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Abstract

In many real-world tasks, a canonical “big data” prob-
lem is created by combining data from several individual
groups or domains. Because test data will likely come from a
new group of data, we want to utilize the grouped structure of
our training data to enforce generalization between groups
of data, not just individual samples. This can be viewed as
a multiple-domain generalization problem. Specifically, the
goal is to encourage generalization between previously seen
labeled source data from multiple domains and unlabeled
target domain data. To address this challenge, we introduce
Domain-Specific Filter Group (DSFG), where each train-
ing domain has a unique filter group and each test data
point is predicted by a weighted sum over the outputs of
different domain filters. A separate neural network learns to
estimate the appropriate filter group weights through a meta-
learning strategy. Empirically, experiments on three bench-
mark datasets demonstrate improved performance compared
to current state-of-the-art approaches.

1. Introduction

When machine learning algorithms are deployed in the
real world, new data often come from a different distribution
than the training data. This challenge has motivated devel-
opment of unsupervised domain adaption methods [34, 12]
that make use of unlabeled test data to learn procedures that
generalize well to new data. Unfortunately, in many cases
real test data (new real-world data) are difficult to collect
beforehand. Instead, it is desirable for a model to address po-
tential distribution gaps automatically during test time. For
instance, consider a clinical situation in which longitudinal
data are considered and we desire to either predict events or
labels (e.g., a seizure from collected brain activity). Only a
small collection of subjects may have expert-labeled data,
while the model should be applicable across a wide range of
participants or patients. Future individuals will not exactly
match the training cohort, which may have many sources
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of differences (many physiological signals could potentially
be used as forensics tools because they are fairly unique be-
tween individuals [33]). This data structure has many labeled
examples but only a few individuals, and can be thought of
as “little big data.” Our methods should take advantage of
the large sample size while still being cognizant of the fact
that the number of observed groups is small.

In contrast to unsupervised domain adaptation, our frame-
work considers each group of samples in the training data
as a unique source domain and assumes that no test data or
target domain information is available during training. In
the literature, this situation is called unsupervised domain
generalization [2, 45]. Unsupervised domain generalization
is more feasible in practice for a distributed or deployed
system, so the domain generalization framework mimics our
motivating situation.

A popular approach to addressing the varying distribu-
tions of the source domains is to learn a domain-invariant
latent feature space, meaning that the latent feature distri-
bution is similar for all training domains. For example,
this can be done by slightly modifying the popular Domain-
Adversarial Neural Network (DANN) [13] to operate on
multiple source domains. Unfortunately, there is no guaran-
tee that the features of the target samples will fall into this
shared representation, and often they do not. A visualiza-
tion of this issue is shown in Figure 1(a), where the target
(light green) falls outside of the shared latent space of three
training domains (pink, purple and dark green). This means
that test samples appear in a novel part of the feature space,
hindering generalization. Furthermore, domain-specific and
domain-invariant features are often entangled together [19]
and a failure to keep both sources of information harms
performance.

Our approach to this challenge is to allow each source
domain to have both shared and unique properties, while
explicitly training the model to encourage domain general-
ization. At test time, newly collected data are automatically
processed by a weighted combination of a shared feature
extractor and source feature extractors. Rather than complete
domain invariance, a new sample only needs to be similar to
one source domain. This idea is visualized in Figure 1(b),
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Figure 1: Conceptual plots of four domains (MNIST as Source 1, MNISTM as Source 2, synthetic number as Source 3 and SVHN as
Target) on two labels (‘1" and ‘2”). Pink, purple and dark green colors represent the three source domains. The target is given by light green.
Figure 1(a) plots the shared latent space from a model learning the domain-invariant features. Figure 1(b) is the desired latent space (DSFG),

where the target can be adjusted by samples from source domains.

where the training domains are allowed to have distinct fea-
ture distributions, and the target (light green) is represented
by a superposition of the training domains. To actualize
this intuition, two problems need to be solved: (i) retain-
ing both domain-invariant and domain-specific information
while (7¢) combining different source domains to adapt to
unseen targets.

We propose the Domain Specific Filter Groups (DSFG)
approach to address these problems. It has three major com-
ponents: (7) we allow for domain differences by giving each
source domain unique and shared filter groups; (i) a weight
generator estimates similarity between a new sample and
source training domains, allowing DSFG to share strength
only between similar domains; and (¢¢¢) we train with both
in-domain and cross-domain stages, mimicking the test pro-
cess during training.

The in-domain training learns filters that perform well on
the existing domains, whereas the cross-domain training em-
phasizes learning how to generalize to new samples by mim-
icking the test procedure. The weight generator is learned in
the cross-domain training to heavily weight similar domains
by a meta-learning approach, allowing the network to utilize
the most relevant information. The model parameters are
fixed after training and can be deployed on low-powered
machines (e.g., distributed or mobile systems), a major con-
sideration for practical use. Empirically, DSFG improves
performance on multiple benchmarks in comparison with
state-of-the-art models.

2. Related Work

Unsupervised Domain Adaptation. The developments
in unsupervised domain adaptation are highly related to do-
main generalization. This setup typically focuses on adapt-
ing a single source domain to predict well on an unlabeled tar-
get domain [34, 12, 44, 9, 13]. Multiple source [32, 49, 27]
and multiple target [48, 14] extensions have been proposed.
Several extensions have been proposed to address specific
issues, including partial label matching [4] and target label
shift [39, 28]. In all of these setups, the data are projected to
a shared latent space with a shared classifier. The underlying
assumption is that the target sample is closely and equally
related to all source domains, with slight relaxations such
as the weighted similarity of Li et al. [27]. However, in our
data types, this assumption does not appear to be true in prac-
tice (e.g., the example in Figure 1), and it is well-known that
adding uncorrelated domains in this framework will harm
performance [32].

Incremental Learning. Incremental learning adds and
learns new categories to existing models by selectively adapt-
ing the parameters from learned categories [40, 38, 42].
This can be achieved by (4) sharing weights of the learned
model [42], (ii) adding regularization terms to the new cat-
egory weights [40], and (7i7) using landmarks from each
known category to help the newly added task [38]. DSFG has
some algorithmic similarities to these, but does not learn on
new data and gives predictions in real time.

Channel attention and filter groups. Multiple works
have proposed attention maps for adaptive feature refinement
[17, 47], including stochastically assigning group filters in

3042



CNN architectures such that task-specific and shared fea-
tures are encoded with task-specific and shared kernels in
convolutional filters [3]. Our weight generator shares some
similarities to these ideas, but is its own distinct process.

Domain Generalization and Meta Learning. Domain
generalization algorithms try to learn domain-invariant pre-
diction schemes [36]. Data augmentation has been used to
modify training samples to make them hard to classify while
preserving the label and domain categories [45, 41]. Meta-
learning has been used to learn a domain-generalization
regularization term [2, 29]. Episodic training has been con-
sidered for domain generalization, which includes several
learning stages to enhance generalization [26, 11]. Many
of these models require test time updates [23]. [8] gives
a method to “compute” the model’s generalization ability.
Finally, self-supervision has been used to extract general-
ized features [5, 46]. We consider this branch of literature
most similar to DSFG, and we compare to many of these
approaches in our experiments.

Meta-learning, or learning to learn, is typically thought
of as learning the learning update rules for neural mod-
els [1, 37], but has been used in few-shot learning [30]. Many
domain generalization algorithms relate to meta-learning or
ensemble learning, in that the model parameters are adjusted
at test time [20, 31]. DSFG uses meta-learning during train-
ing to enhance generalization, but is not used at test time.

3. Methods

The training set contains .S source domains, where each
domain s has samples {x;,y;,d; = s}i=1,.. n,; @; is the
raw data input, y; € {1,...,L} is the label, and d; €
{1,..., S} indicates the source domain index. For a test
sample, we simply have the raw data input .. Note that
. is not available during training. Suppose x, is sampled
from an unknown target distribution p(x, ), which can be
identical to one of the sources or a fotally new domain. The
goal is to train a generalized model, which can be applied to
the unseen target without further updates.

The model framework of DSFG is visualized in Figure 2,
which is built upon a convolutional neural network (CNN)
with a specifically designed CNN filter structure (F-Conv),
which is fully defined in Section 3.1. The newly proposed
F-Conv layer contains a shared filter group as well as S
domain-specific filter groups. As the names indicate, these
filter groups learn shared and specific features, respectively,
which we exploit to enhance the domain generalization. A
filter weight generator G(-; 6 ) is proposed to assign filter
weights uniquely for each data example (green block in Fig-
ure 2), which is fully defined in Section 3.3. The output fea-
tures of the F-Conv (Filter Convolution) layer are a weighted
combination of different filter groups. An F-Conv layer can
be used as a substitution of the standard 2d-convolutional
layer, and as many F-Conv layers as desired can be used. In
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Figure 2: Model Framework with detailed illustrations on the
filter group convolutional layer (F-Conv). Black arrows indicate
the forward network pass. This structure is also used during the
cross-domain training process. The dotted arrows indicates the
weight generator ¢ is used in the forward pass but not updated
during cross-domain training step.

the rest of the paper, we discuss the case for which only the
first convolutional layer is substituted by the F-Conv layer.
Afterwards, the adapted features are input into the remain-
ing shared network layers f(-; @y ) to predict the output. For
simplicity, we denote Oy as the parameters used in all shared
layers after the F-Conv layer.

3.1. F-Conv Layer

A key component of DSFG is the F-Conv layer, which
has both shared and domain-specific filter groups. The
shared filter group learns common representations, denoted
Fo = {Fo1, -, Fok, }- Each filter is a standard convolu-
tional filter and is represented as a 4d-cube with dimensions
corresponding to the number of input channels, number of
output channels, kernel height, and kernel width; K is the
total number of the shared filters. The domain-specific filters
are Fs = {Fs1, -+ , Fsk, } for each domain s € {1,...,S}.
Similarly, K, is the number of domain-specific filters for
Ds. In practice we set Ko = K1 = --- = Kg. Figure 2
visualizes the filter assignment at one F-Conv layer in the
dashed red box.

While these domain-specific filter groups are focused
on their own domains, they should be useful for some of
the other domains as well. Given a data sample x, at test
time these filter groups will be combined based upon their
similarity with . This is done by calculating a domain
similarity matrix W< € (0,1)"*% with column index 0
corresponding to shared filter and column indices ,1,--- , S
corresponding to the source domains. The superscript x
denotes that the weights are sample-specific. Each column
in W is normalized so that the total weight on each feature
is equal to 1. A large value of W7, indicates that the sample
x is ‘close’ to the kth feature of Dy, and the filter Fyy, is up-
weighted. The generated weight W3 is then applied to the
convolved feature Fi * x (* is the convolution operation).
The first layer’s extracted features are given by a weighted
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superposition of the filter group outputs, with each feature
map hy, given by

by, = 520 o W (For * @), (1)

These first-layer feature maps are then input to the next
layer. Equation (1) could be viewed as a type of channel
attention [47]. The mathematical setup discussed here has
focused on 2d convolution to match our experiments, but the
same idea can be applied in the context of dense layers or
N-d CNNs.

We introduced F-conv only for the first layer, which
matches our experimental setup. One can use as many layers
of F-conv as desired, as visualized in Supplemental Figure
6. However, since the feature divergence between domains
decreases as layer depth increases [35], it is more efficient
to substitute shallow layers with F-conv.

There are several considerations for how to effectively
learn these filters and weights. We describe our training
procedure in Section 3.2 and then the weight generator in
Section 3.3.

3.2. In-domain and Cross-domain Training

The goal guiding the training process is to perform well
on an unseen test sample without further model parameter up-
dates. This first requires that the shared and domain-specific
filter groups perform well on the known source samples.
Furthermore, the weight generator (see (3)) should assign
filter weights for each data point to enhance generalization.
We use in-domain and cross-domain training processes to
encourage these properties.

For the in-domain training stage, as illustrated in Fig-
ure 3(a), data in domain s only uses the shared filters F and
its domain-specific filters F;. The filter weights W™ are set
as constants, where the entries for the shared weights and
the domain s weights are set to 0.5 and the others are zero.
The loss function is given as

LinDomain = Zs Zme'DS CE (f(wui(:ﬁ 0y), y)7

2
where §j = f(-; 8y) are the shared layers including feature
extraction and prediction network, parameterized by 6y, CE
is cross entropy loss. The notation -|%_, represents the 3-d
tensor stacking of all feature maps. In this stage the net-
work is trained to achieve good predictions for each training
domain domain, which is a prerequisite prior for domain
generalization.

We introduce cross-domain training to simulate the test
process. During the cross-domain training step (Figure 2),
we optimize the classification loss using a weighted combi-
nation of all available filter banks. We first calculate filter
weights,

W?® = G(:B;eg). (3)
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Figure 3: Visualization of the training process. Figure 3(a) il-
lustrates the in-domain training process. Figure 3(b) illustrates
the weight generator updates. The blue solid arrow indicates the
gradient flow of the one-step gradient descent update in (8) and
(9). The blue dotted arrow indicates the one-step gradient descent
update does not update weight generator parameters 8. The red
arrow gives the gradient flow when updating the weight generator.
The superscript + indicates the one-step gradient update used in
the meta-update.

The loss in the cross-domain training is given as

Lemspomin = T sep, CE (1250 W (Fux < @)l 0v),y)-

“)
Note that the cross-domain weights include a weight on
the input data’s source domain filters (self-similarity). One
could explicitly exclude that; however, we do not know the
domain of the test sample and thus do not want to exclude
self-similarity. For a given data sample, we expect that the
weight generator assigns the majority of weights to the sam-
ple’s original domain with the remaining weight given to
its similar neighbors. This requires the weight generator to
accurately calculate weights for each filter group. The gradi-
ents from (4) are used to update the 8y and { Fo, ..., Fs}
in a standard fashion, but will be used in a unique way for
the updates on the weight generator network introduced in
the follow section.

3.3. Weight Generator Updates

A good filter weight generator is expected to provide the
similarity between a new data point and each of the source
domain filters. In DSFG, the weight generator is structured
with one convolutional layer followed by one dense layer,
with a softmax output over each output k, to produce the
normalized weights. Meta-learning is used to learn effective
parameters 6. This meta-learning gradient strategy is able
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to (7) encourage high accuracy from the in-domain loss in
(2) and cross-domain loss in (4), and (i%) discover domain
similarity. Figure 3(b) visualizes the forward and backward
passes of this step.

We first introduce the prior loss, which helps the filter
weight generator to discover self-similarity (e.g., samples
from domain D; should have large weight on filter group
Fs). Specifically, we add a prior domain classification loss
to encourage self-similarity. This can be written as

Eprior = - Z Z Z log fk' (5)

s xeDs k

However, (5) alone will cause the filter weight generator to
collapse to a specific filter group. We mitigate this problem
by introducing an entropy loss that ensures the generated
filter weight will not be too sparse,

ACemropy = Z stlog (Wsz) y (6)

where WZ =Y x W2, is the averaged mean of filter weight
for filter group s. This allows individual samples to have
sparse weights, but not a domain as a whole.

These loss terms are combined together as a regulariza-
tion term for the filter generator:

ACG—reg = £CrossDomain + aﬂprior + Bcentropw (7)

where « and (3 are non-negative hyperparameters, and
LcrossDamain 1 the cross-domain loss from (4). Only 04
in the cross-domain loss will be updated in this step. In
Figure 3(b), the prior loss and the entropy loss are not visu-
alized.

Update: This step is visualized as the red arrow in Fig-
ure 3(b). We leverage a meta-learning update scheme to give
accurate filter weights and encourage high label classification
accuracy. This step bridges the in-domain and cross-domain
training losses in the gradient space (Figure 3(b)). We first
compute the one-step gradient descent update in the filter
groups and classifier parameters,

9 Lcrossbomain

]:'+ =F -9 (,8]1:) , (8)
OL “rossDomain

05 = Oy — §2Lcgmumin, )

where § is the step size unique to this step. Note that 7+ and
0;5 are both functions of 8. These temporary variables will
be used to update O and then are discarded. This gradient
back-propagation is indicated as the blue solid arrow in
Figure 3(b).

The parameter update for the filter weight generator uses
the in-domain loss based on the temporary parameters and
the regularization term in (7),

a»CInDomain(]:Jr 70;; aoG)‘l'a[fG-reg (-7'—,03’ 70G)
00 :

OG — OG - A
(10

Algorithm 1 DSFG Training Algorithm

Input: Training Data {zx;, yi, d; } ;.
Output: Model parameters 0y, 8¢, Fs, s € {0,--- ,S}.

Initialize network parameters
for iter = 1 to iter,,q, do
\\In-domain Training
for s =1to S do
Sample mini-batch from domain Ds.
Update filter group weights {Fo, Fs} and shared
weights 0y using in-domain 10sS Linpomain (s€€ (2)).
end for
Sample a mini-batch with equal number of samples
from each domain.
\ \ Cross-domain Training
Compute the outputs of weight generator using (3).
Update all filter groups and 6y using LcrossDomain (S€€
4)).
\ \Update Weight Generator
Compute the one-step gradient descent update of F+
and 65 ( see (8) and (9)).
Evaluate the in-domain training 10ss Liypomain(see (2))
with 7+ and 6.
Update the weight generator ¢ with (10).
end for

Algorithm 2 DSFG Test Time Algorithm

Compute the output of weight generator W* =
G(x; 0¢g)(see (3)).

Compute the adapted feature by (1).

Output the label prediction using the adapted feature and
the shared classifier.

Here, Linpomain(F T, 0; 6¢) evaluates the in-domain pre-
diction quality at the one-step ahead gradient; \ represents
the learning rate, and we set A = 1—106. Equation (10) helps
modify O so that high classification accuracy on the in-
domain training is maintained while reducing the cross-
domain error. Without this update, the in-domain error tends
to suffer as the cross-domain error decreases.

3.4. Algorithm Outline

During training, each filter group is expected to perform
high-quality prediction and generalize well on unseen test-
ing samples. Algorithm 1 gives the pseudo-code for the full
training process. We use pretrained parameters when avail-
able for initialization. For F-conv, the pretrained weights are
replicated over the S + 1 groups of filters.

Inference on a new target sample requires only a single
forward pass, which is computationally efficient, as given in
Algorithm 2.
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4. Experiments

DSFG is evaluated on three benchmark datasets for
domain generalization: digit datasets, VLCS [43] and
PACS [24]. We consider different multi-layer CNN fea-
ture extractors, including AlexNet [21], ResNetl8 and
ResNet50 [16]. DSFG’s filter group mechanism is only
applied on the first CNN layer. The model selection for
DSFG is performed by averaging cross-domain classification
accuracy on a validation set sampled within source domains.
This mimics the well-known nested cross-validation scheme
in statistics [22]. To provide a fair comparison, all base-
line models have the same feature extractor and classifier
structure, unless otherwise noted.

We implemented our framework with the PyTorch library
on one NVIDIA TITAN 1080Ti GPU. Our model is opti-
mized with the SGD optimizer, and the model is trained for
100 epochs. The learning rate was set as 0.001 and decreased
by a factor of 10 after 50 epochs.

Comparison Approaches: We choose several recent do-
main generalization works for comparison: DANN [13],
CROSSGRAD [41], and DATA AUGMEN [45]. We then
considered the episodic training scheme of Fpi-FCR [26],
as well as the self-supervised approaches of JiGen [5]
and EISNet [46], and the meta-learning approaches of
MetaReg [2] and MASF [11]. We also considered DMG [7]
in which domain-specific masks are learned to leverage
domain-specific features. Finally, RSC [18] proposes a train-
ing scheme in which the dominant features activated are
discarded during training. Here, we compare with repro-
duced results instead of the reported, ones to ensure that we
share the same experimental conditions and model selection
method, which is essential for fair comparisons [15].

Ablation Study: We explore comparisons to DSFG with
some components missing to elucidate the key contributions.
First, in Baseline, the feature extractor is fine-tuned on all
source domain data without further modifications. Next,
since the proposed filter group mechanism involves more
parameters, we include a baseline model named Baseline
with F-Conv, in which multiple filter groups are involved,
but only trained with in-domain loss defined in (2). The
filter weight generator is replaced with an average over all
filter groups at test time. Next, DSFG (no meta) denotes
the model where we update weight generator parameters 0
by optimizing only the regularization loss in (7) and exclude
the meta-learning update.

4.1. Digit Datasets

We consider four digit datasets: MNIST, MNIST-M,
SVHN and Synthetic numbers (SYN NUM). MNIST is grey-
scale hand-written digits from zero to nine. MNIST-M is con-
structed from MNIST by adding colored backgrounds [13].
SVHN is a color image street number dataset. SYN NUM
is generated from Windows fonts to mimic the patterns of
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Figure 4: Visualization of averaged generated filter weights on
test samples in the digit datasets. The vertical axis represents the
current target domain, and the horizontal axis represents the chosen
source filter groups, including the shared weights.

the SVHN dataset [13]. The feature extractor in this ex-
periment is configured as a three-layer convolutional neural
network with ReLU activation functions. The classifier is a
fully connected layer. Through cross-validation search, the
hyper-parameters o and /3 are set as 50 and 0.002. Results
are shown in Table 1. The target domain used for each test
is shown in the top row, and the other domains are used
for training. We use the same feature extractor architec-
ture in all models we train for a direct and fair comparison.
The proposed method has strong improvements compared to
baselines and competing methods. In our ablation analysis,
the largest improvement came from the weight generator
added in DSFG (no meta), but including the meta-learning
step led to further improvements in all cases.

Many of the cited works typically used a much more
complex feature extractor structure. To address this, we also
include results from previous works [25, 6]; however, they
did not include the results when synthetic numbers were
included as a domain. Our baseline result outperforms their
results by a large margin. From these results, we can also see
that learning a shared latent space harms the performance
under several tests (e.g., DANN is worse than baseline).

Filter weight visualization: We visualize the averaged
generated filter weights W in Figure 4. We average all
target domain samples across all filter groups to get an av-
eraged target-to-source weight score. Although MNIST-M
is composed of color images, it is still matched to MNIST
(grey scale). This is expected because MNIST-M is gener-
ated based upon images in MNIST. Furthermore, SVHN and
SYN NUM are more similar as they mimic similar scenar-
ios. These results support the conclusion that the weight
generator is discovering real relationships.

3046



| Backbone | MNIST | MNISTM | SVHN | SYNNUM [ Avg

MLDG [25] 3-layer CNN 99.1 61.2 69.7 N/A N/A
ADAGE [6] 3-layer CNN 99.1 66.3 76.4 N/A N/A
Baseline* 3-layer CNN 99.0 82.4 84.3 94.4 90.0
Baseline with F-Conv* | 3-layer CNN 99.0 82.5 85.4 94.6 90.4
DANN* [13] 3-layer CNN 99.0 81.7 84.5 94.2 89.9
CROSSGRAD* [41] 3-layer CNN 99.0 84.2 85.8 93.8 90.7
DATA AUGMEN* [45] | 3-layer CNN 98.8 80.6 85.2 93.3 89.5
MASF* [11] 3-layer CNN 98.8 81.2 85.2 93.0 89.5
DSFG (no meta)* 3-layer CNN 98.8 82.5 85.6 94.9 90.5
DSFG (full)* 3-layer CNN 98.9 85.7 86.0 95.4 91.5

Table 1: Accuracy on digit image classification. All methods are implemented with 3-layer CNN backbone. Methods with a * are our
implementation with the same feature extractor structure. Other results are reported from the cited work. In each category, the best results
are shown in bold.

VLCS Backbone ‘ Caltech ‘ Labelme ‘ Pascal ‘ Sun H Avg 1
Baseline [5] AlexNet 96.25 59.72 70.58 | 64.51 || 72.76
Baseline with F-Conv | AlexNet 98.11 59.60 66.34 | 61.83 || 7147
Epi-FCR [26] AlexNet 94.10 64.30 67.10 | 65.90 || 72.90
JiGen [5] AlexNet 96.93 60.90 70.62 | 64.30 || 73.19
MASF [11] AlexNet 94.78 64.90 69.14 | 67.64 || 74.11
EISNet [46] AlexNet 97.33 63.49 69.83 | 68.02 || 74.67
DSFG (no meta) AlexNet 98.03 60.49 69.83 | 64.57 || 73.23
DSFG (full) AlexNet 98.58 63.61 70.68 | 67.09 || 74.99

Table 2: Results on multi-source domain generalization on VLCS [43] dataset. All methods are implemented with AlexNet [21]. In each
category, the best results are shown in bold.

PACS ‘ Backbone ‘ artpaint ‘ cartoon ‘ sketch ‘ photo H Avg 1
Baseline [5] ResNetl8 | 78.96 73.93 70.59 | 96.28 || 79.94
Baseline with F-Conv | ResNet18 79.69 74.74 73.71 | 96.59 || 81.18
MASF [11] ResNet18 | 80.29 77.17 71.69 | 9499 || 81.03
Epi-FCR [26] ResNetl8 | 82.10 77.00 73.00 | 93.90 || 81.50
JiGen [5] ResNetl8 | 79.42 75.25 71.35 | 96.03 || 80.51
MetaReg [2] ResNetl8 | 83.70 77.20 70.30 | 95.50 || 81.70
EISNet [46] ResNet18 | 81.89 76.44 74.33 | 95.93 || 82.15
DMG [7] ResNetl8 | 76.90 80.38 7521 | 93.35 || 81.46

RSC [18] (reported) ResNet18 83.43 80.31 80.85 | 95.99 || 85.15
RSC [18] (reproduced) | ResNetl8 78.9 76.88 76.81 | 94.10 || 81.67
DSFG (no meta) ResNet18 81.69 75.51 7549 | 95.57 82.07

DSFG (Ours) ResNetl8 | 83.89 76.45 78.26 | 95.09 || 83.42
Baseline [5] ResNet50 | 86.20 78.70 70.63 | 97.66 || 83.29
Baseline (multi) ResNet50 | 83.69 76.37 78.6 | 96.53 || 83.79
MASF [11] ResNet50 | 82.89 80.49 72.29 | 95.01 || 82.67
MetaReg [2] ResNet50 | 87.20 79.20 70.30 | 97.60 || 83.60
EISNet [46] ResNet50 | 86.64 81.53 78.07 | 97.11 || 85.84
DMG [7] ResNet50 | 82.57 78.11 78.32 | 94.49 || 83.37

RSC [18] (reported) ResNet50 | 87.89 82.16 83.35 | 97.92 || 87.83
RSC [18](reproduced) | ResNet50 | 81.38 80.14 82.31 | 93.72 || 84.38
DSFG (no meta) ResNet50 | 85.84 79.35 80.05 | 96.43 || 85.42
DSFG (full) ResNet50 | 87.30 80.93 83.43 | 96.59 || 87.06

Table 3: Results on multi-source domain generalization on PACS [24] dataset. The top session reports the results for ResNet18 [16]
backbone and the bottom session shows the results for ResNet50 backbone. In each category, the best results are marked in bold. To this end,
we consider RSC [18] reproduced results instead of the reported ones.
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« 8 Avg T
60 0.002 83.42
60 0.0005 82.20
60 0.008 82.75
40 0.002 82.58
80 0.002 82.51

Table 4: Hyperparameter study on the impact of « and /3
on average classification accuracy for multi-source domain
generalization on PACS [24] dataset. All methods are imple-
mented with ResNet18 [16] backbone.

4.2. VLCS Dataset

VLCS [43] is a classic benchmark for domain general-
ization, which contains five object classes (bird, car, chair,
dog and person) from four domains (PASCAL VOC2007(V),
LabelMe(L), Caltech(C) and SUNO09(S)). Each dataset is
viewed as one domain. We followed the experimental set-
ting from [5] and [46] to train and evaluate our model. The
feature extractor structure is AlexNet [21] pretrained on
ImageNet [10]. Through cross validation search, the hyper-
parameters o = 100 and 8 = 0.0005. Table 2 shows the
results comparing DSFG with several domain generaliza-
tion works in the literature. Our method achieves consistent
improvement over state-of-the-art models, suggesting that
our method can improve domain generalization. We see the
same trends over the ablation models as before, with the
meta-learning step again providing improvements.

4.3. PACS Dataset

PACS [24] includes seven object categories (dog, ele-
phant, giraffe, guitar, horse, house, person) in four domains
(Photo, Art Paintings, Cartoon and Sketches). We followed
the existing experimental protocol [24, 5, 46] and did a
leave-one-domain-out test. The domain shifts in PACS are
larger than in the previous experiments. The feature extrac-
tor was set as ResNet18 and ResNet50 [16], pretrained on
ImageNet [10], and the hyperparameters are set as o« = 60
and 8 = 0.002. Table 3 shows the results of all the com-
peting methods with the ResNet18 and ResNet50 networks.
We reproduced RSC [18] using the open-source implementa-
tion! published by the authors with the default configuration.
Our method achieves better or comparable performance com-
pared to state-of-the-art models on all of the domains. This
suggests that our model is robust and can improve the pre-
diction accuracy even when the domain gap is large and
the network is deep. We see the same trends over the ab-
lation models as before, with the meta-learning step again
providing improvements.

Hyperparameter study: In order to show model sensi-
tivity to hyper-parameters « and 3, results with different
hyper-parameters on the PACS dataset are shown in Table 4.

Uhttps://github.com/DeLight CMU/RSC

Image Shared Photo Sketch

% I BN

Figure 5: Visualization of selected feature activation maps from
the first F-conv layer. The input image is from cartoon domain in
PACS dataset with label ‘giraffe’. The corresponding domain is
shown on top.

Art Paintin

We see the model is slightly sensitive to hyper-parameters,
but all the results are comparable or better than the perfor-
mance of state-of-the-art approaches.

Feature map visualization: In Figure 5, we visualize
four selected features maps of two images from cartoon do-
main respectively. The training set includes photo, sketch
and art painting domains. From the visualization we can see
the unique properties caught by each filter. For example, the
convolved output from sketch domain filter focuses on the
boundaries (second column to the right), which is expected
since sketches have greater information in the the object
outlines. In contrast, the photo and art painting filters focus
more on the interior textures. The different filters compen-
sate for each other and the final output of F-conv layer is a
combination of these features.

5. Conclusions

The proposed approach, DSFG, works well for domain
generalization tasks by learning a weight generator that esti-
mates domain similarity. Unlike unsupervised domain adap-
tation approaches, DSFG can give predictions to new data
samples from a previously unobserved domain in real time,
without further updates. Empirically, DSFG adapts to unseen
test samples even when there is large domain distribution gap.
The visualized weights shows that DSFG is effectively cap-
turing and exploiting similarity between domains. Because
of these properties, DSFG is effective for domain general-
ization tasks and can straightforwardly be implemented on
many devices at test time.
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