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Abstract

Due to the emergence of powerful computing resources
and large-scale annotated datasets, deep learning has seen
wide applications in our daily life. However, most current
methods require extensive data collection and retraining
when dealing with novel classes never seen before. On the
other hand, we humans can quickly recognize new classes
by looking at a few samples, which motivates the recent
popularity of few-shot learning (FSL) in machine learning
communities. Most current FSL approaches work on 2D
image domain, however, its implication in 3D perception is
relatively under-explored. Not only needs to recognize the
unseen examples as in 2D domain, 3D few-shot learning
is more challenging with unordered structures, high intra-
class variances and subtle inter-class differences. More-
over, different architectures and learning algorithms make
it difficult to study the effectiveness of existing 2D methods
when migrating to the 3D domain.

In this work, for the first time, we perform systematic and
extensive studies of recent 2D FSL and 3D backbone net-
works for benchmarking few-shot point cloud classification,
and we suggest a strong baseline and learning architectures
for 3D FSL. Then, we propose a novel plug-and-play com-
ponent called Cross-Instance Adaptation (CIA) module, to
address the high intra-class variances and subtle inter-class
differences issues, which can be easily inserted into cur-
rent baselines with significant performance improvement.
Extensive experiments on two newly introduced benchmark
datasets, ModelNet40-FS and ShapeNet70-FS, demonstrate
the superiority of our proposed network for 3D FSL.

1. Introduction
3D point cloud object classification is an important task

for various computer vision, and is widely applied in many
scenarios, like robotics [34], indoor simultaneous local-
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0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

ize
d 

Eu
cl

id
ea

n 
Di

st
an

ce

Distance to class prototype

ImageNet

ShapeNet

ShapeNetImageNet

… …

(a)

(b)

Figure 1. The challenge of few-shot 3D point cloud classification.
(a) is the T-SNE on ImageNet [31] and ShapeNet [3] using pre-
trained 2D image and 3D point cloud feature respectively with the
Mailbox class highlighted. (b) The mean normalized Euclidean
distance between each example and its class prototype in the vi-
sual and point cloud embedding space respectively. The embed-
ding quality of 2D visual domain is much higher than 3D point
cloud domains because image-based pre-trained models [5], such
as ResNet, use deeper networks trained on millions of images,
whereas point cloud-based models, such as PointNet, use shal-
lower networks trained on only a few hundred point clouds with
high intra-class variations and subtle inter-class differences.

ization and mapping (SLAM) [54], autonomous vehicles
(AVs) [38, 16], etc. unlike traditional point cloud recog-
nition algorithms that extract handcrafted features [12, 53,
33, 44], deep-learning based methods can learn more repre-
sentative features from shape projections [51, 24, 7] or raw
points [23, 52, 18, 17] with deep networks, achieving better
performance in kinds of point cloud processing tasks.

However, there are two crucial problems of deep learn-
ing based approaches for point cloud classification. Firstly,
deep networks are usually data-driven and strongly rely on
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large amounts of labeled training data, while the process of
annotating data is cumbersome and costly. Secondly, the
networks tend to have poor generalization ability for novel
classes never seen before. Data-augmentation based meth-
ods [35, 6, 27] and regularization techniques [11, 50] can
alleviate the data deficiency problem without adding new la-
beled data. But these methods may not get promising results
on unseen classes or new tasks without sufficient labeled
training data. In recent years, few-shot learning (FSL) al-
gorithms [45, 39] are introduced to rapidly generalize deep
networks to new tasks with only one or few annotated exam-
ples, having great success in the 2D image domain. By con-
structing many auxiliary training meta-tasks, these 2D FSL
algorithms use metric learning [39, 45] or optimization-
based approaches [13] to learn transferable knowledge and
propagate them to new tasks.

Compared to the FSL in the 2D image domain, its study
on 3D data is still relatively under-explored with the follow-
ing challenges: 1) point cloud is a set of irregular, unstruc-
tured and unordered points defined in European space [2],
to what extent existing point cloud architecture and learn-
ing algorithm can perform for 3D FSL is unknown; 2) most
2D FSL algorithms can learn more discriminative repre-
sentations using deeper networks pre-trained on large-scale
base class data [4, 5], e.g. tieredImageNet [29] contains
608 classes and has a total number of 800,000 samples. By
contrast, most 3D model datasets, e.g. ModelNet [48] and
ShapeNet [3], have a much smaller number of labeled data
(ModelNet [48] includes 40 classes with a total number of
12,311 samples). So the point-based models trained on low
volume of data may generate poor-quality 3D feature clus-
ters with high intra-class variations and subtle inter-class
differences, as shown in Figure 1. Therefore, how to ad-
dress these issues requires further exploration.

In this paper, we study 3D few-shot learning (3D FSL)
in a systematic manner for the first time. We perform ex-
tensive studies and discussions of various state-of-the-art
point cloud architectures and few-shot learning algorithms
in the context of 3D FSL, and propose a strong baseline for
3D FSL. Furthermore, to address the issues of high intra-
class variance and subtle inter-class differences, we pro-
pose a plug-and-play Cross-Instance Adaption (CIA) mod-
ule for 3D FSL. The CIA contains two modules called
Self-Channel Interaction (SCI) module and Cross-Instance
Fusion (CIF) module, which can be flexibly inserted into
most current FSL algorithms with few changes and achieves
significant performance improvement. Moreover, for ob-
jectively evaluating, we introduce new splits of Model-
Net [48] and ShapeNetCore [3] respectively, and construct
two benchmark datasets, ModelNet40-FS, ShapeNet70-FS
for 3D few-shot point cloud classification. Codes and
datasets will be released for facilitating future research in
this area.

Our contributions can be summarized as:
• We are the first to perform a systematic study of 3D

few-shot learning (FSL) in terms of the network archi-
tectures and propose a strong baseline for 3D FSL.

• We propose a novel plug-and-play Cross Instance
Adaption (CIA) module that can be flexibly in-
serted into most current FSL algorithms/backbones
and achieves significant improvement for 3D point
cloud few-shot object classification.

• The proposed method achieves the state-of-the-art per-
formance on the two newly built 3D FSL benchmark
datasets ModelNet40-FS and ShapeNet70-FS under
different settings.

2. Problem Definition and Related Work
Let (x, y) denotes a point cloud instance x and its la-

bel y, where x = {pj |j = 1, ..., n} is an unordered
point set including n points, and each point pj is repre-
sented by its 3D coordinates. In standard N -way-K-shot
FSL setting [4], the goal of FSL is to train a predictor for
query examples with few labeled support examples, where
the labeled support examples are denoted as support set
S = {(xi, yi)}Ns=N×K

i=1 containing N classes with K ex-
amples for each class, and the query examples are denoted
as query set Q = {(xi, yi)}

Nq=N×Q
i=1 containing the same

N classes with Q examples for each class.
For few-shot point cloud classification, meta-learning is

the state-of-the-art paradigm with a set of meta-training
episodes T = {(Si,Qi)}Ii=1 by optimizing following ob-
jectives:

θ∗, ϕ∗ = argmin
θ,ϕ

L (T ; θ, ϕ) . (1)

where T are sampled from the training set and L denotes
the cross-entropy loss function defined as:

L (T ; θ, ϕ) = ET [− log p (ŷ = c|x)] , (2)

with the prediction p (ŷ = c|x) can be given by:

p (ŷ = c|x) = softmax (Cθ (Fϕ (x))) , (3)

where x is the input point cloud instance, ŷ is the predicted
label. The F is the embedding network parameterized by ϕ
and C is the classifier parameterized by θ.

Once meta-training is finished, generalization of the
predictor is evaluated on meta-testing episodes V =
{(Sj ,Qj)}Jj=1, sampled from the testing set. Note that we
denote the classes in V as novel classes, which are disjoint
with the base classes in meta-training episodes T .

Therefore, there are two key challenges in Point Cloud
FSL: 1) how to represent the point cloud data properly
for few-shot learning; 2) how to effectively transfer the
knowledge gained in meta-training episodes to meta-testing
episodes with a small number of labeled samples with high
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intra-class variance and subtle inter-class differences. In the
following section, we’ll introduce the recent efforts in 3D
point cloud classification and 2D few-shot learning.

2.1. Related Work

3D point cloud classification: Unlike conventional
handcrafted feature extraction approaches [44, 12], deep-
learning based methods can learn more complicated and
representative features with deep networks. According
to the way of feature extraction from structured grid or
raw points, existing methods can be generally divided into
projection-based and point-based. Projection-based net-
works first convert the irregular points into a structured rep-
resentation, such as multi-view projection [42, 51], voxel
[20, 30] or lattices [41, 26], and then apply the typical 2D
or 3D convolution neural networks (CNN) to extract view-
wise or structural features. However, these methods may
suffer from explicit information loss or higher memory con-
sumption [10].

In contrast, directly applying deep networks on raw
points is becoming a trend in recent years. PointNet
[23] is the first deep network for unstructured point cloud,
which learns point-wise features with multilayer percep-
tron (MLP) and aggregates global feature with a symmet-
ric function implemented by a max-pooling layer. After
that, lots of works such as PointNet++ [25], PointCNN [15],
RSCNN [18], DensePoint [17], and DGCNN [47] explore
the local relations in a specific region with convolution-
based networks or graph-based networks, which can cap-
ture meaningful geometric features and achieve the state-
of-the-art performance. Nonetheless, these deep learning
approaches are greedy for the availability of massive an-
notated data, and may have poor generalization on novel
classes that are unseen during training.

Recently, there are some works that also consider 3D
point cloud learning with a small number of training data.
Sharma et al. [37] mainly studies feature representation
learning using self-supervision which is orthogonal to our
few-shot learning. LSSB [40] try to learn a discriminative
embedding space for 3D model multi-view images with the
bias of point cloud shape.

Different from these works, we are the first to study few-
shot point cloud classification in a systematic manner by re-
viewing recent 3D point cloud learning networks, and sug-
gest strong baselines for the problem. We also propose an
effective plug-and-play module, Cross Instance Adaption
module, to address the high intra-class variance and sub-
tle inter-class differences issues of 3D FSL, which can be
flexibly inserted into most current FSL algorithms.

2D few-shot learning: With the characteristics of less
annotated training data and good generalization on new
tasks, few-shot learning is a promising direction for deep
learning. In general, existing FSL algorithms is based

on meta-learning framework and can be roughly catego-
rized into metric-based methods [45, 39, 43, 14, 22] and
optimization-based methods [8, 13, 28, 21, 32].

Metric-based methods focus on learning an embedding
space where similar samples pairs are closer, or designing
a metric function to compare the feature similarity of sam-
ples. Matching Network [45]adapts a bidirectional LSTM
module to get full context embeddings and uses cosine dis-
tance to classify query samples. Prototypical Network [39]
on the other hand first averages the support-set features for
each class as a class prototype and then takes squared Eu-
clidean distance to measure the similarity with query sam-
ples, which demonstrates better performance than Match-
ingNet. Relation Net [43] further proposes a learnable met-
ric module to get relation scores between support set and
query set.

Optimization-based methods, on the other hand, regard
meta-learning as an optimization process. MAML [8]
learns a model-agnostic initialization parameter that can
produce great improvement with few gradient steps on
new tasks. MetaOptNet [13] incorporates a differentiable
quadratic programming solver to learn a feature-relevant
linear SVM predictor which can offer better generalization
for novel categories.

In this work, we perform a systematic study of different
meta learning algorithms under few-shot point cloud classi-
fication tasks, suggest strong baselines and components for
the problem.

3. Empirical Study
In the following sections, we would like to perform

empirical study of recent state-of-the-art few-shot learn-
ing methods on point cloud data with different popular
point-based network backbones on our newly proposed
ModelNet40-FS and ShapeNet70-FS datasets. The exper-
imental settings and implementation details can be found in
Section 5.

3.1. State-of-the-art 2D FSL on Point Cloud

We first analyze recent state-of-the-art 2D few shot
learning methods’ performance, when they migrate to few-
shot point cloud classification task on our newly proposed
benchmark datasets. Given its simplicity and efficiencies,
we adopt PointNet [23] as backbone for feature embed-
dings. Specifically, we divide the state-of-the-arts into fol-
lowing groups:

• Metric-based methods M: ProtoNet [39], Relation
Net [43], FSLGNN [36],

• Optimization-based methods O: Meta-learner [28],
MAML [8], MetaOptNet [13]

The comparison results of the metric-based methods and
optimiza-tion-based methods are shown in Table 1. One
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Method ModelNet40-FS ShapeNet70-FS 5way-1shot-15query
5w-1s 5w-5s 5w-1s 5w-5s PN GFLOPs TPS

M
ProtoNet [39] 65.31 ± 0.78 79.04 ± 0.54 65.96 ± 0.81 78.77 ± 0.67 0.15M 6.16 118.23

Relation Net [43] 64.10 ± 0.72 75.75 ± 0.57 65.88 ± 0.85 76.25 ± 0.71 0.28M 6.50 96.03
FSLGNN [36] 59.69 ± 0.73 76.06 ± 0.63 64.98 ± 0.84 76.14 ± 0.73 2.23M 10.44 69.02

O
Meta-learner [28] 58.69 ± 0.81 76.60 ± 0.65 62.64 ± 0.91 73.10 ± 0.80 0.88M 6.28 9.14

MAML [8] 57.58 ± 0.89 77.95 ± 0.62 59.20 ± 0.88 75.10 ± 0.75 0.68M 6.19 38.71
MetaOptNet [13] 64.99 ± 0.87 79.54 ± 0.61 65.08 ± 0.89 77.81 ± 0.75 0.15M 6.16 11.95

Table 1. Few-shot point cloud classification results with 95% confidence intervals on ModelNet40-FS and ShapeNet70-FS with Point-
Net [23] as backbone. Bold denotes the best result and underline represents the second best. M is the metric based methods and O is the
optimization based methods. PN: Parameter Number. GFLOPs: the number of floating-point operations. TPS: inference Tasks per Second
on NVIDIA 2080Ti GPU, with 15 query examples for each task.

Method Backbone ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

ProtoNet [39]

PointNet [23] 65.31 79.04 65.96 78.77
PointNet++ [25] 64.96 83.66 66.33 80.95
PointCNN [15] 60.38 76.95 64.02 76.34

RSCNN [18] 69.72 84.79 68.66 82.55
DensePoint [17] 66.99 82.85 65.81 80.74

DGCNN [47] 69.95 85.51 69.03 82.08

Table 2. Results of ProtoNet [39] on ModelNet40-FS and
ShapeNet70-FS with different 3D backbone architectures. Bold
denotes the best result and underline represents the second best.

can observe that ProtoNet [39] with PointNet [23] back-
bone can achieve top performance at 65.31% and 65.96%
respectively at both datasets and still has large room for fur-
ther improvement.

Moreover, one can conclude that metric-based methods
outperform the optimization-based methods in point cloud
scenario. One possible explanation is that the optimization-
based methods are more sensitive to neural network ar-
chitecture and require arduous hyperparameter setting to
achieve good generalization, as evidenced by recent re-
search in 2D image domains [1].

It’s worth noting that ProtoNet [39] and MetaOpt-
Net [13] have the same number of parameters, because
they employ parameter-free square Euclidean distance and
SVM as meta classifier respectively. However, solving the
quadratic programming of SVM in MetaOptNet [13] is very
computationally expensive. In brief, ProtoNet [39] has a
better trade-off between classification accuracy and algo-
rithm complexity with a high inference speed.

3.2. Influence of Backbone Architecture on FSL

Then we further study the influence of the backbones to
point cloud FSL in ProtoNet [39]. We select three types of
current state-of-the-art 3D point-based networks including:

• Pointwise-based: PointNet [23] and PointNet++ [25].

• Convolution-based: PointCNN [15], RSCNN [18] and
DensePoint [17].

• Graph-based: DGCNN [47].

For fair comparisons, we remove the last fully connected
layers and train the networks from scratch with the same
training strategy as suggested by these methods. After that,
we feed the embedding features generated by these network
into ProtoNet [39] for few-shot classification and the com-
parison results are shown in Table 2. One can conclude

that the graph-based network DGCNN [47] achieves higher
classification accuracy than other networks on these two
datasets. The reason may be that graph-based methods dy-
namically updates the point-wise connection graph in fea-
ture space and extracts edge features with EdgeConv layers,
hence can learn more discriminative features.

Therefore, we will use ProtoNet [39] with DGCNN [47]
as the strong baseline for benchmarking with 3D FSL.

4. Approach

4.1. Overview

Given the baseline in the aforementioned section, 3D
FSL still faces certain challenges: 1) there are strong intra-
class variations and subtle inter-class differences among
support set and query set with a small amount of data;
2) many FSL methods extract features from support and
query examples independently without considering the cor-
relations between these two sets, therefore current features
learning are not discriminative enough.

To address these challenges, we propose a novel plug-
and-play Cross Instance Adaption (CIA) module, which
can be inserted into existing backbones and learning frame-
works to learn more discriminative representations for the
support set and query set, to be elaborated in Section
4.2. By integrating CIA module with current meta-learning
framework, we come up a novel and strong network for 3D
FSL classification, which is illustrated in Figure 2.

First, the embedding module Fϕ takes support set S and
query set Q as input, and maps each point cloud example
x ∈ Rn×3 as a feature vector f = Fϕ (x), where f ∈ R1×d.
Then we define the prototype feature for class ci in support
set as f i

p = 1
|K|Σxs∈ciFϕ (xs) as the mean of its K support

examples, and the query feature for a query example xj
q as

f j
q = Fϕ

(
xj
q

)
, where i ∈ [1, N ] and j ∈ [1, Nq].

However, the first step extracts features from support set
and query set separately. It also ignores the high intra-class
variance and subtle inter-class differences issues in 3D FSL.
Hence, the learned support and query features are not dis-
criminative enough with huge distribution shift, as demon-
strated in Figure 3 (a). Therefore, we propose to update
the prototype features f i

p and query feature f j
q by feeding

them into the novel Cross Instance Adaption (CIA) mod-

1832



Embedding
Network

query 
featuresquery set

support set 
prototype 
features

Self-
Channel
Interaction
Module

Cross-
Instance
Fusion
Module

updated query 
features

updated
prototype 
features

Cross-Instance
Adaption Module

Classifier

predicted 
labels 

Figure 2. An illustration of our proposed framework for 3D few-shot point cloud classification with an introduction in Section 4.1. For
clarity we only present the 2-way 1-shot 2-query setting.

ule in Section 4.2, to learn more diverse and discriminative
support and query features f ′

p
i and f ′

q
j , and to mitigate the

distribution shift for better classification, as demonstrated
in Figure 3 (d).

After that, we take Square Euclidean Distance metric
function as classifier Cθ to measure the distance between
each class prototype and query examples in the feature
space. The probability of predicted label ŷj for f ′

q
j as class

ci is denoted as:

p
(
ŷj = ci|f ′

q
j
)
=

exp
(
−d

(
f ′
q
j , f ′

p
ci
))∑N

i=1 exp
(
−d

(
f ′
q
j , f ′

p
i
)) , (4)

where d (., .) is the Square Euclidean Distance, f ′
p
i and f ′

q
j

are the updated features generated by CIA module. Finally,
we can get the cross-entropy loss with Equation 2, and opti-
mize the network end-to-end by minimizing the Equation 5:

LCE = − 1

N

1

Nq

N∑
i

Nq∑
j

1 [yj = ci] log
(
p
(
ŷj = ci|f ′

q
j
))
,

(5)
where, N and Nq are the number of class prototypes and
query examples respectively, yj is the ground truth of f ′

q
j ,

and 1 denotes the Kronecker delta function.

4.2. Cross-Instance Adaption Module

To learn more discriminative features, Cross Instance
Adaption module (CIA) consists of two modules: first, an
Self-Channel Interaction (SCI) module is designed to learn
diverse and discriminative features of a point clouds object
by modeling channel correlations to address the issues of
subtle inter-class differences, and then a Cross-Instance Fu-
sion (CIF) module is designed to explore instance-wise in-
teraction to address high intra-class variances issues, which
can compensate the prototypical information and rectify the
feature distribution by re-weighting support and query fea-
tures with a meta-learner.

4.2.1 Self-Channel Interaction Module

3D FSL faces the challenge of subtle inter-class differences,
for example ’chair’ and ’bench’ can both have samples with

(a) ProtoNet (b)ProtoNet+SCI (c)ProtoNet+CIF (d)ProtoNet+CIA

Support samples
Query samples

Support samples
Query samples

Support samples
Query samples

Support samples
Query samples

74.57% Acc 77.28% Acc 78.39% Acc 73.28% Acc 

Figure 3. The t-SNE comparison of feature distribution of support
set and query set before and after using the CIA modules (SCI and
CIF) in Section 4.2. △ stands for the support features, • represents
the query features.

handles and cushion. [49, 9] point out that different chan-
nels can convey different semantic information. Inspired
by this observation, we attempt to model channel-wise re-
lationships to learn more diverse features to address subtle
inter-class differences with an illustration in Figure 4.

Concretely, a query-vector q ∈ R1×d and a key-vector
k ∈ R1×d are firstly generated from the embedding fea-
ture vector f with two linear embedding functions parame-
terized by φ and γ respectively. Then Channel Interaction
Module is executed by using a bilinear operation between
qT and k to get a channel-wise relation score map:

R = qT k, R ∈ Rd×d. (6)

Then we normalize each column of R by performing a
softmax function to get the weight matrix R′. Specially, the
ith value of the jth column in R′ can be calculated by:

R
′

ij =
exp (−Rij)

d∑
k=1

exp (−Rkj)

, R′ ∈ Rd×d, (7)

where
d∑

k=1

R
′

kj = 1. After that, we use the channel-wise

relation score map R′ to re-weight the initial feature f and
get vector v, which can be denoted by:

v = fR′, v ∈ R1×d. (8)

Note that the ith channel of v, defined as vi = f1R
′

i1 +

... + fdR
′

id, is the weighted sum of all channels in f , so
higher value of vi indicates that the ith channel is more in-
formative. Finally, we further combine v and f to com-
pensate the discarded information and output the updated
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Figure 4. An illustration of the Self-Channel Interaction Module.
For clarity we only present the 2-way 1-shot 2-query setting.

features f ′:
f ′ = v + f, f ′ ∈ R1×d (9)

After using the SCI module, the features become more dis-
criminative to separate different classes, as shown in Figure
3 (b). More visualization analysis of SCI module can be
found in Supplementary Material.

4.2.2 Cross-Instance Fusion Module

Most existing methods [45, 39, 43, 22] extract support fea-
tures and query features independently, as a result there
are huge feature distribution shift (as shown in Figure 3
(a)) exists between support set and query set due to the
low volume of data and high intra-class variance issues.
Thus, we propose a simple but effective Cross-Instance Fu-
sion (CIF) module with a meta-network to re-weight and
update support features and query features by considering
their instance-wise relationships.

Specifically, as illustrated in Figure 5, we first concate-
nate each prototype feature f i

p (where i ∈ [1, N ]) to its top
K1 cosine similar query features, and get Zfi

p
:

Zfi
p
=

[
f i
p, f

⟨top1⟩
q , ..., f ⟨topK1⟩

q

]
, Zfi

p
∈ R1×d×(K1+1),

(10)
where [·] is the concatenation operation, d is the number
of feature channels, K1 ≤ Nq , and f

⟨top1⟩
q represents the

query feature having the highest cosine similarity with pro-
totype feature f i

p. Similarly, we concatenate each query fea-
ture f j

q (where j ∈ [1, Nq]) to its top K2(≤ N) cosine sim-
ilar prototype features, and get Zfj

q
:

Zfj
q
=

[
f j
q , f

⟨top1⟩
p , ..., f ⟨topK2⟩

p

]
, Zfj

q
∈ R1×d×(K2+1).

(11)
We then employ two 1× 1 convolution layers as a meta-

leaner to encode the concatenated features and generate a
weight matrix Wf for Zf . After that, we update the pro-
totype (query) features by using the weighted sum of Zf

instead of simple averaging, which can fuse the instance-
wise information flexibly. For example, the weight matrix

Updated 
Query
Features

SoftMax

SoftMax

SUM

SUM

Conv Conv

Conv Conv

Prototype
Features 

Query
Features

Updated 
Prototype
Features

Cross-Instance Fusion Module

Rank
and

Concat

Figure 5. An illustration of the Cross-Instance Fusion Module. For
clarity we only present the 2-way 1-shot 2-query setting. The ⊙ is
the element-wise product.

Wfi
p

for Zfi
p

is denoted as:

Wfi
p
= f2

(
f1

(
Zfi

p

))
,Wfi

p
∈ R1×d×(K1+1). (12)

And the prototype feature f i
p can be updated by combin-

ing the K1 concatenated features in Zfi
p

based on Wfi
p
:

f ′
p
i =

∑(
softmax

(
Wfi

p

)
⊙ Zfi

p

)
, f ′

p
i ∈ R1×d (13)

where f1 (·) is the first 1 × 1 Conv layer encoding the Zfi
p

into a h-dim feature interaction Z ′
fi
p
, and the second 1 ×

1 Conv layer f2 (·) is designed to adjust the dimension of
interaction Z ′

fi
p

to generate the weight matrix Wfi
p
, and ⊙ is

the element-wise product.
Similarly, we can easily get Wfj

q
= f4

(
f3

(
Zfj

q

))
∈

R1×d×(K2+1) for Zfj
q

with two 1 × 1 Conv layers f3 (·)
and f4 (·), whose parameters are not shared with f1 (·) and
f2 (·), and generate the updated query features f ′

q
j .

After using the CIF module, the distribution shift be-
tween support and query set is mitigated, as shown in Fig-
ure 3 (c). More visualization analysis of CIF module can be
found in Supplementary Material.

5. Experiments
In this section, first, we introduce two datasets for few-

shot 3D point cloud classification and describe the imple-
mentation details. Then, we compare the state-of-the-art
FSL algorithms with DGCNN [47] as backbone using CIA
modules on these datasets. Finally, we conduct extensive
ablation studies to evaluate the effectiveness of the CIA
module when inserted into different algorithms.

5.1. Dataset
ModelNet40 [48] and ShapeNetCore [3] are two stan-

dard benchmark datasets for 3D point cloud learning. How-
ever, exiting splits of training set and testing set are class-
overlapping, which should be disjunctive in the few-shot
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Backbone Method ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

DGCNN [47]

ProtoNet [39] 69.95 ± 0.67 85.51 ± 0.52 69.03 ± 0.84 82.08 ± 0.72
Relation Net [43] 68.57 ± 0.73 82.01 ± 0.53 67.87 ± 0.86 77.99 ± 0.70

FSLGNN [36] 61.96 ± 0.76 80.22 ± 0.55 66.25 ± 0.88 76.20 ± 0.77
Meta-learner [28] 59.08 ± 0.86 76.99 ± 0.67 64.53 ± 0.83 74.61 ± 0.72

MAML [8] 62.57 ± 0.88 77.41± 0.73 64.39 ± 0.76 74.11 ± 0.68
MetaOptNet [13] 67.05 ± 0.78 85.05 ± 0.59 68.27 ± 0.93 81.06 ± 0.76

Ours 75.70 ± 0.74 87.15 ± 0.47 73.57 ± 0.81 83.24 ± 0.67
Table 3. Few-shot point cloud classification results with 95% confidence intervals on ModelNet40-FS and ShapeNet70-FS with
DGCNN [47] as backbone. Bold denotes the best result and underline represents the second best.

setting [4, 45]. To meet the requirement, we propose new
splits of ModelNet40 and ShapeNetCore, and build two
benchmarks, ModelNet40-FS and ShapeNet70-FS, for 3D
few-shot point cloud classification. We carefully split the
dataset according to the number of instances in each cat-
egory, making sure that data distributions of the training
set and testing set are similar. Concretely, ModeNet40-
FS includes 30 training classes with 9,240 examples and
10 testing classes with 3,104 examples. ShapeNet70-FS
has a larger number of data, which totally contains 30,073
examples, 50 classes with 21,722 samples for training and
20 classes with 8,351 samples for testing. Details of these
splits are listed in Supplementary Material.

5.2. Training and Testing Details
We follow the standard episode-based FSL setting [4] to

train and evaluate. We first train the network from scratch
with 80 epochs, and each epoch contains 400 meta-training
episodes and 600 validating episodes randomly sampled
from the training set. Each episode consists of N classes
with K labeled support examples and Q query examples for
each class, which is denoted as the N -way K-shot Q-query
setting. Once the meta-training is ended, we test the net-
work with 700 meta-testing episodes which are randomly
sampled from the testing set with the same N -way K-shot
Q-query setting. We average the classification results of
these meta-testing episodes with 95% confidence intervals
as the final performance. Specially, we employ 5-fold cross-
validation, where the training set will be randomly divided
into 5 even subsets, and each subset is used once as a val-
idation set. Finally, we report the average performance of
the 5 estimations on the testing set.

5.3. Implementation Details
We take DGCNN [47] as the embedding network, con-

sisting of four EdgeConv layers (64,64,128,256) and an
MLP layer. More adapted details of backbone networks
and FSL algorithms can refer to Supplementary Material.
Each point cloud instance consists of 512 points sampled
randomly from the CAD model surface. We use Adam op-
timizer with an initial learning rate of 0.0008 and gamma
of 0.5. The learning rate declines every 5 epochs. We also
apply random points jittering and rotating to augment data
as in [23] during training. Other specific implementation
details are described in the following subsections.

Method ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

ProtoNet [39] 69.95 85.51 69.03 82.08
ProtoNet [39]+CIA 75.70 87.15 73.57 83.24

Relation Net [43] 68.57 82.01 67.87 77.99
Relation Net [43]+CIA 70.55 83.59 68.67 78.60

FSLGNN [36] 61.96 80.22 66.25 76.20
FSLGNN [43]+CIA 63.81 83.57 67.40 78.62

Meta-learner [28] 59.08 76.99 64.53 74.61
Meta-learner [28]+CIA 60.55 77.30 65.61 75.01

MAML [8] 62.57 77.41 64.39 74.11
MAML [8]+CIA 63.32 78.29 65.25 75.03
MetaOptNet [13] 67.05 85.05 68.27 81.06

MetaOptNet [13]+CIA 74.70 87.10 72.82 83.08
Table 4. Comparisons of the classification results after incorporat-
ing CIA Module into different FSL algorithms on ModelNet40-FS
and ShapeNet70-FS with DGCNN [47] as backbone.

5.4. Comparison with the Baselines
To verify the effectiveness of our proposed network, we

first compare the classification accuracy with the afore-
mentioned FSL baselines on two benchmark datasets,
ModelNet40-FS and ShapeNet70-FS. The results in Table 3
show that our method exceeds other baselines by a large
margin, about 5% for 1-shot and 1.5% for 5-shot and out-
performs other baselines on both two datasets.

One potential explanation is that ProtoNet is a metric-
based approach that predicts labels for query examples
based on the nearest square Euclidean distance with each
class prototype. However, features for support and query
sets are extracted independently. The CIA Module can
adjust the distribution of support and query examples in
the feature space by considering feature-level and instance-
level association, which could enhance the discrimination
between prototypes and query examples.

5.5. Ablative Analysis
In this section, we conduct ablation studies to analyze

the effects of various designs of the proposed module for
few-shot point cloud classification.

Adding CIA Module to Different FSL Baselines. We
embed the CIA Module into metric-based and optimization-
based FSL baselines to validate the generalization ability
with multiple systems. All the experiments take DGCNN as
backbone for features extraction and share the same training
strategy for a fair comparison. Table 4 shows the improve-
ment of adapting the CIA Module into each algorithm. One
can observe that there is an approximately 2% consistency
increase after incorporating with CIA Module, demonstrat-
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Backbone Method ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

PointNet [23] PN 65.31 79.04 65.96 78.77
PN+CIA 67.40 80.31 69.36 80.31

PointNet++[25] PN 64.96 83.66 66.33 80.95
PN+CIA 72.42 84.93 72.66 82.65

PointCNN [15] PN 60.38 76.95 64.02 76.34
PN+CIA 64.20 80.86 66.12 78.06

RSCNN [18] PN 69.72 84.79 68.66 82.55
PN+CIA 74.23 85.58 73.86 83.85

DensePoint [17] PN 66.99 82.85 65.81 80.74
PN+CIA 72.36 84.41 72.48 81.84

DGCNN [47] PN 69.95 85.51 69.03 82.08
PN+CIA 75.70 87.15 73.57 83.24

Table 5. Comparisons of the classification results after incorporat-
ing CIA Module into ProtoNet(PN) [39] with different backbones
on ModelNet40-FS and ShapeNet70-FS.

ProtoNet SCI CIF ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

✓ 69.95 85.51 69.03 82.08
✓ ✓ 70.51 85.96 69.37 82.32
✓ ✓ 73.67 86.69 72.32 82.73
✓ ✓ ✓ 75.70 87.15 73.57 83.24

Table 6. Ablation study of CIA Module with DGCNN [47] as
embedding network. ”SCI” denotes the Self-Channel Interaction
block and ”CIF” means the Cross-Instance Fusion block.

Method ModelNet40-FS ShapeNet70-FS
5w-1s 5w-5s 5w-1s 5w-5s

SimpleShot [46] 61.87 78.17 61.58 74.63
SimpleShot /w SB [40] 63.33 76.41 64.45 73.77

SSL3DFSL [36] 64.89 79.59 65.76 79.19
Ours 75.70 87.15 73.57 83.24

Table 7. The comparisons of other 3DFSL methods on Model-
Net40-FS and ShapeNet70-FS with DGCNN [47] as backbone.

ing that the proposed module can improve both metric-
based and optimization-based FSL baselines significantly.

Adding CIA Module into Different Backbones. We
also verify the effectiveness of the CIA Module adapting
into ProtoNet with different 3D support backbones afore-
mentioned in Table 5. We first remove the FC layers of
these 3D networks and feed the output feature vectors into
the CIA Module to generate re-weighted features. Then we
employ square Euclidean distance as the metric function
to classify the unlabeled query samples. The comparison
results in Table 5 show that after including CIA Module,
different state-of-the-art backbones can achieve significant
performance improvement.

Ablation Study of CIA modules. After that, we per-
form ablation studies to quantify the contribution of two
proposed modules in CIA with the results listed in Table 6.
We can clearly observe that both “SCI” and “CIF” could
provide positive impacts and improve the performance for
ProtoNet on MdoelNet40-FS and ShapeNet70-FS. Espe-
cially, the network incorporating with “CIF” has about 3%
improvement for 1-shot setting.

Comparison with other 3DFSL methods. We fur-
ther compare our proposed network with two recent 3D
FSL works on ModelNet40 FS and ShapeNet70 FS. We
follow the settings mentioned in [40] and [37], where Sim-
pleshot is image-only low-shot recognition for 3D models’

2D RGB projections, and /w SB means shape-biased which
uses auxiliary point cloud feature to learning a discrimina-
tive embedding space. For SSL3DFSL [37], We first train
the based feature extractor with a self-supervised strategy
proposed in [37], and then fine-tune the classifier with few
samples. Table 7 summarizes the results on 5-way classi-
fication tasks, where our proposed baseline achieves much
higher performance on both benchmarks.

5.6. Feature Visualization
We use t-SNE [19] to visualize the feature distribution

at a 5way-5shot-15query setting on ModelNet40 FS with
DGCNN [47] as backbone. Figure 3 (a) corresponds to
the features of ProtoNet without the CIA module achiev-
ing an accuracy of 73.28%, (b) and (c) are the results of
incorporating SCI and CIF, achieving 74.57% and 77.28%
respectively, while (d) has better performance of 78.39%
after equipped with CIA module. Note that the learning
support and query features of ProtoNet [39] are dispersed
with a huge distribution shift. After using the SCI module,
the support features tend to move to the centrality to bet-
ter differentiate from other classes, as shown in (b) and (d).
Moreover, the distribution shift between support and query
sets is mitigated, as shown in (c) and (d).

6. Conclusion
In this paper, we study 3D few-shot learning (FSL) in

a systematic manner for the first time. We first empiri-
cally study and analyse the state-of-the-art 2D FSL algo-
rithms in the context of point cloud classification and ex-
plore the influence of different backbone architectures. We
then propose a strong baseline for benchmarking 3D FSL
using ProtoNet with DGCNN. Furthermore, to alleviate the
high intra-class variance and subtle inter-class differences
among support set and query set, we also propose a plug-
and-play Cross Instance Adaption (CIA) module consisting
of a Self-Channel Interaction (SCI) module and a Cross-
Instance Fusion (CIF) module, which can generate more
discriminative features. For objective evaluation, we con-
struct two benchmarks ModelNet40-FS and ShapeNet70-
FS for 3D point cloud classification. Finally, extensive ex-
periments show that the proposed CIA module has a sig-
nificant performance improvement with different FSL algo-
rithms and could be adapted well into different backbones.
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