.,,
optical flow) of moving regions cannot be inferred from that
of background regions and vice-versa.

While the work is novel and obtains promising results
in public dataset, it fails to capture a complete object or
to differentiate regions in background (light blue and red
boxes in Figure 1). This phenomenon is caused by two rea-
sons: (1) single scale temporal information, and (2) moving
camera. Since a moving object can be composed of tem-

1we use “unsupervised” and “self-supervised” alternatively.
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Figure 1. Illustration of multi-scale motion and appearance information. In subfigure A, the green boxes represent the different moving
regions at different temporal scales. In subfigure B, the light blue boxes point to the failed regions of motion independence, the red boxes
are the locally motion independent regions in background. The blue and red arrows indicate that in image space the masked regions can be
recovered by means of the surrounding contextual information.

poral multi-scale of moving regions, one scale of temporal
information can simply encode a fraction of object. For in-
stance, in Figure 1A the optical flow from t to t+1 captures
the motion of the dancer’s left leg (smaller green box); the
flow map from t to t + 2 captures the motion of his right
leg and body (larger green box). The optical flow maps of
the dancer between various frames capture different mov-
ing regions of human body. Therefore, single scale tem-
poral information is insufficient for comprehensive MOD.
The joint movement of camera and object leads to the vio-
lation of motion independence hypothesis. For example, in
the light blue box of Figure 1B the object and background
motion are similar. Thus, it is impossible to differentiate
object from background in the current framework. In addi-
tion, moving camera can yield locally independent moving
regions in background. Such regions mislead the model to
generate false detection in background (the red box of Fig-
ure 1B).

Based on the analysis above, we note that current method
fails to encode the multi-scale motion of object and to
deal with problems caused by moving camera. To han-
dle these problems, we propose a Multi-motion and Ap-
pearance Self-supervised Network (MASNet) to introduce
multi-scale temporal information and spatial appearance in-
formation into CIS [32] for MOD. Specifically, the pro-
posed MASNet contains two components: 1. a Multi-
branch Flow Encoding (MFE) module (dashed box in Fig-
ure 2), 2. an IMage InPainter (IMIP) module (solid box
in Figure 2). The MFE module takes in multiple optical
flow maps simultaneously to encode multi-scale motion in-
formation and aggregates detections over different temporal
scales to form a final detection. In this way, we can leverage
multi-scale temporal information to generate a more com-
prehensive detection.

The IMIP is designed to tackle the problems caused by
camera movement. In particular, when camera is moving,
the motion information is not fully reliable. To differenti-

ate object from background and remove false detection in
background, the IMIP resorts to spatial appearance infor-
mation. This is based on a hypothesis that object appear-
ance is different from background. When the detection is
in background, the IMIP can leverage the surrounding ap-
pearance information to recover it so as to force mask gen-
erator to yield better detection ((right Figure 1 B)). Simi-
larly, for missing detection in moving object, IMIP can infer
the masked region by the appearance in surrounding regions
(left Figure 1 B).

The contributions of the work are summarized into fol-
lowing three-fold:

1. A MFE module is designed to introduce various scales
of motion information to aggregate detections over dif-
ferent temporal scale for more complete moving object
detection.

2. A IMIP is proposed to leverage spatial appearance in-
formation to strengthen the supervision for generator
in a novel dimension.

3. Comprehensive experiments are conducted to validate
the effectiveness of the proposed MFE and IMIP and to
demonstrate the superior performance of our MASNet
to state-of-the-art methods.

2. Related work
Classic methods. Due to the importance of moving

object detection (MOD), the history of studying this topic
can be tracked to long time ago. At early stage, numerous
works [1, 28, 31, 10, 14, 5, 16, 25, 34] attempt to perform
motion estimation and segmentation together. These meth-
ods heavily rely on a good initialization to obtain promising
results. To deal with this dependency, Shi et al. [24] pro-
pose an alternative graph-based method to partition a spa-
tiotemporal volume formed by a video into groups of mov-
ing pixel in space and time. In addition, variational infer-
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Figure 2. The comparison between CIS [32] (top) and our method
(bottom). I , F , and M̄ denote image, optical flow map and pre-
dicted mask, respectively. N is the index of frame. “r”, “a”, and
“m” represent “recover”, “average”, and “masked”, respectively.

ence based methods [9, 5, 25, 34] are proposed to explicitly
model occlusions with piecewise affine regions. Instead of
using classical optical flow as motion information, [20] pro-
poses to leverage point trajectories to model long-term of
temporal consistency and color constancy, which can span
hundreds of frames and is less susceptible to short term
variations. This idea has been widely applied in multiple
fields: medical image analysis [12], traffic monitoring [3],
and crowd motion detection [4].

Supervised methods. Recently, owe to the advance of
deep neural network, supervised methods [27, 8, 15, 26]
achieve significant performance improvement. In [15],
Jain et al.propose an end-to-end framework to simultane-
ously learn appearance and motion information to yield
pixel-level segmentation of moving object. Similarly, [8]
designs a two-branch network to jointly predict object seg-
mentation and optical flow in an unified framework. In ad-
dition to leveraging motion and appearance together, [26]
attempts to simply use motion information for moving ob-
ject detection via learning motion pattern from synthetic
data with a fully convolutional network. [27] proposes a
two-stream of network to encode spatial and temporal in-
formation respectively and a memory module to capture the
evolution of object over time.

Self-supervised methods. Although supervised meth-
ods can obtain excellent precision in public benchmark
datasets, these methods require a large mount of labeled
data, which is expensive and time-consuming to collect. Be-

sides, the generalizability of the these methods are limited
in unseen data. To deal with the problems, [17] reformu-
lates the point trajectory based moving object segmentation
as a minimum clustering problem and proposes a graph con-
struction method to encode a long-term trajectory informa-
tion. [29] incorporates saliency information of spatiotempo-
ral maps as prior of object to compute the initial foreground
region, then appearance model and dynamic model are used
to indicate the object in subsequent frames. [21] achieves
a fast moving object segmentation in video by yielding a
rough estimation first then refining the estimation with a
spatio-temporal extension of GrabCut [23]. More recently,
[32] proposes a first deep-learning based unsupervised mov-
ing object detection method, where an adversarial learning
framework is designed to utilize the independence property
of object and background in motion field to generate mov-
ing regions.

Differences from previous work. To clarify the differ-
ences of our work with the closely related work [32], we
dedicatedly compare the two methods in two aspects (Fig-
ure 2). 1. Instead of involving one scale of temporal infor-
mation (Figure 2 top), we introduce multi-scale of motion
information per iteration in training phase via the proposed
multi-branch flow encoding module. 2. In addition to mo-
tion information, our method takes appearance information
into account as well. Specifically, based on the different
characteristics between object and background, an image
inpainter module is designed to enhance the supervision sig-
nal for generator.
3. Method

The architecture of the proposed moving object detection
method, i.e.,, multi-motion and appearance self-supervised
network (MASNet), is shown in Figure 3. The network
consists of two components: a multi-branch flow encod-
ing (MFE) module (red box in Figure 3), an image in-
painter (IMIP) module (dashed orange box in Figure 3).
The MFE module is composed of several pairs of genera-
tor and flow inpainter. The generator takes images, I , at
time t and its corresponding optical flow maps with frames,
F1, ..., FN , at t1, ..., tN as input to encode multi-scale mo-
tion information and generate various motion segmentation
masks, M̄1, ..., M̄N . The image I , segmentation mask M̄ ,
and masked flow maps Fm are forwarded into the flow in-
painters to recover the masked flow maps, F r. In addition
to the flow inpainter for each scale of motion, we introduce
an additional flow inpainter to recover average motion over
the N frames. The image inpainter is adopted to reconstruct
the masked image to provide supervision information from
appearance dimension. In subsequent paragraphs, we will
introduce these components in detail one by one.

3.1. Adversarial learning
The framework of the adversarial learning for MOD is

originally proposed in [32], we here briefly review the es-
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Figure 3. The framework of the proposed motion and appearance self-supervised network (MASNet). The multi-branch flow encoding
(MFE) module is enclosed in red box, Image inpainter (IMIP) is in orange dashed box. I , F , and M̄ denote image, optical flow map and
predicted mask, respectively. N is the index of frame. “r”, “a”, and “m” represent “recover”, “average”, and “masked”. E: encoder, D:
decoder.

Figure 4. The adversarial learning framework of generator and in-
painter. Gen: generator, Inp: inpainter. Top is successful to detect
moving object. Bottom is failed to predict moving object,

sential idea. As shown in Figure 4, the basic idea is based
on the independence assumption of object and contextual
motion. In particular, given the image I and flow map F ,
the mask generator can be written as M̄ = G(F, I), where
G(·) is the function of generator. The inpainter can be ex-
pressed as F r = I(M̄, Fm, I), where I is the function of
inpainter, Fm = F × (1 − M̄) (× denotes element-wise
product) is the masked flow map, Fr is recovered flow map.
The loss for flow map recovery in predicted mask is repre-
sented as ∥M̄×(F−F r)∥2

2

∥Fm
in∥2

2
, where Fm

in is the flow regions in
mask. Accordingly, the loss for regions outside of predicted
mask has similar form, ∥(1−M̄)×(F−F r)∥2

2

∥Fm
out∥2

2
, where Fm

out is
the flow map regions outside of mask. The variables in loss
can be replaced by corresponding functions. Therefore, the

final loss function is written as:

L(G, I; I) = ∥G(F, I)× (F − I(G(F, I), Fm
out, I))∥22

∥Fm
in∥22

+
∥(1− G(F, I))× (F − I(1− G(F, I), Fm

in , I))∥22
∥Fm

out∥22
(1)

The generator is to produce a mask that inpainter cannot in-
fer the motion in the mask region from the contextual mo-
tion. However, flow inpainter is to recover the motion map
from a masked one. Naturally, this gives rise to a min-max
problem:

F̂ = argmin
I

max
G

L(G, I; I) (2)
3.2. Multi-branch flow encoding (MFE)

In [32], both the generator and inpainter simply lever-
age optical flow information between the current frame and
a randomly chosen noncurrent frame as a primary cue for
moving region detection. However, the motion information
between two frames encode parts of moving object, espe-
cially deformable object. As shown in Figure 5, the moving
regions from frame t to t+1 are different from that of frame
t to t+2, this demonstrate the temporal multi-scale motion
of moving object. This property is existed in oppose time
direction as well.

To encode the motion information, a multi-scale module
is designed accordingly. The basic architecture in shown
in red box of Figure 3. Formally, given image, I , at frame
t, optical flow maps F1, ..., FN with respect to frames at
t1, ..., tN , the object function for each branch of generator
and flow inpainter can be expressed as:

Ln(Gn, In; It) =
∥Gn × (Fn − In(Gn, Fm

out, It))∥22
∥Fn

in∥22

+
∥(1− Gn)× (Fn − In(1− Gn, Fn

in, It))∥22
∥Fout∥22

(3)
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Figure 5. Illustration of temporal multi-scale moving regions in bi-direction. The bi-direction flow maps capture different body parts in
different scale motion.

where n = 1, ..., N is the index of branch. The loss function
of the whole multi-scale generator and inpainter is written
as:

Lms(G, I; It) =
N∑

n=1

L(Gn, In; I) (4)

where N is the total number of optical flow maps. The
Gn and In share weights with other generator and inpainter
over branches, respectively.

As shown in Figure 3, the produced moving region seg-
mentation from each branch of generator can be aggregated
into a complete segmentation of moving object. Naturally,
we can think of using this segmentation mask as a input of
an additional flow inpainter, which is to recover the average
optical flow map over the N frames. This inpainter can pro-
vide extra supervision information for the generators during
the training process. The object function of the average flow
inpainter and the generators can be written as:

Lavg(Ga, Ia; I) =
∥Ga × (F a − Ia(Ga, F a

outi , I))∥
2
2

∥F a
in∥22

+
∥(1− Ga)× (F a − Ia(1− Ga, F a

in, I))∥22
∥Fout∥22

(5)
where ‘a’ indicates the average over N frames. From the
function, we note that based on the adversarial learning
framework, the average flow inpainter guides the training
of generator in each branch.

3.3. Image inpainter (IMIP)

In addition to the motion information, the appearance in-
formation can also serve as a cue to differentiate object from
background in video. In particular, the appearance of ob-
ject is different from its background so that we cannot infer
the other when only one of them is accessible. Formally,
given a predicted mask M̄ and an image I , we can obtain
a masked image Im. Then the masked image is fed into an
image inpainter (orange dashed box in Figure 3). The im-
age inpainter and generators construct an adversarial learn-
ing relationship to compete each other. Specifically, when

the masks produced by generators are not accurate (contain-
ing parts of background or foreground), the IMIP can infer
the maksed region in image from the surrounding appear-
ance information. The goal of generators is to make the
IMIP cannot recover the masked region, such that it needs
to yield accurate object mask. The object function of the
inpainter is written as:

Lim(Ga, Iim; I) = ∥Ga × (I − I(Imout))∥22
+∥(1− Ga)× (I − I(I1−m

in ))∥22
(6)

where ‘a’ indicates the average.

3.4. Training of MASNet
The components mentioned above are integrated into the

adversarial learning framework, it is well-known that a pair
of adversarial network is not easy to train, not to mention
training so many adversarial modules in an unified network.
To mitigate the difficulty of training process, we propose an
alternative training schedule. In specific, we first train the
MFE module until it is stable. Then we train the IMIP with
the mask from the output of frozen trained generators. Af-
ter training the IMIP, we continue training MFE with fixed
IMIP, so that the generator can be supervised by both mo-
tion and appearance information. The finally trained gener-
ator is applied in inference to detect moving object.

4. Experiment
4.1. Implementation details

Experiment setting. The proposed method is imple-
mented on deep learning framework TensorFlow 2 and
codebase 3 released by [32]. The dataset used for evaluation
is Densely Annotated VIdeo Segmentation (DAVIS) [22],
where a single moving object exists in most scenarios. The
metrics used for fairly quantitative comparison are mean,
recall, and standard deviation of Jaccard score J and F

2https://www.tensorflow.org/
3https://github.com/antonilo/unsuperviseddetection
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Table 1. The quantitative results of ablation study. MFE represents multi- flow encoding. IMIP is image inpainter, respectively. ‘m’, ‘r’,
and ‘s’ indicate ‘mean’, ‘recall’, and ‘std’, respectively.

Method Jm ↑ Jr ↑ Js ↓ Fm ↑ Fr ↑ Fs ↓
Baseline 59.3 68.0 25.4 60.2 70.9 21.5
+MFE 61.4 74.3 23.3 61.4 72.2 20.5

+MFE+IMIP 63.2 73.9 25.0 64.3 77.1 20.4

Figure 6. The visualization of ablation study results. A is the comparison between w/o and w/ MFE module. B is the comparison
between w/ or w/o IMIP. Yellow solid and dashed boxes indicate MFE is better at capturing motion boundary and various scales of motion,
respectively, Light blue solid and dashed boxes demonstrate IMIP can capture relatively static foreground parts and dynamic background
parts, respectively.

score J . These two are most commonly adopted in mo-
tion segmentation. To fair comparison, we use the sample
post-processing protocol as CIS [32]. All experiments are
conducted on a RTX 2080 GPU with 12G memory.

Mask generator. As depicted in Figure 3, the generator
is constructed by a pair of encoder and decoder, which is
a shrunk version of SegNet [2]. The encoder and decoder
consists of 5 convolution layers and deconvolution layers,
respectively. After each convolution layer, a batch normal-
ization layer is attached. The deconvolution layers are fol-
lowed by a softmax layer to generate the probability map
for each pixel to be classified as moving object and back-
ground.

Flow inpainter. The flow inpainter is originally pro-
posed in [33], the structure is shown in Figure 3. The input
includes image I , predicted mask M , and masked optical
flow map Fm using M̄ . The M and Fm are concatenated
in channel-wise and forwarded into an encoder for feature
extraction. The image I is fed into an another encoder to
extract feature. The two features are concatenated and for-
warded into a decoder for optical flow recovery.

Image inpainter. The architecture of image inpainter is
similar with that of flow inpainter, but with a little modifi-
cation in input layer. The input of image inpainter is image
masked with M , Im. The output is the recovered image,

which is used to compute the error with image I .

4.2. Ablation study

To demonstrate the effectiveness of the proposed multi-
branch flow encoding (MFE) and image inpainter (IMIP),
we thoroughly conduct ablation experiment on DAVIS
dataset. The baseline in ablation study is CIS [32]. Without
extra notation, results are reported in single scale testing.

The effect of MFE. Compared to baseline, we design a
multi-branch network to introduce multi-scale motion in-
formation, so that during training and inference phases the
network can take advantage of sufficient temporal informa-
tion to accurately capture motion from different moving re-
gions of object. This can be demonstrated in Table 1 gray
row, where we note that by adding MFE the baseline per-
formance is improved by 2.1 and 1.2 points in Jm and Fm,
respectively. In terms of Jr, MFE can boost the baseline
by 6.3 points. From the metric Js and Fs, we notice that
the MFE can also improve the stability of model. To further
illustrate the MFE can benefit the accurate motion capture,
we display the visualization of detection results and corre-
sponding optotical flow map (Figure 6 A).

The effect of IMIP. In addition to motion information,
we introduce appearance information as another supervi-
sion signal. The effectiveness of adding appearance infor-
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Figure 7. The visualization comparison between the proposed MASNet and baseline (CIS [32]) on representative sequences of deformable
object and moving camera. Both are in single-scale testing setting.

Table 2. The quantitative reults on deformable objects in single scale test setting.

Metric Method breakdance camel cows dance-twirl horsejump soapbox

Jm ↑ baseline 61.9 59.1 64.2 72.3 56.9 71.2
ours 72.0 76.1 83.0 76.3 76.9 81.3

Jr ↑ baseline 72.6 62.2 70.2 87.8 64.0 82.8
ours 100.0 97.8 100.0 93.3 100.0 98.0

Js ↓
baseline 16.0 19.0 21.0 16.6 20.1 19.7

ours 10.0 9.2 3.2 11.8 8.6 10.3

Fm ↑ baseline 66.1 59.5 62.7 76.8 66.3 63.5
ours 73.4 73.0 75.7 79.1 80.7 72.1

Fr ↑ baseline 91.7 72.2 78.8 91.1 84.0 79.8
ours 100.0 96.7 100.0 96.7 100.0 97.0

Fs ↓
baseline 12.5 15.1 13.6 13.0 12.6 18.4

ours 9.3 9.7 6.7 12.0 6.9 11.7

mation can be observed in Table 1 light blue row, where
the model with IMIP is superior to the one without IMIP
in almost all metrics. Especially, in Jm, Fm, and Fr, the
proposed IMIP increases the performance by 1.8, 2.9, and
4.9 points, respectively. To make it easy to understand the
IMIP’s functionality, we visually demonstrate the detection
results and flow maps in Figure 6 B. In the dashed light blue
box, we can note that the the proposed IMIP can success-
fully depress the false detection in background. This can
be attributed to the leverage of appearance information. In
particular, when generated mask is in the background, the
IMIP can easily recover the image in the mask by using
the appearance information from complementary regions

(i.e.,surrounding background). As the adversary, the mask
generator tries to yield mask only covering object. Accord-
ing to the same mechanism, the missing detection parts of
object (blue box) can be complemented by generator with
the help of IMIP.

The result on deformable object. To further demon-
strate the superiority of the our proposed method to base-
line, we thoroughly compare the results sequence by se-
quence. By doing this, we note that on deformable object
(Table 2) our method is significantly better than baseline.
For instance, in the categories of breakdance, camel, cows,
horsejump, and soapbox, our method achieves more than
or almost 10 points improvement in terms of Jm and Fm.
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Table 3. The quantitative reults on deformable objects in multi-scale test setting.

Metric Method breakdance camel cows dance-twirl horsejump soapbox

Jm ↑ baseline 61.1 62.2 65.0 70.7 62.9 67.8
ours 76.1 78.5 83.6 77.2 79.0 81.1

Jr ↑ baseline 82.1 73.3 82.7 90.0 88.0 89.9
ours 100.0 100.0 100.0 97.8 100.0 99.0

Js ↓
baseline 11.7 15.1 15.2 13.2 11.7 22.6

ours 8.2 6.7 3.1 10.5 8.6 9.3

Table 4. The comparison with state-of-the-art methods. “+” represents multi-scale test. “++” indicates post-processing.
Method ARP [18] FTS [21] NLC [13] SAGE [29] CUT [17] CIS [32] CIS++ MASNet MASNet+ MASNet++

Jm 76.2 55.8 55.1 42.6 55.2 59.3 69.4 63.2 64.7 71.0
Jr 91.1 64.9 55.8 N/A N/A 68.0 82.0 73.9 76.2 82.6

time (s) 74.5 0.5 11.0 0.88 103.0 0.053 4.7 0.053 0.053 4.7

This significant improvement indicates that our proposed
MFE and IMIP indeed solve the two problems in baseline
method: 1) insufficient utilization of motion, and 2) mov-
ing camera. In particular, in these sequences, due to the
deformation of object, the different regions of object have
different motion information. By introducing multi-scale
information in training, model can access richer motion in-
formation in each batch which is especially critical for de-
formable object. In addition, the camera is moved to capture
the moving object, this results in the moving background
and its motion is not fully independent from object. Thus,
the assumption of adversarial learning framework proposed
in baseline is not always existed, which makes the motion-
only method insufficient to deal with moving object detec-
tion problem. However, our method with help of IMIP com-
plements the drawback of baseline and obtains promising
improvement.

In Figure 7, we show the comparison of our method
and baseline in two representative sequences, where each
is dominated by multi-scale deformation or camera move-
ment. From the figure, we note that our proposed method
can more accurately detect deformable parts of human (red
boxes) and can depress the detections on background (blue
boxes). This visually justifies our method can handle the
aforementioned problems.

Multi-scale testing. In baseline, during training the in-
put motion map is sampled at various temporal scale, thus
theoretically it can also capture multi-scale motion. Thus, if
the model is tested by using multi-scale motion, it can also
deal with deformable object. In addition, multi-scale mo-
tion in test may solve the false detection problem by using
the inconsistency of background motion. To demonstrate
our method cannot be surpassed by trivial multi-scale test.
We compare the proposed method and baseline by averag-
ing detection over five frames in deformable categories (Ta-
ble 3). We note that our method also outperforms the base-
line in all metrics. These results are a compelling evidence
to the efficacy of our proposed method.

4.3. Comparison with state-of-the-art

By comparing with other unsupervised methods, our
method is considerably better than most of them in terms
of speed and precision, except for ARP and CIS. The ARP
achieves highest precision (5.2 points higher than ours in
Jm), but the speed is almost 16× slower than ours (74.5s
per frame vs. 4.7s per frame). Thus, our method is bet-
ter than ARP in speed and precision trade-off. Compared
with CIS, our method can obtain superior precision in terms
of Jm (63.2 vs. 59.3 and 71.0 vs. 69.4) at the same speed
in both single and post-processing. In addition, we note
that post-processing significantly increases the precision but
meanwhile decreases the detection speed. It is because spa-
tially multi-scale of CRF [19] is adopted to improve detec-
tions.

5. Conclusion

This work proposes a MASNet to perform self-
supervised moving object detection by introducing multi-
scale motion and appearance information via a multi-branch
flow encoding (MFE) module and a image inpainter (IMIP)
module, respectively. The two modules are designed ded-
icatedly to deal with single scale of motion and moving
camera problems. The MFE aggregates temporally various
scales of information to capture the different scales of re-
gions of object in motion space, where single scale motion
can simply capture a fraction of object. The moving cam-
era problem leads to unindependent foreground and back-
ground motion and locally independent background mo-
tion. Thus, pure motion information is not sufficient to
differentiate object and background. To handle this prob-
lem, the IMIP provides a novel dimension of information,
appearance, by encoding spatial difference between object
and background. The efficacy of the proposed modules and
the superiority of the MASNet are evaluated extensively on
DAVIS dataset.
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