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Figure 1: Our proposed Inpaint2Learn framework allows us to train models that can predict affordances in various scenarios.
In panel a, our model can predict plausible and diverse human poses in an in-the-wild image. In panel b, our model can
predict what type of objects to insert at a given location and how large it should be. In panel c, our model can predict the 6D
pose (3D translation + 3D rotation) required to place an object into a target scene.

Abstract

Perceiving affordances – the opportunities of interaction
in a scene, is a fundamental ability of humans. It is an
equally important skill for AI agents and robots to better un-
derstand and interact with the world. However, labeling af-
fordances in the environment is not a trivial task. To address
this issue, we propose a task-agnostic framework, named
Inpaint2Learn, that generates affordance labels in a fully
automatic manner and opens the door for affordance learn-
ing in the wild. To demonstrate its effectiveness, we apply it
to three different tasks: human affordance prediction, Loca-
tion2Object and 6D object pose hallucination. Our experi-
ments and user studies show that our models, trained with
the Inpaint2Learn scaffold, are able to generate diverse and
visually plausible results in all three scenarios.

* indicates equal contribution.
† W. Du is currently affiliated with Nuro, Inc.

1. Introduction

Affordance[11], a concept originated from psychology,
refers to the opportunities of interaction in a scene. Under-
standing affordances is a fundamental ability of humans and
an important part of socialization[11]. It is an equally im-
portant skill for AI agents and robots to better understand
and interact with the world. In fact, predicting affordances
from the environment has received more and more atten-
tion over the years, with applications in domestic robotics,
content analysis, context-aware scene understanding[12].

A key challenge in affordance learning is the lack of
large-scale, well-labeled data. Existing approaches find dif-
ferent ways to address this issue. In human affordance pre-
diction, for example, Wang et al.[27] leverage large-scale
sitcom videos, which contain interactions in repeated in-
door scenes to create a 2D affordance dataset. Li et al.[22]
generate 3D affordance labels by learning a pose synthe-
sizer from the sitcom dataset, mapping the generated poses
to 3D using camera parameters and finally adjusting for
physical correctness. While these approaches have proved
their strength in generating plausible human poses given in-
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Figure 2: In our Inpaint2Learn data generation pipeline, we first segment the object of interest, cut it out, and generate the
pseudo labels paired with the image without object. The first row shows the raw images, and the second raw shows the
processed image with visualized pseudo labels.

door contexts, they suffer from limited generalization abil-
ities from a less diverse dataset. People live in and interact
with varied scenes and environment everyday, ranging from
outdoor lawns to indoor gyms. The diverse scenarios and
interaction types cannot be fully captured through a limited
number of sets in TV shows.

To this end, we introduce a framework, Inpaint2Learn,
that allows affordance learning in the wild. We propose
a data preprocessing pipeline in which we remove an ob-
ject/person of interest from the image by obtaining its in-
stance segmentation mask, cutting it out and filling the hole
with image inpainting technique. While the now object-
absent image serves as input to the network, the cut out
instance provides pseudo affordance label. Following this
scheme, we are able to generate ground truth affordances
for any RGB image dataset in the wild. To demonstrate the
effectiveness of our framework, we apply Inpaint2Learn to
three specific tasks in affordance learning: 1) human affor-
dance prediction in the wild, 2) Location2Object in driving
scenarios, and 3) 6D object pose hallucination. Our experi-
ments show diverse and visually plausible results in all three
cases, which are then verified through user studies.

In the task of human affordance prediction, we follow
previous works [19][22] in designing a two-stage where
and what training pipeline, with a new semantics-and-
geometry-aware adversarial learning strategy. Our experi-
ments reveal that the semantic segmentation and depth in-
formation are crucial for the network to generate meaning-
ful predictions that obey the rules of projective geometry.

Our main contributions are as follows:

1. We present an easy-to-use, task-agnostic framework
for generating large-scale affordance labels on images

in the wild. We plan to release three datasets with
pseudo affordance labels on the task of human affor-
dance prediction, Location2Object and 6D object pose
hallucination.

2. To the best of our knowledge, we are the first to
study human affordances in the wild. We propose
a semantics-and-geometry-aware adversarial learning
strategy, which proves helpful to generating meaning-
ful and plausible results.

3. We demonstrate the effectiveness of our self-
supervised affordance framework in two additional
tasks: Location2Object and 6D object pose hallucina-
tion. Our proposed models outperform the baselines
and provide strong benchmarks for these tasks.

2. Related Work
Affordance[11], described as what the environment pro-

vides or furnishes the animal, is a term coined by psychol-
ogist James Gibson in the late 70s. Understanding affor-
dances is an innate ability of humans. According to Gibson,
people not only perceive affordances, but also modify their
environment to change its affordances to better suit them.
A further study[1] reveals that merely looking at an object
primes the human brain to perform the action the object af-
fords.

In the computer vision community, predicting affor-
dances is often defined as predicting opportunities of inter-
action in a scene. Many previous works [36][5][24][8] have
tackled the task in a data-driven manner. Wang et al.[27]
predict plausible 2D human poses given context by scaling
and deforming a clustered pose from sitcom videos. Li et
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al.[22] synthesize 3D poses from a scene image by factor-
izing pose distributions into where and what. Tan et al.[25]
propose a branching CNN to jointly learn location and size
of a person given a scene, and retrieve plausible human in-
stances to insert. Corona et al. [7] generate hand shapes
and poses for grasping objects from RGB images. Given
3D scene meshes, Zhang et al.[35] predict 3D human bod-
ies with various shapes and poses to interact with the envi-
ronment; Zhang et al.[34] generate human-scene proximal
relationships and infer a plausible human body.

Besides learning plausible human poses from context,
previous research has also studied modeling interaction
based on objects. Lin et al.[23] proposed a Spatial Trans-
former GAN to learn a realistic image compositional distri-
bution in order to insert indoor furniture in a simulated en-
vironment. Azadi et al.[3] propose a cycle-consistent adver-
sarial training to compose and decompose a pair of objects,
such as a chair and a table. Zhan et al. [32] propose a Spatial
Fusion GAN to fuse an instance into a background using a
geometry synthesizer and an appearance synthesizer. Fang
et al.[10] learn the interaction region of objects and action
labels from demonstration videos.

Learning to place objects in a scene is another way to
model affordances in an environment. Lee et al.[19] insert
object instance masks into a driving scene image by predict-
ing where and what with two generative modules. Zhang
et al.[33] predict a distribution of common sense locations
given a foreground object and a background scene.

Instead of focusing on one single task, we propose a gen-
eral, self-supervised framework for all three different as-
pects of affordance learning. Our data generation pipeline,
inspired by [33], is task agnostic and produces training la-
bels with no additional information other than RGB images.

3. Approach

3.1. Data Generation for Affordance Learning

A key challenge to learning affordances is the lack of
training data, which should ideally contain an object, a
context image without the object, and their corresponding
spatial or geometric relationship as a pair. As shown in
Figure 2, we build a data preprocessing pipeline to gen-
erate the above labels from a single RGB image: we ob-
tain instance segmentation mask for the object of interest,
cut it out, and then inpaint the hole in the context im-
age. Specifically, we use Mask R-CNN [13] for instance
segmentation and ProFill[31] for image inpatining. In the
task of human affordance prediction, we take advantage of
Alphapose[9][21][29] to extract human pose labels. Fur-
thermore, as auxiliary information to aid prediction, we
compute semantic segmentation map with HRNet [26] and
depth map with [28]. Since our pipeline does not assume
any constraint on the input images and uses no additional

information other than off-the-shelf prediction results, it
opens the door to learning affordance in the wild, giving
rise to large-scale, diverse training scenarios and object-
context relationships. We demonstrate its wide applications
in a number of affordance prediction tasks, described in the
following sections.

3.2. Human Affordance Prediction in the Wild

Given a context image, a human may appear at many
locations, interacting with the environment in a number of
ways. Thus, hallucinating plausible human poses is a mul-
timodal problem in nature. As shown in Figure 3, we use
a two-stage training pipeline with conditional VAE models
[18] to capture a diverse yet reasonable distribution for hu-
man poses given context. First, we predict a set of bounding
boxes, encoding plausible spatial locations and shapes for
the person; then, we predict a set of possible poses based on
the bounding boxes.

3.2.1 Predicting Human Bounding Box

The first stage of our model is a conditional VAE that en-
codes bounding boxes (parameterized as affine transforma-
tion matrices θ), conditioned on RGB image, semantic seg-
mentation and depth map. At the bottleneck, we tile the
latent embeddings zθ of the affine matrices to the same spa-
tial dimension as the image. Specifically, the 4-dimensional
latent code is tiled into a dimension of H ×W × 4, where
H and W are image height and width, and then concate-
nated to the image, segmentation and depth map channel-
wise as input for the decoder. Following the cVAE con-
vention, our loss is formulated as Lkld bbox + L1 bbox =
KL(zθ||N (0, 1))+ ||θ− θ̂||1, where Lkld bbox is Kullback-
Leibler divergence ensuring the encoded distribution of θ
follows a Gaussian distribution and L1 bbox is a L1 recon-
struction loss between the predicted affine matrix θ̂ and
ground truth θ regularizing the one-to-one mapping be-
tween latent space and prediction space. During inference,
we draw from Gaussian distribution N (0, 1) to produce a
set of bounding boxes for plausible human locations and
shapes.

In order for the bounding box generator to produce di-
verse results that satisfy both semantic plausibility and
geometric correctness, we use a semantics-and-geometry-
aware discriminator as an additional module. Leveraging
Spatial Transformer Network (STN)[16], we transform a
H × W canonical mask with all ones to binary masks B̂
and B with predicted and ground truth affine matrices θ̂ and
θ. B̂ and B represent predicted and ground truth bound-
ing boxes and are spatially aligned with the image. We then
concatenate them with the image, semantics and depth map,
respectively as fake and real examples for the discriminator.
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Figure 3: Human Affordance Prediction Model. Left: Our human bounding box prediction model first encodes the ground
truth affine matrices into a Gaussian distribution, reparameterizes the code, and then tiles the code into the same spatial
dimension as the image. The concatenated tiled code, image, segmentation and depth are fed into a bounding box generator
to predict the human location, which is checked by a conditional discriminator. Right: Our human pose prediction model
follows a similar pipeline as the bounding box prediction model. Note that the pretrained heatmap decoder maps pose
coordinates into a heatmap in order to spatially align the prediction with the image.

The adversarial loss is formulated as follows:

Ladv bbox = Edata [log(D(B|I, S,D))]

+ Ez

[
log(1−D(B̂|I, S,D))

] (1)

where I, S,D refers to the RGB image, semantic seg-
mentation and depth map.

Our insight is that this explicit conditioning of the dis-
criminator is crucial for the network to pick up semantics
and depth cues in generating realistic results. For example,
the height of the predicted bounding boxes should be similar
to those at approximately the same depth level. Moreover,
the bounding box size should be roughly proportional to the
depth in a scene. The overall objective of the bounding box
predictor can be written as:

Lbbox = Lkld bbox + L1 bbox + Ladv bbox (2)

3.2.2 Synthesizing Human Pose

Our human pose prediction model follows a similar
pipeline. In this case, the conditional VAE model encodes
2D human joint locations P into latent embeddings zP . Its
loss is written as Lkld pose+L1 pose = KL(zP ||N (0, 1))+

||P − P̂ ||1. To disentangle location from pose, we normal-
ize all ground truth poses to [0, 1] within their bounding box
labels as a preprocessing step.

In addition to RGB-D and semantics information, we
also feed in predicted bounding boxes B̂ from the first stage
to the cVAE decoder and discriminator, so that the pose syn-
thesis is conditioned on a specific location. To spatially

align the predicted 2D joint locations with the image, we
use a pretrained pose heatmap renderer ϕ(·), consisted of a
few transposed convolutional layers, and map the normal-
ized pose joints and the bounding box to a heatmap same
size as the image. Then both predicted and ground truth
pose heatmaps are fed into the discriminator as the fifth in-
put (other four being RGB-D, semantics and bounding box
mask) for adversarial learning. Our heatmap renderer ϕ is
fully differentiable and frozen during training, allowing gra-
dients to pass to the cVAE decoder. The adversarial loss is
formulated as follows:

Ladv pose = Edata [log(D(ϕ(P )|B, I, S,D))]

+ Ez

[
log(1−D(ϕ(P̂ )|B, I, S,D))

] (3)

The overall objective for the pose predictor can be writ-
ten as:

Lpose = Lkld pose + L1 pose + Ladv pose (4)

We first pretrain the bounding box and the pose module
respectively, and then jointly train them with a lower learn-
ing rate. More implementation details are described in the
supplementary materials.

3.3. Location2Object in the Driving Scene

In the Location2Object task, our goal is to predict what
to put at a user-specified location in an image and how large
it should be. This could prove useful in interactive content
generation, where the user can enrich image content easily
by clicking on a place to insert objects.
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Figure 4: The Location2Object model takes location Gaus-
sian mask, image, depth map, and semantic segmentation
map as inputs, and feed them into a two-stage network to
predict semantic class and bounding box shape sequentially.

We propose a simple yet effective two-stage network that
first predicts the semantic class of the object to be inserted,
and then generates its bounding box based on the predicted
class. The overall model pipeline is shown in Figure 4.
As a preprocessing step, we convert the user-specified lo-
cation into a Gaussian mask so that it is spatially aligned
with the image. We then concatenate the pre-computed se-
mantic segmentation and depth map to the image and the
Gaussian mask as input to our network. We use ResNet-
18 [14] as backbone to extract visual features and two sets
of fully-connected layers in sequential order to predict the
class label and the bounding box shape (height and width).
We use a weighted cross-entropy loss as training objective
to relieve imbalanced class distribution in the dataset, which
is represented as follows:

Lclass =

∑N
i=1 −weight[label[i]] log x[label[i]]∑C

j=1 exp(x[j])∑N
i=1 weight[label[i]]

(5)

We also use a L1 loss to minimize the difference between
predicted and ground truth bounding box shapes B̂ and B,
written as Lbbox = ||B̂ − B||1. The overall objective is
L = Lclass + Lbbox.

3.4. 6D Object Pose Hallucination

In this task, we wish to find the translation and rotation
required to place an object into a scene, provided with the
class label of the object and a context image. Essentially, the
network is asked to hallucinate the 6D pose of the object to
be inserted in the target scene.

Similar to the Location2Object model, we design a two-
stage regression network that first predicts the translation,
then estimates the rotation based on the predicted transla-
tion. We use Resnet-18 [14] as backbone for feature extrac-
tion, as shown in Figure 5 below.

We use (x, y, z) coordinates to represent translation and
quaternions to represent rotation. Compared to Euler an-
gles, which suffer from a singular case known as the gim-
bal lock, quaternion is more compact and numerically sta-

Figure 5: We use ResNet [14] to first extract features, and
sequentially predict the object 3D translation and 3D rota-
tion.

ble. We denote predicted and ground truth translation as
T̂ and T , and predicted and ground truth rotation as R̂
and R. Our overall objective can be written as Ltotal =
Ltranslation + Lrotation, where Ltranslation = ||T − T̂ ||2
and Lrotation = ||R− R̂||2.

Since this task requires understanding of 3D geometry
of the scene, we concatenate the pre-computed depth map
to the RGB context image as input to our network. Our ex-
periments in the next section demonstrate the superior per-
formance of the model using quaternions and depth infor-
mation.

4. Experimental Results

4.1. Preliminaries

For human affordance prediction task, we experiment on
the MPII dataset[2], which includes 25K images contain-
ing 40K people with 410 human activities. We run the
Inpaint2Learn pipeline to generate data pairs consisted of
ground truth pose labels and inpainted context images.

For Location2Object task, we use the Cityscape dataset
[6] and our Inpaint2Learn pipeline to generate a ground
truth object class label, a bounding box shape and a con-
text image free of the object as a data pair, yielding 222,844
training data points and 10,000 test data points.

For 6D object pose hallucination task, we use the
Linemod dataset[15], which contains 15 different types of
objects with ground truth 6D pose labels and roughly 1.4k
images per object. We run our Inpaint2Learn pipeline to
generate context images free of the objects and use a train-
test split of 9:1.

We plan to release the generated affordance labels in all
three datasets to the research community in the near future.
Due to space limit, please see the supplementary materials
for more training and implementation details. In the follow-
ing subsections, we will discuss and analyze the experimen-
tal results for each task.
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Figure 6: Qualitative results of human location/shape (first row) and pose (second row) predictions in the wild. The results
show that our model can predict bounding boxes with various sizes at different depth levels. In addition, the predicted human
poses also have consistent sizes with respect to the other existing people in the image.

Methods BBox Score (AMT) ↑ Pose Score (AMT) ↑ Diversity ↑
Heuristic 54.13 58.70 -
RGB Only 63.39 68.14 0.0977
+ Depth 67.97 71.54 0.0989
+ Segmentation 66.36 74.14 0.0779
+ Depth & Segmentation 70.75 75.94 0.1022

Table 1: Quantitative results of human affordance prediction model. The BBox Score and Pose Score are the averaged user
preference rate among 30 AMT workers over 50 testing images. The diversity is the averaged pairwise distance between ten
sampled predictions across 1,000 testing images.

4.2. Human Affordance Prediction Results

We evaluate our human affordance prediction results
from two aspects: 1) plausibility of the predicted bounding
boxes in terms of locations and shapes, and 2) correctness
of the synthesized human poses. We conduct extensive user
studies using Amazon Mechanical Turk (AMT). Our sur-
vey contains 50 test questions, where we provide an image
overlaid with a predicted bounding box and the same im-
age visualized with a synthesized human pose, and ask the
subjects whether the box and the pose look reasonable to
them in two separate sub-questions. We recruit 30 subjects
for the survey and average the evaluation scores among all
subjects. The survey description and user interface can be
found in the supplementary materials.

4.2.1 Comparison with Heuristic Baselines

We design a heuristic baseline to compare with our learned
model. We empirically define the bottommost visible joint
as the contact point of the person with the environment.
We manually decide if a semantic segmentation category is
stand-able or sittable. For all training data, we group contact
point locations and poses by semantic class, obtaining loca-
tion/pose banks for each class that we later sample from.

We also compute the height of each person and group it by
the disparity value at the contact point. We then compute
the average for each disparity bucket and use it as the rec-
ommended height for that disparity.

Figure 7: Visual comparison between heuristic baseline and
ours.

During inference, given an RGB image, we look at its
segmentation map to see if any stand-able or sittable sur-
face is present. If yes, we choose to randomly place the
person within the lower part of the largest stand-able or sit-
table surface, because we observe empirically that the con-
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tact points, usually being the person’s feet or pelvis, fall in
the bottom part of the image. Then the pose is randomly
selected from the bank of poses of that class. If no such
surface is present, we randomly select a location from all
known contact points and obtain its corresponding seman-
tic class, which determines which group of poses we then
randomly sample from. Finally, we scale the selected pose
to the recommended height according to the disparity value
of the contact point.

As shown in Table 1, all of our learned models per-
form better than the heuristic baseline. In Figure 8, we see
that our learned model is able to infer interactions with ob-
jects or people in the environment, while the heuristic base-
line, though provided with the same segmentation and depth
info, fails to capture such intricacies.

4.2.2 Useful Auxiliary Information

We conduct experiments on our full model and three abla-
tion baselines. They each take the following inputs: 1) RGB
image, 2) RGB image + depth, 3) RGB image + segmenta-
tion, 4) RGB image + depth + segmentation (full model).
As shown in Table 1, our user study indicates that our full
model generates the most plausible results among the four.
To quantify the diversity of the affordance prediction mod-
els, we also compute the averaged pairwise distance be-
tween ten samples of poses in the validation set. As in-
dicated by the scores, our full model achieves on-par or
slightly better diversity compared to other baselines. This
shows that adding segmentation and depth information as
input improves the plausibility of the predictions without
sacrificing their diversity.

Figure 6 demonstrates some qualitative results of our
model. We observe that our predictions are diverse and
plausible: the synthesized poses occupy various locations
in the image and tend to interact with the environment
and other existing humans. Moreover, the bounding boxes
shrink as they go further away from the camera, leading
to the vanishing point. Figure 8 shows a qualitative com-
parison between baseline model with RGB input and our
full model with additional semantics and depth input. Com-
pared to baseline, the full model generate more diverse and
realistic results in terms of semantics and geometry. The
baseline model suffers from a small variation in locations
and shapes and tends to generate bounding boxes of the
same size.

4.3. Location2Object Results

In the Location2Object task, our model predicts a cate-
gorical label and a bounding box shape for an object to be
inserted at a user-specified location. Following the same
setup as before, we conduct experiments on our full model
and three baselines with the following inputs: 1) RGB, 2)

Figure 8: Comparison between the baseline model trained
with RGB image only (left) and our full model trained with
both segmentation and depth map (right). We can see that
our full model can produce bounding boxes with more di-
verse shapes and sizes, which are also more geometrically
plausible with respect to the depth.

RGB + depth, 3) RGB + segmentation, 4) RGB + depth +
segmentation (full model). As evaluation metrics, we com-
pute object classification accuracy and the mean squared er-
ror of the bounding boxes using the Inpaint2Learn pseudo
ground truth labels in the test set. As shown in Table 2, our
full model outperforms the other baselines under both met-
rics. In addition, we conduct an AMT user study of 100 test
images for each model among 20 subjects. In the survey,
the subjects are asked whether they think the predicted ob-
ject categorical labels and bounding boxes look reasonable.
The user study results are consistent with our quantitative
evaluation, where the full model is either on-par or better
than the baselines. Both studies demonstrate the importance
of adding semantics and depth information when learning
object affordance in the Cityscape driving scene[6].

4.4. 6D Object Pose Hallucination Results

In the 6D object pose hallucination task, our model pre-
dicts 3D rotation and translation parameters to insert an ob-
ject into a scene. We compare our full model (using quater-
nion representation and with depth input) with two base-
lines without depth input, one using Euler angles and the
other using quaternions. In evaluation, we convert quater-
nion results to Euler angles and compute the mean squared
error of rotation and translation bewteen prediction and
ground truth labels in the test set. As shown in Table 10,
using quaternion representation significantly increases the
prediction accuracy, and the depth input further improves
the performance. In addition, we conduct an AMT user
study consisted of 60 questions and recruit 20 subjects to
evaluate whether the predicted 3D bounding boxes are plau-
sible placement of the objects. The results confirm that us-
ing quaternion representation aids prediction, as satisfaction
rate is boosted from 13.6170% (Euler angles) to 52.3404%
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Figure 9: Qualitative results of Location2Object model prediction. The results show that our model can reliably predict not
only the common objects, such as person and car, but also relatively rare categories, such as stop sign, motorcycle, etc.

Methods Classification ↑ BBox Error ↓ Semantic Score (AMT) ↑ Shape Score (AMT) ↑
RGB Only 92.56 7.9379 80.13 67.83
+ Depth 94.87 7.5095 85.61 77.25
+ Segmentation 95.18 7.7919 89.02 73.16
+ Depth & Segmentation 95.51 7.3762 88.71 79.78

Table 2: Quantitative results of Location2Object model prediction. The classification accuracy and bounding box error are
computed with respect to the ground truth in the test set. The semantic score and shape score are the averaged preference rate
from 20 AMT workers over 100 testing images.

Figure 10: Qualitative results of 6D object pose hallucination in context.

Methods Translation Error ↓ Rotation Error ↓ User Study (AMT) ↑
Baseline 0.0351 0.1675 13.6170
Use Quaternion 0.0274 0.0787 52.3404
Use Quaternion & + Depth 0.0265 0.0569 59.5745

Table 3: Quantitative results of 6D object pose hallucination in context. The translation error and rotation error are computed
with respect to the ground truth in the test set. The user study scores are the averaged preference rates from 20 AMT workers
over 60 testing images.

(Quaternions) and that the additional input of depth is help-
ful to the task.

5. Conclusion

In this work, we propose a task-agnostic framework to
generate ground truth labels for affordance learning. To
demonstrate its effectiveness, we apply it to three different
aspects of affordance prediction: human affordance predic-
tion in the wild, Location2Object in driving scenes and 6D
object pose hallucination. In human affordance learning,
we adopt a two-stage where and what training pipeline with
a new semantics-and-geometry-aware adversarial learning

strategy. Our experiments show that our proposed models in
all three tasks are able to generate diverse and visually plau-
sible predictions, which are verified through our user stud-
ies. Finally, we plan to release all three affordance datasets
with strong benchmark to the research community in the
near future.

As one potential extension, we plan to expand human
affordance learning to the video domain. We will lever-
age video inpainting techniques [17, 30, 20, 4] and study
plausible human environment interactions in motion, which
should yield better understanding of the scene and its affor-
dances.
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