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Abstract

Automatic detection of geoinformation from satellite im-
ages has been a fundamental yet challenging problem,
which aims to reduce the manual effort of human annotators
in maintaining an up-to-date digital map. There are cur-
rently several high-resolution satellite imagery datasets that
are publicly available. However, the associated ground-
truth annotations are limited to road, building, and land
use, while the annotations of other geographic objects or
attributes are mostly not available. To bridge the gap, we
present Grab-Pklot, the first high-resolution and context-
enriched satellite imagery dataset for parking lot detec-
tion. Our dataset consists of 1344 satellite images with the
ground-truth annotations of carparks in Singapore. Moti-
vated by the observation that carparks are mostly co-appear
with other geographic objects, we associate each satellite
image in our dataset with the surrounding contextual infor-
mation of road and building, given in the format of multi-
channel images. As a side contribution, we present a fusion-
based segmentation approach to demonstrate that the park-
ing lot detection accuracy can be improved by modeling the
correlations between parking lots and other geographic ob-
jects. Experiments on our dataset provide baseline results
as well as new insights into the challenges and opportuni-
ties in parking lot detection from satellite images.

1. Introduction
Semantic segmentation of satellite images has been

an active research area for decades [10, 26]. By us-
ing deep learning neural networks, various geographic ob-
jects and attributes can be automatically extracted from
high-resolution satellite images including roads [36], build-
ings [13], land use [8], etc. The detected geoinformation
can be used to fill in the missing data of a digital map. It
has great importance because it significantly reduces the
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manual effort required from human annotators when try-
ing to improve the completeness of a digital map. To this
end, several high-resolution satellite imagery datasets such
as DeepGlobe [10] and SpaceNet [29] have been made pub-
licly available recently. However, most of the datasets focus
on the detection of road and building. Ground-truth annota-
tions of other geographic objects are seldomly available in
the existing satellite imagery datasets.

In this paper we present an satellite-imagery dataset on
parking lot detection, which provides important geoinfor-
mation for a map user. For example, food delivery drivers
sometimes may go to places that they are unfamiliar with.
Thus, it can be difficult for them to find a carpark when
delivering food if such information is not available in a dig-
ital map. However, based on our investigations, a signifi-
cant number of carparks are missing from the web mapping
services such as OpenStreetMap. To facilitate the devel-
opment of automatic parking lot detection algorithms, we
present Grab-Pklot1, the first high-resolution and context-
enriched satellite imagery dataset with ground-truth carpark
annotations. This dataset consists of 1344 1024 × 1024
satellite images in Singapore, with a ground sampling dis-
tance of 0.3 meter/pixel. As it is too time-consuming and
labor-intensive to label the carparks in the satellite images
from scratch, we collect the geoinformation of carpark can-
didates in Singapore from two public datasets, i.e., the
OpenStreetMap and the local government public data. The
raw annotations we collected this way are given as poly-
gons or points. We then require human annotators to refine
the raw annotations by removing duplicates, refining mis-
aligned polygons, and creating new polygons around the
point candidates.

In additional to the satellite images and the carpark anno-
tations, we associate each satellite image with two contex-
tual features extracted from OpenStreetMap based on roads
and buildings. In our dataset, roads and buildings are rep-
resented by a multi-channel image where each channel is

1Available upon request sent to geo.grabpklot@grabtaxi.com
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Figure 1: Example of correlations between carparks and
other geographic objects, i.e., roads (left) and buildings
(right). Original Images © 2018 Maxar Technologies Inc.

a binary mask for a certain category (e.g., a service road
or a residential building). This is motivated by the obser-
vation that carparks are likely to co-appear with other geo-
graphic objects as shown in Figure 1. On the left, it shows
a large carpark that has service roads inside it. On the right,
it shows a residential carpark that is surrounded by residen-
tial buildings. We thus believe that the parking lot detection
accuracy can be improved by taking such contextual fea-
tures into consideration. To this end, we present a fusion-
based segmentation approach. It converts the contextual
features into a 3-channel embedding, which is next added
to the RGB channels of the corresponding satellite image.
Thereafter, the generated feature map can be processed by
any existing segmentation networks such as U-Net [22], D-
LinkNet [36], and DeepLab [6]. We conducted extensive
experiments on our dataset and observed a mIoU improve-
ment of 1.80% ∼ 3.18% by our proposed fusion-based seg-
mentation approach. The key contributions of this paper is
summarized as follows:

• We present the first high-resolution and context-
enriched satellite imagery dataset for parking lot de-
tection, which consists of 1344 1024 × 1024 satellite
images with carpark masks in Singapore.

• Our dataset is context-rich where each satellite image
is further associated with the contextual information
(e.g., geometry and category) of roads and buildings
extracted from OpenStreetMap.

• We present a fusion-based segmentation method and
integrate it with eight state-of-the-art segmentation
models. An improvement of 1.80% ∼ 3.18% in terms
of mIoU have been observed when using the contex-
tual features as an additional input.

Figure 2 illustrates the structure of a parking lot. Please
note that the focus of this paper is to detect the location and
the polygon of the parking lot. This problem has not been
thoroughly studied as existing work mostly focused on the
detection of the individual parking space or parking block
inside a parking lot whose location is known. In previous
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Figure 2: Illustrations of parking lot, block, and space.
Original Image © 2018 Maxar Technologies Inc.

work, “paring lot” is also termed as “carpark”, and “parking
space” is also termed as “parking spot” or “parking slot”.
Such terms are used interchangeably throughout this paper.

2. Related Work

Early parking lot detection methods mostly use wireless
radio modules such as GPS and Wi-Fi to detect parking ac-
tivities [3]. For example, PhonePark was proposed to de-
tect whether a user was walking, stationary or driving based
on GPS, accelerometer and Bluetooth connectivity data col-
lected on the user’s smartphones [25]. Park Here! utilized
both accelerometer and gyroscope sensor to detect park-
ing activity based on a binary classifier (i.e., driving or
not driving) [23]. Inspired by the great success of Convo-
lutional Neural Networks (CNN) on image classification,
machine learning based methods have been proposed to
detect parking lots from surveillance or satellite imagery.
Chen et al. presented a method to detect vacant parking
spaces in a parking lot from surround-view images with the
aid of pixel-level domain adaptation [5]. Seo et al. proposed
a self-supervised method to extract the structure of park-
ing spaces from satellite images [24]. Vadivel et al. pro-
posed to localize parking spaces and vehicles in parking
lots [28]. They modeled the problem as object detection
from satellite images and investigated the performance of
RCNN based neural network architectures. However, such
methods mostly focused on the detection of parking vehi-
cles [32] or vacant parking spaces [5, 19] rather than locat-
ing the parking lot from a global perspective.

For parking lot detection, there are only a handful of
related datasets that are publicly available. For example,
Tongji Parking-slot Dataset 2.0 contains surround-view im-
ages synthesized from four low-cost fisheye cameras [34].
This dataset is for parking slot detection where various
parking-slot types were considered such as the vertical, the
parallel, and the slant types. Do and Choi released a re-
alistic parking slot dataset, which comprises parking slot
images captured by the fish-eye cameras on vehicles with
various attributes and external conditions [11]. PKLot [9],
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Table 1: Comparison to existing benchmark datasets.

Dataset Total Images Camera View Satellite View Contextual Info. Detection Target
DeepGlobe [10] > 10, 000 ✗ ✓ ✗ Road, Building, Land Cover
SpaceNet [29] > 10, 000 ✗ ✓ ✗ Road, Building

PKLot [9] 12,417 ✓ ✗ ✗ Parking Space
CNRPark [2] 12,000 ✓ ✗ ✗ Parking Space

CNRPark+EXT [1] 144,965 ✓ ✗ ✗ Parking Space
APKLOT [15] 500 ✗ ✓ ✗ Parking Block

Grab-Pklot, Ours 1,344 ✗ ✓ ✓ Parking Lot

CNRPark [2], and CNRPark+EXT [1] are three benchmark
datasets for visual vacancy/occupancy detection in a park-
ing lot. These datasets comprise ground camera-view im-
ages of vacant and occupied parking spaces captured under
varied weather conditions (e.g., sunny, overcast or rainy) in
real-world scenarios. APKLOT [15] is a dataset for parking
block segmentation, which is also the most relevant to our
work. This dataset contains 500 satellite view images, but
the images do not have any contextual information associ-
ated with them. To our best knowledge, there is no available
dataset dedicated to parking lot detection from bird-view
high ground-coverage satellite imagery yet.

3. Challenges
Parking lot detection from satellite imagery is an impor-

tant, yet challenging real-world problem. Though it can
be modeled as a binary semantic segmentation problem, it
is different from the existing segmentation tasks in several
aspects and thus posts new challenges the existing models
cannot handle effectively. First of all, unlike the objects
in scene understanding [33, 12] or medical image segmen-
tation [22], the size of a parking lot varies significantly in
different regions, depending on its capacity. Though exist-
ing models have utilized spatial pyramid and dilated convo-
lutions to segment objects in different sizes [35, 20], such
techniques may not be sufficient for the parking lot detec-
tion from satellite imagery.

Second, the visual appearance of parking lots can be
quite diverse as they may have irregular shapes or get oc-
cluded by vegetation or cloud. The visual appearance of a
parking lot can also shift over time due to the change of il-
lumination or the number of cars parking inside. This chal-
lenge can degrade the performance of existing segmentation
models. For example, a model may confuse an occupied
parking lot with a road segment full of cars due to their sim-
ilar visual appearance. Similarly, a vacant parking lot can
be confused with a building rooftop or a vacant ground.

Finally, the number of public satellite images with
ground-truth parking lot annotations is very limited. We
can find the information of some carparks on public map
data such as OpenStreetMap. However, as the public map
data are mostly crowdsourced, there is no guarantee of the

Figure 3: Dataset distribution over the Area of Interest
(AoI). Pink polygons indicates the location of each sample
in the dataset

data quality. The annotations collected this way can be in-
complete and imprecise. And it is unclear if existing models
can learn effectively from such weak and noisy annotations.

4. Dataset
Geoinformation extraction from high-resolution aerial

and satellite images has gained its popularity in recent
years. As shown in Table 1, DeepGlobes [10] and
SpaceNet [29] are two popular high-resolution satellite im-
agery datasets for building detection, road detection, and
land cover classification. However, to the best of our knowl-
edge, the datasets related to parking lot detection are mostly
composed of camera view images only [9, 2]. Take CNR-
Park+EXT [1] as an example, this dataset, though consists
of 144,965 images, is collected by 9 fixed cameras cover-
ing a small parking area only. APKLOT [15] is the only
satellite imagery based carpark dataset, which contains 500
images with varying sizes and resolutions. To bridge the
gap, we present the first high-resolution satellite imagery
based carpark dataset, where each satellite image is fur-
ther associated with contextual information collected from
OpenStreetMap.

4.1. Dataset Overview

Our dataset contains a total of 1344 DigitalGlobe satel-
lite images in Singapore, the distribution of which is il-
lustrated in Figure 3. The satellite images together with
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Figure 4: Dataset samples from training (left), testing (mid-
dle) and additional training (right) sets. Original Images
© 2018 Maxar Technologies Inc.

the corresponding context and carpark annotations in our
dataset have a size of 1024 × 1024 pixels with a ground
sampling distance of 0.3 meter/pixel. To train parking lot
detection models, we further divide the dataset into a train-
ing set of 527 samples, a testing set of 200 samples, and an
additional training set of 617 samples. The images in the
training and testing sets are labeled with manually refined
high quality carpark annotations. The images in the addi-
tional training set are labeled with partial carpark annota-
tions where missing parking blocks exist. The additional
training set reflects the quality of carpark annotations in
real-world crowd-sourced maps. Considering that a model
trained in one country may not generalize well to another
country, it is interesting to study if one can make effective
use of the partially labeled images during training, to reduce
the heavy cost of ground-truth labeling.

Figure 4 shows three samples in our dataset from train-
ing, testing, and additional training sets, respectively. As
the size and density of carparks may vary significantly in
different regions, we further group the images into three
clusters based on the visible area of carparks in the satellite
image and randomly divide them into the training and test-
ing sets. The statistics are shown in Table 2. Overall speak-
ing, our dataset is generated by three steps. First, a list of
carpark candidates is extracted from public map and gov-
ernment data sources. Next, the initial carpark candidates
are refined by experienced annotators. Satellite images with
at least a partially visible carpark in the content are selected
as samples in our dataset. Finally, we extract contextual in-
formation such as road network and building footprint from
OpenStreetMap that correspond to each sample to provide
an enriched satellite imagery dataset for parking lot detec-
tion. The details are introduced in the next section.

4.2. Dataset Generation

4.2.1 Candidate Generation

Instead of labeling the ground-truth carpark annotations
from scratch, we collected a list of carpark candidates from
OpenStreetMap (OSM) and Singapore’s government public
data. The carpark information on OSM is manually con-
tributed by different users. As a result, the coverage of

Table 2: Statistics of the three groups divided based on the
visible area of the carparks.

Group Area (No. of pixels) No. of samples
(Train/Test)

1 > 1024·1024
16 183/79

2 < 1024·1024
16 and > 1024·1024

256 210/87
3 < 1024·1024

256 134/34
Total > 0 527/200

Figure 5: Left: parking slots are grouped based on locations
to form the polygon candidates. Right: only the points (i.e.,
red dots) that are not covered by any polygon candidates
(i.e., pink polygons) are kept for further labeling. Those al-
ready been covered (i.e., yellow dots) are discarded. Origi-
nal Images © 2018 Maxar Technologies Inc.

carparks can be incomprehensive and imprecise. On OSM,
the carpark polygons are labeled with keywords such as
“Car Park”, “carpark”, “Parking”, “garages”, and “Vehicle
Park” in different attributes. We therefore select OSM can-
didates with the corresponding polygons by filtering their
keywords and relations to other geographic objects.

From the government data, we gathered information
from three Singapore agencies, namely the Urban Rede-
velopment Authority (URA), the Housing & Development
Board (HDB), and the National Parks Board (NParks).
Some of the information consists of polygons of individual
parking lots, and the others are given as point candidates
around the actual location of the carpark. For the first type
of data, parking lots are grouped based on their locations
and attributes to form the polygon candidates (see Figure 5
left), which are next merged with the OSM polygon candi-
dates to remove the duplicates. For the second type of data
(i.e., the point candidates), only those that are not covered
by polygon candidates are kept for further labeling (see Fig-
ure 5 right) as introduced below.

4.2.2 Manual Refinement and Data Selection

After obtaining a list of polygon and point carpark candi-
dates, a manual refinement step was conducted by experi-
enced annotators to remove non-carpark candidates, read-
just existing polygon, and extend point candidates. Specifi-
cally, new polygons were created for each of the point can-
didate, with reference to the carpark that is visible in the
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Table 3: Categories of the contextual features associated
with the satellite imagery in our dataset.

Context Category
Road service, residential, primary, secondary

tertiary, trunk, motorway, others
Building residential, house, apartments, terrace

industrial, commercial, others

corresponding satellite image. The results from refined and
newly created polygons were merged to generate the geo-
referenced ground truth of carparks, which contain a total of
2883 polygons. Instead of cropping the satellite imagery at
the center of each polygon, we crop the entire area of inter-
est (i.e., Singapore) into non-overlapping image chips with
1024 × 1024 pixels and select the ones with at least a par-
tially visible carpark in the content as candidates to form our
dataset. Subsequently, there are 1484 images overlapping
with the geo-referenced carpark ground truth we created.
We further conduct an additional round of annotation ad-
justment and marginal carpark removal, resulting a dataset
comprising 1344 image-mask pairs. The distribution of the
dataset is shown in Figure 3.

4.2.3 Context Generation

For each of satellite images in our dataset, we addition-
ally extract two types of contextual features from Open-
StreetMap based on roads and buildings, respectively. We
would like to capture not only the geometry of roads and
buildings, but also their categories in our extracted contex-
tual features [31, 30]. This is possible as there are key-value
pairs in the OpenStreetMap data that indicate the category
of a geographic object, e.g., highway=service and build-
ing=residential. We thus group roads into 8 categories as
shown in Table 3, and generate a binary mask for each of
the categories. We concatenate the binary masks into an 8-
channel image as the road contextual feature in our dataset.
Similarly, we group buildings into 7 categories and generate
a 7-channel image as the building contextual feature.

Figure 6 shows the dataset distribution over the building
and road categories. Take building as an example, we com-
pute the number of pixels that belong to the i-th category,
denoted as ri, and report the normalized r̂i = ri∑7

i=1 ri
in

Figure 6. As can be seen, a majority of the pixels belong to
category “others” as many buildings on OSM do not have
a specific category label. The second largest category is
“residential” which covers about 17.7% of building pixels.
Similarly, we report the normalized b̂i = bi∑8

i=1 bi
over the

8 road categories. Category “service” covers the most road
pixels, which also correlates with carparks the most. This is
aligned with the OpenStreetMap Wiki [21], where the main
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Figure 6: Distribution of categories for road and building.
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Figure 7: Network architecture of our proposed segmenta-
tion method.

ways on a parking lot that connect multiple parking aisles
should be labeled with highway=service.

5. Approach
We model the parking lot detection as a semantic seg-

mentation problem and present a new baseline by fusing
satellite images with contextual features extracted from
road network and building footprint. The advantages of uti-
lizing contextual features as additional inputs for parking lot
detection are threefold. First, the visibility of a parking lot
may not always be good due to occlusions caused by trees,
buildings, or heavy clouds in a satellite image. Second,
the contextual features can help remove false positives that
overlap with roads and buildings, thus improved segmenta-
tion results can be obtained. Third, detectors can learn from
the correlations between parking lots and some of the geo-
graphic objects. For example, there is always a parking lot
in the residential area for the convenience of residents.

Figure 7 illustrates the overview of our proposed method.
In order to be compatible with existing segmentation mod-
els, we propose to embed the road and building contex-
tual features into a 3-channel image, which can be easily
added to the RGB channels of a satellite image. To achieve
this goal, we first concatenate the channels of the road con-
text and the building context to obtain a 15-channel image.
Next, we reduce the number of channels to 3 by process-
ing it by a 2D convolutional layer followed by Tanh acti-
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Table 4: Performance comparison (mIoU (%)) of different segmentation models for parking lot detection based on satellite
image with or without road and building context.

Method
Group 1 Group 2 Group 3 Overall

w/o
cont.

w/
cont.

mIoU
gain

w/o
cont.

w/
cont.

mIoU
gain

w/o
cont.

w/
cont.

mIoU
gain

w/o
cont.

w/
cont.

mIoU
gain

U-Net [22] 72.35 75.11 2.76 62.62 66.51 3.89 53.44 55.80 2.36 64.90 68.08 3.18
U-Net++ [37] 71.40 74.38 2.98 63.70 64.44 0.74 52.20 56.07 3.87 64.79 66.94 2.15
LinkNet [4] 72.13 74.50 2.37 63.11 66.07 2.96 51.33 52.14 0.81 64.67 67.03 2.36

D-LinkNet [36] 72.09 74.00 1.91 63.53 66.25 2.72 56.58 58.77 2.19 65.73 68.04 2.31
FPN [17] 72.75 75.19 2.44 63.91 66.80 2.89 55.41 56.04 0.63 65.95 68.29 2.34
PAN [18] 74.37 75.77 1.40 64.10 67.00 2.90 50.02 52.84 2.82 65.77 68.06 2.29

DeepLab v3 [6] 74.62 75.19 0.57 64.59 67.27 2.68 54.24 60.62 6.38 66.79 69.27 2.48
DeepLab v3+ [7] 73.23 75.13 1.90 65.78 66.14 0.36 53.64 58.88 5.24 66.66 68.46 1.80

vation. The kernel size and the stride of the convolutional
layer are set to 7 and 1, respectively. The operator ⊕ de-
notes element-wise addition. Thereafter, the segmentation
network in our framework can be any existing semantic
segmentation models such as U-Net [22], D-LinkNet [36],
DeepLabV3 [6], etc. The last layer outputs a 1-channel pre-
diction map, the size of which equals to the size of the input
satellite image. We adopt the Sigmoid activation to output
probability scores between 0 and 1 as the parking lot detec-
tion can be seen as a binary classification problem at each
pixel. For optimization, we adopt the combo loss [27]:

CL = α ·BCE(y, p) + (1− α) ·DL(y, p) (1)

which is a weighted sum of the binary cross-entropy loss:

BCE(y, p) = −(y log(p) + (1− y) log(1− p)) (2)

and the dice loss:

DL(y, p) = 1− 2yp+ smooth

y + p+ smooth
(3)

The dice loss can handle the input class-imbalance prob-
lem. So the combo loss is beneficial for segmenting a small
foreground from a large background, while at the same time
enforcing a smooth training using the binary cross-entropy
loss [27, 16]. The final prediction map is obtained based
on thresholding. The predicted parking lot mask is com-
posed of pixels whose probability scores are greater than a
pre-defined threshold.

6. Experiments
We investigate the performance of eight different state-

of-the-art segmentation networks on parking lot detection
with or without the context information in our dataset.
The eight segmentation networks include U-Net [22], U-
Net++ [37], LinkNet [4], D-LinkNet [36], FPN [17],
PAN [18], DeepLab v3 [6], and DeepLab v3+ [7]. For
all the models, we adopt the ResNet34 [14] as the backbone

network and the combo loss [27] as the loss function. We
initialize the ResNet34 with pre-trained weights on the Ima-
geNet. And we empirically set α = 0.5 and smooth = 1 in
the loss function. For optimization, we train the neural net-
works using the Adam optimizer with a batch size of 8. The
learning rate is set to 0.0002 with decays. To prevent over-
fiting, we applied data augmentation to the training samples
including horizontal flip, vertical flip, color jittering, image
shifting, scaling, and rotation.

6.1. Baseline

To investigate if contextual information is beneficial for
detecting parking lots from satellite images, we train each
of the segmentation models with and without the road and
building context that is available in our dataset. We adopt
the mean Intersection over Union (mIoU) as the evaluation
metric and report the results in Table 4 with the best re-
sult highlighted. We train the segmentation models using
the “training set” and report both the overall and the per-
group results (see Table 2) on the “testing set” as described
in Section 4. The results show that the detection difficulty
increases while the size of the parking lots decreases re-
gardless of the segmentation model we use. Without the
road and building context, models obtained a best mIoU
of 74.62%, 65.78%, and 56.58% for the three groups, re-
spectively. With the road and building context, models ob-
tained an improved mIoU of 75.77%, 67.72%, and 60.62%,
achieving a performance gain of 1.15%, 1.94%, and 4.04%
for the three groups, respectively. The results indicate that
the use of road and building context is beneficial for the de-
tection of parking lots in all sizes. Particularly, it brings sig-
nificant gain in detecting small-size parking lots, which are
difficult to pick up when only using satellite imagery. From
our context-enriched satellite imagery dataset, models can
learn rich correlations between parking lots and other geo-
graphic objects. For example, there can be service roads
inside a large parking lot or residential buildings near a
parking lot. Moreover, the road and building context is also
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Satellite + GT Prediction

Figure 8: Two training samples with missing parking
spaces. Original Images © 2018 Maxar Technologies Inc.

helpful for removing the false positives, i.e., the mistakenly
detected pixels due to the similar visual appearances to the
pixels inside a parking lot. In terms of the presence of miss-
ing and misaligned annotations, we observe that models can
actually learn from the weak and imprecise carpark masks
when sufficient training samples with reasonably good an-
notations are available. Figure 8 illustrates two training
samples in our dataset. The middle column shows the satel-
lite images together with the carpark annotations available
in our dataset, while the right column shows the predicted
carpark masks outputted by a segmentation model after con-
verging. As can be seen, though the annotations for some
carparks are missing (e.g., the region in the red bounding
box) from the ground truth, our segmentation model is still
able to detect such carparks successfully after learning from
the whole training dataset.

Among the eight models, DeepLab v3 obtained the best
overall mIoU, followed by DeepLab v3+ and FPN. Some
models favor the detection of large parking lots such as
PAN, while others favor the detection of small parking lots
such as D-LinkNet. DeepLab v3 calculated the final pre-
diction mask based on bilinear interpolation. DeepLab v3+
introduced a decoder module, which combines high-level
and low-level features in order to obtain more accurate seg-
mentation boundary. However, DeepLab v3 outperformed
DeepLab v3+ on our dataset. One possible reason can
be that the carpark annotations of the training samples in
our dataset are crowdsourced and thus have small misalign-
ment and a few missing parking spaces. Moreover, as the
road width information is mostly not available on OSM,
we approximately set the road width to 10 meters in our
dataset. Both the annotation noise and the input approxima-
tion can cause performance degradation of DeepLab v3+
when learning the segmentation boundary. To summarize,
DeepLab v3 obtained the best overall mIoU of 69.27% and
66.79% with and without the context information, respec-
tively. The road and building context is beneficial for ad-

Table 5: Performance comparison (mIoU (%)) of U-Net on
parking lot detection using different input channels.

Input Channel
Group 1 Group 2 Group 3 Overall

Sat. Road Buil.

3 0 0 72.35 62.62 53.44 64.90
3 1 0 74.99 66.07 51.95 67.19
3 8 0 75.11 65.90 50.74 66.96
3 0 1 70.78 62.20 52.77 64.00
3 0 7 73.38 65.09 53.05 66.32
3 1 1 73.11 67.03 50.40 66.61
3 8 7 75.11 66.51 55.80 68.08

dressing the challenges on parking lot detection from satel-
lite images. By taking it as an additional input, performance
gain has been observed among all segmentation models.

6.2. Contextual Features

This experiment studies the use of the contextual fea-
tures in our segmentation framework. We report the de-
tection results obtained by fusing satellite image with only
one of the contextual features and study the impact of
the road/building context on parking lot detection. Re-
call that the road context in our dataset is represented
by an 8-channel image where a binary mask is generated
for each road type including “service”, “residential”, “pri-
mary”, “secondary”, etc. To study the impact of the road
type on parking lot detection, we remove the type informa-
tion by using only a 1-channel image (i.e., a binary mask for
all types) to represent the road context. Similarly, we also
generate a binary mask for all types of buildings and use it
as the building context. We perform experiments on U-Net,
and report the results in Table 5.

From the results we observe that the road type does
not have much impact on parking lot detection as compet-
itive results have been obtained by fusing with either the
1-channel road context or the 8-channel road context. On
the other hand, the building type turns out to be an im-
portant and indispensable feature for parking lot detection.
When fusing the satellite image with the 1-channel building
context, we only observed an overall mIoU of 64%. Then
the mIoU got significantly improved to 66.32% when fus-
ing with the 7-channel building context. One possible rea-
son is that parking lots only correlate with certain types of
roads and buildings such as the service roads and residential
buildings. While category “service” is dominant for roads,
category “residential” covers much fewer pixels than cate-
gory “others” for building. Subsequently, it becomes dif-
ficult for the segmentation models to learn the correlations
when the building type information is not available due to
the noise introduced by the pixels belonging to “others”. As
can be seen, by fusing the satellite image with the road con-
text only or the building context only, we achieved an over-
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Figure 9: Parking lot detection results of different segmentation models trained with or without the context of road network
and building footprint. Original Images © 2018 Maxar Technologies Inc.

all mIoU of 66.96% and 66.32%, respectively. This result
indicates that the road context tends to be more important
than the building context for parking lot detection. By fus-
ing the satellite image with both contextual features with or
without the type information, we achieved an overall mIoU
of 68.08% and 66.61%, respectively, which verifies the im-
portance of the type information for parking lot detection.

6.3. Visualization

Figure 9 visualizes the parking lot detection results of
different segmentation models trained with or without the
road and building contextual features. In our experiments,
DeepLab v3 outperformed U-Net and D-LinkNet. For in-
stance, in the first example, U-Net and D-LinkNet mistak-
enly recognized the rooftop of a building as the parking
lot. In the second example, U-Net and D-LinkNet again
mistakenly recognized a vacant ground as the parking lot.
DeepLab v3 performed much better where only a small re-
gion of the rooftop/ground was wrongly detected. These
issues can be addressed by taking the road and building
context as an additional input as shown in the third, fifth,
and seventh columns. In the third example, there is a nar-
row parking lot at the bottom left corner that is hard to be
detected based on the satellite image only, but can be suc-
cessfully recognized with the facilitation of the contextual
features. To summarize, by fusing satellite image with road
and building contextual features, false positives (i.e., mis-
takenly detected building rooftop and vacant ground) can
be effectively removed. Moreover, the detection rate of the
hard instances, which are difficult to be recognized due to ir-
regular shape, tiny size, vegetation occlusion, etc., increases

by modeling the correlations between different geographic
objects. Thus, the visualization results further verifies the
effectiveness of our proposed approach.

7. Conclusion and Future Work
We present a high-resolution satellite imagery dataset

with high quality carpark annotations. For each satellite
image, we additionally collect the contextual information
of roads and buildings from OSM, represented by a multi-
channel image that captures not only their geometry, but
also their categories. We show through experiments that it
is beneficial to take the context as an additional input to ad-
dress the challenges of parking lot detection. In the future,
we plan to develop semi-supervised parking lot detection
method to leverage the large number of partially labeled
satellite images. We will also continue refining the carpark
annotations in the additional training set.
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