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Abstract

The success of learning with noisy labels (LNL) methods
relies heavily on the success of a warm-up stage where stan-
dard supervised training is performed using the full (noisy)
training set. In this paper, we identify a “warm-up obstacle”:
the inability of standard warm-up stages to train high quality
feature extractors and avert memorization of noisy labels.
We propose “Contrast to Divide” (C2D), a simple framework
that solves this problem by pre-training the feature extrac-
tor in a self-supervised fashion. Using self-supervised pre-
training boosts the performance of existing LNL approaches
by drastically reducing the warm-up stage’s susceptibility to
noise level, shortening its duration, and improving extracted
feature quality. C2D works out of the box with existing
methods and demonstrates markedly improved performance,
especially in the high noise regime, where we get a boost of
more than 27% for CIFAR-100 with 90% noise over the pre-
vious state of the art. In real-life noise settings, C2D trained
on mini-WebVision outperforms previous works both in Web-
Vision and ImageNet validation sets by 3% top-1 accuracy.
We perform an in-depth analysis of the framework, including
investigating the performance of different pre-training ap-
proaches and estimating the effective upper bound of the
LNL performance with semi-supervised learning. Code
for reproducing our experiments is available at https:
//github.com/ContrastToDivide/C2D.

1. Introduction
Many deep-learning-based methods owe their success

to the availability of large data sources with reliable labels.

Quality annotation at scale, however, is often prohibitively

expensive. Two common approaches that address this chal-

lenge are semi-supervised learning and learning with noisy

labels (LNL). The former assumes the availability of a lim-

ited amount of high-quality labeled data as well as a large

*Equal contribution.

amount of unlabeled data of the same distribution. The main

challenge is to propagate the labels to the unlabeled sam-

ples to allow gleaning knowledge from them as well. In

contrast, the latter approach suggests acquiring cheap anno-

tations at scale at the cost of having some mislabeled data.

Examples of such processes include web crawling [32, 55],

automatic annotation based on meta-data [35], and uncurated

crowdsourcing [27]. Though seemingly different, the two

approaches are in fact closely related. Many semi-supervised

learning approaches are based on predicting pseudo-labels

for the unlabeled data, which are, effectively, noisy labels.

From the other end, an LNL setting can be converted into a

semi-supervised one by identifying and discarding the noisy

labels. Separation of the noisy labeled samples from the

clean ones is one of the key challenges in LNL.

To that end, multiple LNL methods utilize a “warm-up”

stage [18, 29, 34, 42] – short supervised training on the full

noisy dataset that precedes the more sophisticated algorithms

designed to deal with label noise. During warm-up, the

network’s inherent robustness to noise tends to lower the

classification loss of the cleanly labeled samples faster than

that of the noisy ones [10, 34]. While this stage has not

received much attention in previous works (possibly due to

its algorithmic simplicity), it is in fact crucial to the success

of LNL. Unfortunately, it is prone to memorizing noise, and

thus its efficacy is contingent on the noise level as well as

the amount of training iterations and other hyperparameters.

These limitations create a significant obstacle to improv-

ing the performance of LNL approaches. While supervised

pre-training on a large clean dataset (e.g., ImageNet [44])

may seem to be a possible solution to this problem, the

availability of such data may be limited in some domains

(e.g., medical data). In addition, our experiments show that

in some scenarios, ImageNet pre-training may degrade the

performance of LNL algorithms.

We propose to overcome the warm-up obstacle by using

unsupervised pre-training. Building on the recent success of

self-supervised learning [7, 20, 50, 64], especially in closely

related semi-supervised tasks [8], we generate high-quality
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Figure 1: A UMAP [36] of features extracted from CIFAR-10 using C2D (top row) vs. DivideMix (bottom row) for 20% and

90% noise at the end of warm-up stage, as well as self-supervised pre-training. Colors indicate the ground-truth labels.

features by pre-training on the unlabeled train set samples.

Thus, we benefit simultaneously from several effects. We

do not require external data sources; by ignoring the labels,

we eliminate the influence of noise on the pre-training stage

and prevent noise memorization; finally, by operating on the

training set, we avoid a domain gap. Importantly, this can be

seamlessly combined with any LNL method.

Altogether, our framework provides a significant boost

over previous LNL methods, with much better consistency

across different noise levels. For example, with 90% sym-

metric noise, we achieve a more than 27% accuracy boost

for CIFAR-100 with PreAct ResNet-18. In real-life settings,

on mini-WebVision the proposed framework achieves an

accuracy boost of more than 3% on top-1 accuracy both in

WebVision and ImageNet validation sets; on Clothing1M it

matches performance of the ImageNet pre-training without

any external data.

Below, we outline our main contributions.

• First, we identify and characterize the warm-up impor-

tance for LNL. Our proposed framework, “Contrast

to Divide” (C2D), improves warm-up performance by

utilizing self-supervised pre-training.

• C2D significantly outperforms state-of-the-art methods

on standard benchmarks that do not utilize external data:

CIFAR and WebVision. Moreover, on the challenging

Clothing1M benchmark, C2D matches the state of the

art that uses pre-training on ImageNet.

• We perform an extensive analysis of C2D, including

loss separation and feature quality for different initial-

ization schemes, loss distribution after the warm-up

stage, and the performance gap between C2D and semi-

supervised learning.

2. Related work

Self-supervised learning. Self-supervised learning aims

to learn representations that are meaningful in some general

sense, without using externally provided labels. Usually, this

is done by solving a pretext task. One family of methods

is based on reconstructing a corrupted version of the input

[41, 52, 67, 68]. Other methods opt for using a classification

task based on context prediction [11, 14, 25, 39] or clustering

[5]. Nevertheless, all these methods impose an inherent prob-

lem when facing a particular downstream task that may not

be well correlated with the self-supervised objective. Thus,

there is no guarantee that the key information is retained and

can be extracted from the features [37]. Some methods pro-

pose to remedy this problem by making the self-supervised
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task aware of the downstream one [23, 65].

Recently, a revival in self-supervised techniques based on

contrastive loss [16] has shown markedly improved perfor-

mance in large-scale computer vision tasks [7, 20, 50, 58].

Subsequently, similar approaches without utilizing contrast

between samples were proposed [9, 15, 64].

Semi-supervised learning. Given a partially labeled

dataset, semi-supervised techniques aim at utilizing the

unlabeled samples for boosting the learning procedure be-

yond what is achievable with just the labeled set. A simple

yet efficient baseline for this problem is pseudo-labeling

[2, 28, 57, 60]. In its basic form, this solution uses a network

trained on the labeled subset to predict labels for the unla-

beled set. These new labels, in turn, are used to refine the

network (or a larger one) on the now fully labeled set. An-

other popular approach to semi-supervised learning is consis-

tency regularization, where in addition to the cross-entropy

loss, consistency is enforced between different perturbations

of unlabeled (and possibly labeled) samples. Various im-

plementations of those perturbation were studied, including

predictions by different networks [49], adversarial examples

[38], and augmentations [4, 12, 45, 56]. Recent methods

have shown competitive results on CIFAR-100 using labels

for as little as 1% of samples. Moreover, self-supervised pre-

training can further improve semi-supervised classification

[8].

Learning with noisy labels. There are many variants of

the LNL problem. While some methods [33, 51, 71] assume

the availability of a small subset of clean labels, we do not

make those assumptions. We also consider closed-set noisy

labels, i.e., where the mislabeled images belong to one of the

training classes as opposed to the open-set setup [53, 70].

Existing methods for LNL can be divided into two broad

categories: loss modification and noise detection. The for-

mer group includes techniques that account for noise dis-

tribution [42, 54, 61]. Alternatively, the loss itself may be

replaced by a more robust version, such as mean absolute er-

ror [13], generalized cross-entropy [70], determinant-based

mutual information [59], or a meta-learning objective [30].

On the other hand, noise detection methods aim to discover

which samples are mislabeled to either relabel or discard

them. Techniques for detecting noisy labels include utiliz-

ing multiple networks in a teacher-student [22] or mutual

teaching [17, 63] framework, geometry [18], mixture mod-

els [1, 29], and quantiles of counterfactual loss distribution

of samples [47]. These are often based on the observation

that samples with noisy labels converge slower than those

with clean ones [3, 10, 31, 43]. Hybrid methods that try to

mix both noise detection and loss modification were also

proposed [34, 46].
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Figure 2: The ROC-AUC score of noise detection and the lin-

ear accuracy using clean labels under various noise levels for

CIFAR-100 for standard warm-up, ImageNet pre-training,

and C2D. Each point is one epoch of training, arrowhead de-

notes time direction. Colors denote the pre-training scheme

and markers denote the noise level.

3. The warm-up obstacle

C2D is motivated by the observation of an inherent obsta-

cle that is at the core of LNL methods. It has been shown

that deep networks can perform meaningful learning in the

presence of noise before they enter a memorization phase

[43]. LNL methods utilize this behavior by performing a

warm-up – supervised training on the full set of (noisy) la-

bels for a short period of time. Most methods utilize either

“hard” (starting an LNL procedure after a number of epochs

[29]) or “soft” (gradually increasing the weight of additional

regularization terms [34]) version of warm-up.

A warm-up stage has two main goals: loss separability

and feature extraction. The former means that the model is

still in the early learning phase, allowing the follow up stage

to rely on noisy labeled samples having high loss values

clean labeled ones having low loss values. The latter refers

to the quality of representation learned by the model. Little,

however, is understood about the determinants of network

robustness to noise or how to boost it. As a result, the

warm-up performance in LNL methods is consequential and

bounded by an unavoidable memorization. Current practice

in LNL is to merely adjust the warm-up length according to

the observed robustness of the model under different noise

levels. We identify this as a major obstacle in the ability to

improve performance.

To demonstrate this phenomenon, we run a supervised

training on CIFAR-100 with noise and measured the level of

the aforementioned properties at each epoch. The results are

visualized in Fig. 2. Separation is measured as the ROC AUC
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Method Architecture Noise rate
20% 50% 80% 90% 95% Asym. 40%

Meta-learning
PreAct ResNet-32

Peak 92.9 89.3 77.4 58.7 – 89.2

[30] Final 92.0 88.8 76.1 58.3 – 88.6

ELR+
ResNet-34

Peak – – – – – –

[34] Final 95.8 94.8 93.3 78.7 – 93.0

DivideMix
PreAct ResNet-18

Peak 96.1 94.6 93.2 76.0 – 93.4

[29] Final 95.7 94.4 92.9 75.4 – 92.1

CE+mixup with SimCLR ResNet-34
Peak 94.98± 0.17 93.83± 0.12 91.33± 0.17 87.54± 0.45 73.97± 1.22 91.63± 0.38

Final 94.56± 0.22 93.20± 0.25 90.77± 0.57 85.77± 2.42 72.71± 1.39 90.39± 0.35

C2D (ELR+ with SimCLR) ResNet-34
Peak 96.83± 0.10 95.96± 0.09 93.67± 0.16 89.94± 0.20 83.23± 0.68 94.32± 0.48

Final 96.74± 0.12 95.55± 0.32 93.11± 0.70 89.30± 0.21 80.21± 1.91 93.78± 0.91

C2D (DivideMix with SimCLR) PreAct ResNet-18
Peak 96.43± 0.07 95.32± 0.12 94.40± 0.04 93.57± 0.09 89.24± 0.75 93.45± 0.07

Final 96.23± 0.09 95.15± 0.16 94.30± 0.12 93.42± 0.09 87.72± 2.21 90.75± 0.35

Table 1: Classification accuracy (%, mean± std over five runs) on CIFAR-10. C2D achieves consistently high accuracy under

different noise rates and types, with markedly improved performance under very-high noise conditions. Meta-learning results

provided by Li et al. [29].

of the noise detection with Gaussian mixture model (GMM)

applied to loss values [29], and feature quality is measured

using the classification accuracy of a linear classifier trained

without noise – a standard approach for feature quality as-

sessment [7, 20, 67]. As can be seen, the two measures are

strongly correlated, peaking jointly at some iteration, which,

of course, is unknown unless clean labels are available. Crit-

ically, not only do the separation and feature quality values

deteriorate quickly as the noise level increases, but also no

known remedy exists. In other words, even if we knew the

optimal warm-up length, the current LNL toolbox lacks the

tools to improve the observed values. The effect of feature

deterioration as the noise level increases can also be seen in

the bottom part of Fig. 1, where we visualized the extracted

features after the warm-up using UMAP [36].

To circumvent the deterioration issue, prior works have

resorted to supervised pre-training on an external dataset,

such as ImageNet. This solution suffers from two disadvan-

tages. First, it necessitates a large, cleanly-labeled dataset of

a similar domain, which is not always available. Second, as

will be made apparent by our analyses, features generated

via supervised pre-training may fall short in noisy label sep-

aration. Our solution to overcoming the warm-up obstacle is

to use self-supervised pre-training.

4. Contrast to Divide
As discussed in Section 3, the warm-up phase perfor-

mance in LNL pipelines is bounded by memorization. En-

couraged by the recent success in semi-supervised learn-

ing [8], we study whether self-supervised pre-training could

break this barrier. More specifically, given a dataset with con-

taminated labels, we propose a straight-forward two-phase

framework. First, we perform self-supervised contrastive

learning [7, 64] to obtain high-quality feature extractor (con-

trast phase). We then proceed with a standard LNL algo-

rithm that can now better detect noisy labels (divide phase).

Much like standard transfer learning, this framework can

be used to boost virtually any existing LNL method. We

do not, however, rely on a cleanly labeled external data

source; pre-training is done directly on the target training

set. Importantly, by discarding the labels, we avoid label

noise influence on feature extractor and provide a robust

initialization as can be seen in Fig. 2. Even under extreme

noise level conditions, this initialization boosts the warm-up

far beyond the memorization bound. As shown in the experi-

mental section, the improved loss separation supports both

explicit separation using a classification model as well as an

implicit one based on regularization terms.

5. Experimental results
Our evaluation of the proposed framework uses two state-

of-the-art LNL methods: ELR+ [34] and DivideMix [29],

both on synthetic and real noise. We follow common prac-

tice in synthetic noise benchmarks and use CIFAR-10 and

CIFAR-100 [26], varying the amount of injected noise. For

the real noise setting, we use WebVision [32], a dataset of

~2.4 million images based on queries generated from the

1,000 ImageNet [44] classes, and Clothing1M [55], which

contains ~1 million images of 14 classes of clothing. Both

datasets are acquired by web crawling.

Common evaluation using Clothing1M includes utilizing

the ImageNet pre-trained network, while for CIFAR and

WebVision, networks are trained from scratch. Thus, for

the former we provide a comparison with supervised pre-
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Method Architecture Noise rate
20% 50% 80% 90% 95% Asym. 40%

Meta-learning
PreAct ResNet-32

Peak 68.5 59.2 42.4 19.5 – –

[30] Final 67.7 58.0 40.1 14.3 – –

ELR+
ResNet-34

Peak – – – – – –

[34] Final 77.6 73.6 60.8 33.4 – 77.5

ODD
WRN-28-10

Peak 79.1± 0.1 – – – – –

[47] Final – – – – – –

DivideMix
PreAct ResNet-18

Peak 77.3 74.6 61.6∗ 31.5 – 72.2∗

[29] Final 76.9 74.2 61.3∗ 31.0 – 72.4∗

CE+mixup with SimCLR ResNet-34
Peak 76.46± 0.15 69.14± 0.31 61.39± 0.26 55.51± 0.24 43.59± 0.59 65.19± 0.63

Final 76.34± 0.19 67.97± 1.22 60.81± 0.67 54.64± 0.72 42.11± 1.99 54.75± 0.93

C2D (ELR+ with SimCLR) ResNet-34
Peak 79.18± 0.19 76.33± 0.31 64.72± 0.18 55.08± 0.32 44.06± 0.84 77.87± 0.29

Final 79.03± 0.20 76.10± 0.36 64.18± 0.13 54.06± 1.50 42.60± 1.67 77.63± 0.27

C2D (DivideMix with SimCLR) PreAct ResNet-18
Peak 78.69± 0.17 76.43± 0.25 67.78± 0,30 58.70± 0,31 38.89± 1.19 75.48± 0.16

Final 78.32± 0.35 76.07± 0.41 67.43± 0,30 58.45± 0,30 38.03± 2.13 75.06± 0.16

C2D (DivideMix with SimCLR) ResNet-50
Peak 81.60 79.54 71.65 64.30 49.11 77.92
Final 80.89 79.20 71.53 63.91 48.50 77.78

Table 2: Peak and final classification accuracies (%, mean± std over five runs) on CIFAR-100. Unlike previous methods that

suffer from rapid degradation, C2D was able to maintain good performance even under severe noise. Meta-learning results

provided by Li et al. [29]. ∗ denotes results acquired by us based on published code.

training, while for the latter we compare self-supervised

pre-training with no pre-training whatsoever.

5.1. CIFAR-10 and CIFAR-100

We conducted experiments with two types of label noise:

symmetric and asymmetric. Symmetric noise is generated by

randomly replacing the labels in a percentage of the training

data with a random label drawn from a uniform distribution

over all labels. Following the common approach [1, 29, 66],

the new label may be the real one. In this way, we are

guaranteed that the clean label is the most frequent label

for each class for any noise level. Thus, the real number of

mislabeled examples is smaller by 1/ncl. Asymmetric noise

is designed to mimic the structure of real-world label errors,

where classes that are generally similar in appearance are

more likely to switch labels. In this case, we follow a scheme

proposed by Patrini et al. [42].

Implementation details. For both methods, we followed

the setup of the original experiments as close as possible.

We also used the original architectures, PreAct ResNet-18

[19] for DivideMix and ResNet-34 for ELR+. Since self-

supervised training is known to benefit from increased net-

work capacity [7, 20], for CIFAR-100 we performed exper-

iments with ResNet-50 as well. For self-supervised pre-

training, we used a SimCLR implementation1 in PyTorch

1https://github.com/HobbitLong/SupContrast

[40]. The self-supervised model was trained for 1000 epochs

on 4 NVIDIA 2080 Ti GPUs.

ELR+ required no hyperparameter tweaking. For Di-

videMix, we performed a number of minor modifications:

(a) to accommodate ResNet-50 in GPU memory, we reduced

the batch size from 128 to 64 and (b) for DivideMix we ob-

served that our network kept improving after 300 epochs and

thus increased training length to 360 epochs. In addition, we

tuned the hyperparameters mentioned in the original paper

[29]: the unlabeled loss weight λU , the number of warm-

up epochs, and the threshold for noisy label prediction τ .

For λU , we acquired similar results with and without C2D.

Those results match the results of Li et al. [29], except that

increasing λU also benefits the baseline DivideMix solution

in high noise settings: for CIFAR-100 with 80% noise, in-

creasing λU from 150 to 500 improved DivideMix accuracy

from 60.2% to 61.3%. As discussed in Section 3, strong pre-

trained features are expected to reduce the required warm-up

duration. We found that five epochs were sufficient for CI-

FAR at all noise levels. As a reference, DivideMix uses 10

epochs for CIFAR-10 and 30 epochs for CIFAR-100. Lastly,

we set the GMM threshold to τ = 0.03, which is signifi-

cantly lower than the 0.5 used by DivideMix. This can be

explained by the fact our model is able to determine most of

the noisy examples with high confidence.

Results. Table 1 presents the comparison of our method

with prior state of the art for symmetric and asymmetric
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noisy labels on the CIFAR-10 dataset. “final” refers to the

accuracy at the end of training for DivideMix, and the one

with highest internal validation score for ELR+ as done in

the original papers. “peak” refers to the highest validation

score achieved during training.

In addition to maintaining consistently high classification

accuracy across all noise levels, C2D significantly outper-

forms prior methods at high noise levels (� 80%). We

attribute this desired behavior to the fact that our pre-trained

features are agnostic to the noise level.

Table 2 shows the classification accuracy on CIFAR-100.

Compared with CIFAR-10, this task is more complex, re-

sulting in a steeper drop in performance of prior methods as

noise rates increase. In contrast, C2D demonstrates a grace-

ful degradation, achieving a remarkable gain of more than

30% in accuracy at 90% noise level. We therefore decided

to stress test C2D by subjecting it to an extreme noise level

of 95%. Despite a higher variance in the results (measured

across five noise realizations), C2D still achieved a final

accuracy of above 38% (and at least 30% in each individ-

ual run), surpassing the performance achieved by previous

approaches at a noise rate of 90%. In asymmetric noise,

C2D performed similarly to prior art with ResNet-18, and

achieved a minor improvement over ELR+ [34] with larger

networks (ResNet-34 and ResNet-50).

We also provide an additional baseline which uses only

first stage of C2D, i.e., self-supervised pre-training followed

by vanilla cross-entropy training with mixup. For harder

tasks (�90% noise on CIFAR-100) the improvement pro-

vided by second stage (ELR+ training) is marginal, while

for intermediate noise rates the gain is maximal (e.g., 8%

difference for CIFAR-100 with 50% noise and CIFAR-10

with 95% noise).

5.2. Clothing1M

We tested our framework on the real-life noise present

in the Clothing1M dataset [55]. As some of the manually

labeled images have both clean and noisy labels, we can

estimate the noise level as approximately 38.5%. We also

use these double-labeled samples to compute noise-related

metrics such as the ROC AUC of noise detection. Implemen-

tation details are specified in the appendix.

Results. The default approach [18, 29, 30, 34, 42, 48, 62,

69] for Clothing1M is to leverage a ResNet-50 pre-trained

on ImageNet. The rich variety of visual concepts along with

high-quality labels provides a strong initialization for net-

work weights. C2D, on the other hand, uses only the dataset

itself for pre-training. A comparison with state-of-the-art

methods is reported in Table 3. The results highlight two

interesting phenomena. First, by comparing the performance

of the standard cross-entropy training, we confirm that our

self-supervised pre-training is significantly better than Im-

Method Test accuracy

Cross-entropy 69.21

F-correction [42] 69.84

Joint-Optim [48] 72.16

MetaCleaner [69] 72.50

Meta-Learning [30] 73.47

P-correction [62] 73.49

Self-learning [18] 74.45

DivideMix [29] 74.76

ELR+ [34] 74.81

Cross-entropy (SimCLR init.) 72.05

Cross-entropy (BT init.) 73.03

C2D (ELR+ with BT) 73.52

C2D (DivideMix with SimCLR) 74.30

C2D (ELR+ with SimCLR) 74.58± 0.15

Table 3: Comparison with state-of-the-art methods in test

accuracy (%) on Clothing1M. The upper part of the table

uses ImageNet pre-training, while the lower half does not.

ageNet pre-training, demonstrating the warm-up gain C2D

brings. A second observation is that, similarly to harder

instances of CIFAR, this advantage is not leveraged by the

LNL methods, resulting in an overall performance similar to

ImageNet pre-training. This may be attributed to the com-

plicated noise structure and leaves room for research of the

way the methods utilize the improved initialization. Finally,

it is encouraging that nearly state-of-the-art results (74.58%

vs. 74.81% accuracy) can be achieved without external data.

5.3. WebVision

Following previous work [6, 21, 29, 34, 47], we evalu-

ate our framework on the mini-WebVision 1.0 dataset [32],

which contains the first 50 classes of the Google image sub-

set for a total of ~61,000 images. Implementation details are

specified in the appendix.

Results As shown in Table 4, C2D outperforms previous

works on both the WebVision and ImageNet validation sets

by at least 3% top-1 accuracy. Since we used a different

network architecture, we also evaluated vanilla DivideMix

with ResNet-50, reaching ~1% degradation of top-1 accuracy

when compared to Inception-ResNet-v2.

6. Analysis
6.1. Warm-up performance

In Section 3, we defined low feature quality and poor

loss separation as a major obstacle to improving LNL perfor-
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Method Architecture ILSVRC12 WebVision
Top-1 Top-5 Top-1 Top-5

MentorNet [22] Inception-ResNet-v2 63.8 85.8 – –

Iterative-CV [6] Inception-ResNet-v2 61.6 85.0 65.2 85.3

MentorMix [21] Inception-ResNet-v2 72.9 91.1 76.0 90.2

DivideMix [29] Inception-ResNet-v2 75.20 90.84 77.32 91.64

ODD [47] Inception-ResNet-v2 66.7 86.3 74.6 90.6

ELR+ [34] Inception-ResNet-v2 70.29 89.76 77.78 91.68

DivideMix∗ [29] ResNet-50 74.42± 0.29 91.21± 0.12 76.32± 0.36 90.65± 0.16

C2D (DivideMix with SimCLR) ResNet-50 78.57± 0.37 93.04± 0.10 79.42± 0.34 92.32± 0.33

Table 4: Accuracy (%, mean± std over five runs) on the WebVision validation set and the ILSVRC12 (ImageNet) validation

sets, for the networks trained on (mini) WebVision dataset. ∗ denotes results acquired by us based on published code.

mance. Here, we show that C2D improves both metrics. We

start with a qualitative comparison of the features learned on

the CIFAR-10 data with and without C2D at the end of the

warm-up. We do this by visualizing the features in Fig. 1 us-

ing a dimensionality-reduction technique [36]. C2D features

(upper row) are clearly better clustered and easier to separate

than the baseline (bottom row) at both 20% and 90% noise

levels. Furthermore, at high noise rates, the baseline features

suffer from acute degradation (note the blending of the dog

and deer categories into their surrounding classes), while

C2D features maintain some fidelity.

To evaluate the impact of different pre-training ap-

proaches (a standard warm-up, ImageNet pre-training, and

C2D) on the performance of the warm-up stage, in Fig. 2

we visualize the properties defined in Section 3: ROC-AUC

score of noise detection and the linear accuracy using clean

labels under different noise levels for CIFAR-100. C2D

demonstrates significantly higher overall feature quality and

loss separability at all noise levels: even after one epoch both

values are higher than the peak ones for vanilla warm-up

and ImageNet pre-training. Moreover, thanks to the pre-

training on the same dataset and discarding the labels, C2D

shows faster convergence and smaller performance degrada-

tion with increased noise. In addition, in Fig. 3 we visualize

a histogram of loss values of clean and noisy samples for

all three approaches. It can be seen that C2D does indeed

provide a lower loss for most clean samples with the smallest

overlap between clean and noisy samples, which allows both

faster convergence and higher overall performance.

6.2. The drawbacks of supervised pre-training

Utilizing supervised pre-trained features from large

cleanly labeled data source (e.g., ImageNet [24]) is stan-

dard procedure in noise-free learning tasks. In the context of

LNL, much less is known about ImageNet pre-training bene-

fits besides its high performance on Clothing1M. Therefore,

we chose to apply ImageNet pre-training to noisy CIFAR.

We ran ELR+ and DivideMix on CIFAR-100 with a net-

work initialized with ImageNet pre-trained weights. One

may expect that a small domain gap along with versatile

high-quality pre-trained features will make this an almost

ideal setup. Indeed, Fig. 2 shows, at least for 90% noise

level, notable improvement in the warm-up phase, which is,

however, far inferior to that of C2D.

Surprisingly, these improvements did not result in an

improvement of the performance of LNL. On ELR+ [34],

adding ImageNet pre-training reduced the accuracy from

60.8% to 48.58± 0.16% for CIFAR-100 with 80% noise and

from 33.4% to 23% with 90% noise. On DivideMix, in ad-

dition to an expected shortening of the required warm-up

length (from 30 to 10 epochs), at the end of the warm-up, on

80% noise we observed an increase both in the ROC-AUC

score and the classification accuracy. Yet, most concern-

ing was the almost immediate failure of DivideMix when

entering the second stage of training. After the warm-up,

the loss values of the clean and noisy samples were almost

indistinguishable, which resulted in a severe decrease in

classification accuracy as depicted in Fig. 3. Despite our

attempts to rectify this behavior, this phenomenon persisted

across various sets of hyperparameters.

Our results indicate that supervised pre-training has a gen-

erally unpredictable effect on LNL. We leave the influence

analysis of different conditions (e.g. domain gap or noise

level) to future work. On the contrary, using C2D resulted

in consistent improvement across all our experimental set-

tings. In addition, C2D does not require external data nor

additional supervision.

6.3. Self-supervised pre-training method

Further verifying the universality of our approach, we

examine how the self-supervised pre-training approach af-

fects the performance of C2D. In addition to SimCLR, we
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Figure 3: Loss distribution of clean and noisy samples after warm-up on CIFAR-100 with 80% noise for DivideMix, DivideMix

with ImageNet pre-training, and C2D. As seen in the zoom-in, ImageNet pre-training damages the separability whereas

self-supervised pre-training (C2D), improves it.

Method
Missing/noisy

label rate
80% 90%

MixMatch 70.46 64.60

MixMatch (SimCLR init.) 71.86 66.10

C2D (DivideMix with SimCLR) 71.65 64.30

Table 5: C2D nearly closes the gap with semi-supervised

training on the same clean set size.

used Barlow Twins [64], due to its high performance and

the distinct differences with SimCLR. The results are pre-

sented in Table 3. Using cross-entropy fine-tuning (without

accounting for noise) Barlow Twins outperforms SimCLR,

achieving only 1.5% below the state-of-the-art. While this

advantage did not translate into significantly better overall

performance (0.5% improvement when using ELR+), high

overall performance without supervised pretraining indicates

that C2D can work well with other self-supervised feature

extraction techniques.

6.4. Gap between LNL and semi-supervised learn-
ing

In the case of DivideMix [29] and other methods that

utilize semi-supervised learning, semi-supervised accuracy

is effectively the upper bound on the performance. A signifi-

cantly better noise separation ability along with the improved

initialization raises the question whether any performance

gap remains between LNL and semi-supervised learning.

To answer this question, we compared the performance of

C2D (with DivideMix) with MixMatch – a semi-supervised

method – provided with the same amount of labels as the

clean portion of the C2D training set. This procedure is

roughly equivalent to replacing the noise detection procedure

with an oracle. The result for 80% and 90% noise levels in

CIFAR-100 are reported in Table 5. Remarkably, C2D is on

par with MixMatch and less than 2% below MixMatch with

self-supervised pre-training. Even though the LNL setup has

strictly less information than the semi-supervised one, these

results indicate that good features can compensate for this

lack of information even under severe noise conditions.

7. Conclusion
In this paper, we proposed Contrast to Divide (C2D), a

simple yet powerful framework for learning with noisy la-

bels that do not rely on external labeled data and leverages

self-supervised pre-training instead. We have identified and

analyzed a major obstacle to LNL: due to memorization, loss

separability and feature quality after warm-up are bounded,

and deteriorate quickly with increasing noise level. More-

over, while the natural robustness of the neural networks

allows us to acquire good results, little is known about the

sources of this robustness and how to improve it. We have

shown that self-supervised pre-training boosts both warm-up

goals, which in turn dramatically improves the performance

of existing LNL approaches.

C2D is straightforward to implement, does not require

any external data, and works out of the box with multiple

existing LNL approaches, demonstrating consistently high

performance across various noise levels. In real-life settings,

we tested C2D on mini-WebVision and achieved more than a

3% top-1 accuracy boost over the previous state of the art. In

addition, C2D shows stable performance under severe noise,

outperforming prior art by more than 20% for 90% noise on

CIFAR-100 and nearly closing the gap with semi-supervised

learning trained on the same amount of labeled samples as

the clean portion.

Even though C2D provides significant performance im-

provement, studying the robustness property is still an open

research question. Clothing1M results also suggest that the

way existing methods utilize pre-trained features can be im-

proved too. We leave those questions for the future work.
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