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Abstract

In this work, we focus on supervised domain adapta-
tion for object detection in few-shot loose annotation set-
ting, where the source images are sufficient and fully labeled
but the target images are few-shot and loosely annotated.
As annotated objects exist in the target domain, instance
level alignment can be utilized to improve the performance.
Traditional methods conduct the instance level alignment
by semantically aligning the distributions of paired ob-
ject features with domain adversarial training. Although
it is demonstrated that point-wise surrogates of distribution
alignment provide a more effective solution in few-shot clas-
sification tasks across domains, this point-wise alignment
approach has not yet been extended to object detection. In
this work, we propose a method that extends the point-wise
alignment from classification to object detection. Moreover,
in the few-shot loose annotation setting, the background
ROIs of target domain suffer from severe label noise prob-
lem, which may make the point-wise alignment fail. To this
end, we exploit moving average centroids to mitigate the
label noise problem of background ROIs. Meanwhile, we
exploit point-wise alignment over instances and centroids
to tackle the problem of scarcity of labeled target instances.
Hence this method is not only robust against label noises
of background ROIs but also robust against the scarcity of
labeled target objects. Experimental results show that the
proposed instance level alignment method brings significant
improvement compared with the baseline and is superior to
state-of-the-art methods.

1. Introduction

Thanks to the advancement of deep neural networks,
the performance of object detection has been greatly im-
proved [18]. However, the training of object detection mod-
els always requires a large amount of labeled training data.
The collection and annotation of the training data are expen-
sive and burdensome, because each instance in every image
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Figure 1. The difference between full annotation and loose anno-
tation. In the fully annotated images (left-hand column), nearly
all the objects of interest are annotated, while in the loosely an-
notated images (right-hand column), only a few objects of interest
are annotated. (Best viewed in color)

should be precisely annotated with a bounding box. Di-
rectly applying a model pre-trained in a label-rich source
domain is attractive, but data bias often results in severe
degradation of performance of the model on new data [19].

Many unsupervised domain adaptation (UDA) methods
have been proposed to tackle the data bias problem [4, 13,
29, 1, 20, 32]. Nevertheless, UDA methods still require the
collection of large number of unlabeled target data and con-
sume a lot of training time. To this end, we aim to develop
a supervised domain adaptation method for object detection
in few-shot loose annotation setting. The loose annotation
means that only a few objects need to be annotated in each
image of a very small target data set, thus it will not cost too
much to collect and annotate many samples.

In few-shot loose annotation setting, instance level align-
ment can be used to improve the performance owing to
the existence of annotated objects in target domain. How-
ever, the distribution alignment in instance level is difficult,
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due to the scarcity of labeled instances on the target do-
main. Inspired by FADA [14], traditional method FAFR-
CNN [27] conducts the instance level alignment by seman-
tically aligning the distributions of paired object features
with domain adversarial training. Although it is demon-
strated that point-wise surrogates [30] of distribution align-
ment provide a more effective solution in few-shot classifi-
cation tasks across domains, this point-wise alignment ap-
proach has not yet been extended to object detection. In
this work, we propose a method that extends the point-wise
alignment from classification to object detection.

When conducting instance level alignment, we observed
that the background ROIs suffer from severe label noises.
As shown in Figure 1, in the fully annotated images (left-
hand column), nearly all the objects of interest are anno-
tated, while in the loosely annotated images (right-hand col-
umn), only a few objects of interest are annotated. In this
case, the ROIs containing the unannotated objects (green
boxes) are in the foreground, but they will be treated as
background because the contained objects are not anno-
tated, thus generating label noises. Another type of label
noises (blue boxes) appear in both full annotation and loose
annotation, which are caused by the large IoU. These label
noises have severe negative impact on the performance and
may make the point-wise alignment fail, as it is vulnerable
to label noises.

To address this problem, in the proposed method, we
compute the moving average centroid for each category, re-
move the ROIs of the background and only keep the cen-
troid for the background, thus alleviating the problem of
label noises of background ROIs. Moreover, we not only
align the instances, but also align the instances and corre-
sponding centroid across domains. Hence this method is
not only robust against the scarcity of labeled target objects
but also robust against label noises of background ROIs.

In addition, we found that the instance level alignment is
better to be conducted on the feature of the branch of classi-
fication, rather than on the common feature of classification
and localization. This is because the classification features
of the same category are similar, but the features of bound-
ing boxes of the same category may be dissimilar.

In summary, our contributions are three-fold:
1. We are the first to notice and mitigate the problem of

label noises of background ROIs in loose annotation setting
with moving average centroid method.

2. We propose a new instance level alignment method for
object detection under few-shot loose annotation setting by
improving and extending the point-wise alignment method
from classification to object detection.

3. We propose to separate the classification and localiza-
tion features and perform instance level alignment only on
classification feature to improve the performance further.

2. Related Work

Object Detection Existing object detection architec-
tures can be divided into two groups. The methods of
the first group such as R-CNN [6], Fast R-CNN [5],
Faster R-CNN [18] generate two- or multi-stage models,
while methods of the second group such as YOLO [16],
YOLOV2 [17], SSD [12] and Retinanet [11] learn single-
stage models. However, all these methods require a large
amount of fully and carefully annotated data to train a
model with good performance, thus are costly and not
applicable to object detection in unseen domains.

Domain Adaptation Many efforts are made to transfer
knowledge from a source domain to target domains with do-
main adaptation to reduce the data preparation cost and gen-
eralize to unseen target domains. However, most of them
are developed for classification under the unsupervised do-
main adaptation (UDA) setting, where the source domain
has sufficient labeled data, but the target domain contains
only unlabeled data. Dominant methods such as DANN [4]
and CDAN [13] improve the performance on target domain
by minimizing the classification loss on source domain and
learning domain-invariant features simultaneously with ad-
versarial training to align the marginal or conditional feature
distributions across domains. A drawback of these methods
is that they ignore the semantic information contained in
samples. To address this problem, Xie et al. present moving
semantic transfer network (MSTN), which learns seman-
tic representations for unlabeled target samples by align-
ing labeled source centroid and pseudo-labeled target cen-
troid [29]. The moving average centroid used by MSTN is
robust against label noise introduced by pseudo labels.

Recently, UDA methods for object detection have
attracted increasing attention. Chen et al. first noticed the
image level shift and instance level shift and proposed
two components to alleviate the domain discrepancy at
image and instance levels respectively [1]. Saito et al.
proposed SWDA [20] and further indicated that local
feature alignment is more effective than global image-level
feature alignment, since it does not change category level
semantics. Zhu et al. improved the instance-level alignment
by applying k-means clustering to group proposals and
obtain the centroids of these clusters [32]. Zhuang et
al. improved the instance-level alignment by conducting
category-agnostic, category-aware and category-correlation
instance alignment simultaneously [33]. Wu et al. explored
the extraction of instance-invariant features by disentan-
gling the domain-invariant features from domain-specific
features. [28]. Other variants improve the performance by
aligning features of multiple layers [7], forcing the network
to focus on discriminative regions with context information
at different scales [10] or performing center-aware feature
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Figure 2. Framework of our proposed method for few-shot domain adaptive object detection. The framework integrates global alignment,
local alignment and point-wise instance level alignment. To better implement instance level alignment, an extra feature layer is added into
the classification branch. (a)→(b): With the ROI features extracted by the extra feature layer, moving average centroids are computed and
added to the batch of ROI features to mitigate the label noise problem of background (bg) ROIs and the problem that some classes are
missing in current batch of features. Meanwhile, as the background ROI features are label noisy, we remove the background ROI features
and only keep the background centroids. (b)→(c): We conduct the instance balancing via undersampling. (c)→(d): Finally, we exploit
point-wise alignment over instances and centroids to solve the problem of scarcity of labeled target instances. The hollow points represent
the features of instances, while the solid points refer to the centroid of each category. The circles represent the features of source domain,
while the triangles represent the features of target domain. (Best viewed in color)

alignment by predicting pixel-wise objectness [8].

Few-shot Domain Adaptation Although UDA methods
can reduce the cost of annotation, the cost of target data
collection remains expensive. Moreover, in some scenarios,
e.g., cases of rare disease, etc., we have only a few sam-
ples. In this case, the few-shot supervised domain adapta-
tion (FDA) will be more feasible than UDA, since it uti-
lizes little labeled target data with label-rich source data to
train a target model, avoiding the need to collect and label
many samples. Here, the term FDA has two meanings in
different contexts. In some contexts, it means that the target
domain has some new categories unseen in the source do-
main [24, 23, 31, 26]. In other contexts, it only means that
the samples of each category in target domain are scarce,
but the source and target domains still share the same la-
bel space [14, 15, 30, 27]. In this work, we will follow the
protocol of [27] and focus on the second definition of FDA
under loose annotation setting.

For classification tasks in FDA, Motiian et al. [15] pro-
posed CCSA and found that alignment and separation of se-

mantic probability distributions are difficult due to the lack
of data and reverting to point-wise surrogates of distribu-
tion alignment provides an effective solution. They further
proposed a more effective solution named FADA [14] by
using adversarial learning to learn an embedded subspace
that simultaneously maximizes the confusion between two
domains while semantically aligning their embedding. Xu
et al. [30] proposed a solution named d-SNE which is more
effective than FADA by minimizing the largest distance be-
tween the samples of the same class and maximizing the
smallest distance between the samples of different classes
in feature space across domains.

To the best of our knowledge, FAFRCNN [27] is the
only work for object detection in FDA, which is built on
Faster R-CNN and introduces a pairing mechanism based
on FADA over source and target features to alleviate the
issue of insufficient target domain samples and implement
instance level alignment. Differing from FAFRCNN, we
implement the point-wise instance level alignment by ex-
tending and improving d-SNE, which is shown to be more
effective than FADA. Moreover, our method can mitigate
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the problem of label noises of background ROIs.

3. Method
As shown in Figure 2, the framework of our method in-

tegrates global, local and instance level alignment. In this
section, we first define the problem of FDA for object detec-
tion. Then, we present the integration with global and local
alignment. Finally, we present how we extend the point-
wise alignment from classification to object detection.

3.1. Preliminaries

In FDA, we are given a large data set of source domain
{xs

i , y
s
i }

ns
i=1 as well as a very small data set of target domain

{xt
i, y

t
i}

nt
i=1, where nt ≪ ns, xs

i and xt
i denote an input im-

age drawn from Xs and Xt respectively, ysi is drawn from
Ys and denotes complete bounding box annotation for xs

i ,
and yti is drawn from Yt and denotes loose bounding box an-
notation for xt

i. In particular, we assume Ys and Yt share the
same label space of categories. With the label-rich source
images and only a few objects annotated in target images,
our goal is to learn a detection model with minimal degra-
dation of performance in target domain, compared with the
model trained with complete and fully labeled training set
of target domain.

3.2. Integration with Global and Local Alignment

Although instance level alignment is effective to improve
performance, using instance level alignment alone is not
sufficient to guarantee the performance of FDA. Therefore,
we develop our method upon SWDA [20], which is a UDA
framework based on Faster R-CNN for object detection and
consists of a local discriminator Dl, a global discrimina-
tor Dg and a feature extractor F , where F is decomposed
as F2 ◦ F1. Moreover, there is a network R that takes fea-
tures from F and outputs bounding boxes with a class label.
R consists of the Region Proposal Network (RPN), the ex-
tra feature layer (see Section 3.3.1) and other modules in
Faster R-CNN [18]. Since the images of target domain are
scarce and loosely annotated, minimizing the detection loss
on target domain will not only lead to over-fitting, but also
cause the training to fail because the loose annotations con-
tain numerous label noises. Therefore, we only minimize
the following detection loss on the source domain:

Ldet(F,R) =
1

ns

ns∑
i=1

L(R(F (xs
i )), y

s
i )) (1)

where L denotes the loss function for object detection,
which consists of the classification and bounding box re-
gression loss. Then, we use weak global alignment to learn
the domain invariant image level features. The loss of the
weak global alignment for global-level discriminator Dg is
denoted as follows,

Lglobals = − 1

ns

ns∑
i=1

(1−Dg(F (xs
i )))

γ log(Dg(F (xs
i ))) (2)

Lglobalt = − 1

nt

nt∑
i=1

Dg(F (xt
i))

γ log(1−Dg(F (xt
i))) (3)

Lglobal(F,Dg) =
1

2
(Lglobals + Lglobalt) (4)

where bigger γ will make the model focus more on the
hard-to-classify examples, and will achieve a weak align-
ment between domains [20]. Meanwhile, we use strong lo-
cal alignment to learn domain invariant local level features,
such as texture or color. The loss of the strong local align-
ment for local-level discriminator Dl is denoted as follows,

Llocs =
1

nsHW

ns∑
i=1

W∑
w=1

H∑
h=1

Dl(F1(x
s
i ))

2
wh (5)

Lloct =
1

ntHW

nt∑
i=1

W∑
w=1

H∑
h=1

(1−Dl(F1(x
t
i))wh)

2 (6)

Lloc(F1, Dl) =
1

2
(Llocs + Lloct) (7)

where W and H denote the width and height of a feature
extracted by the feature extractor F1. The adversarial loss
for global and local alignment is summarized as follows,

Ladv(F,D) = Lloc(F1, Dl) + Lglobal(F,Dg) (8)

3.3. Point-wise Instance and Centroid Alignment

Since it is demonstrated that the point-wise alignment,
i.e., d-SNE [30] is more effective than the distribution align-
ment, i.e., FADA [14] for classification in FDA setting, our
purpose is to extend the d-SNE to object detection. The
d-SNE loss is deduced as follows,

Ld−SNE(F,R) =
1

|Ot|
∑

xt∈Ot

max(0, sup
xs∈Ok

s

{a|a ∈ d(xs, xt)}

− inf
xs∈O

/k
s

{b|b ∈ d(xs, st)}+m) (9)

where d(xs, xt) denotes the squared Euclidean distance
between xs and xt in latent-space, k is the label of xt, i.e.,
k = yt, Ok

s = {∀xs|ys = k}, O/k
s = {∀xs|ys ̸= k} and m

is a pre-defined margin for the efficiency of implementation.
The d-SNE loss achieves point-wise alignment by minimiz-
ing the largest distance between the instances of the same
class and maximizing the smallest distance between the in-
stances of different classes.

However, this original d-SNE loss function cannot be ap-
plied to object detection in FDA setting directly for four
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reasons. (1) First, it is a loss function designed for clas-
sification. But for object detection, the features consist of
classification and localization features. Directly conducting
the point-wise alignment on the common feature of classifi-
cation and localization may be not a good choice, since the
classification features of the same category may be similar,
but the localization features of the same category may be
dissimilar. (2) Second, the d-SNE loss is very sensitive to
label noises. In the loose annotations of target domain, there
are a lot of label noises which may make the instance level
alignment fail. (3) Third, the d-SNE loss does not consider
the category imbalance problem. (4) Fourth, this d-SNE
loss implementation only enlarges the relative difference
between maximum intra-class distance and minimum inter-
class distance for each target instance. It does not maxi-
mize the absolute minimum inter-class distance. Therefore,
we propose our point-wise instance and centroid alignment
method to address the problems of d-SNE method.

3.3.1 Extra Classification Feature Layer

To overcome the first problem, as shown in Figure 2, we add
an extra feature layer into the classification branch and con-
duct the instance-level alignment on the features extracted
by this extra feature layer across domains. Unlike tradi-
tional methods [32, 33, 27, 28] that only conduct instance-
level alignment on the foreground ROI features, the fea-
tures that our method aligns not only include foreground
ROI features, but also background ROI features. This is
because, with point-wise alignment, to obtain the instance
level alignment loss, we need to calculate intra-class dis-
tances and inter-class distances; however, in some scenarios
where there is only one foreground category, e.g., detecting
cars and ignoring other objects, we are unable to calculate
the inter-class distances if we only consider foreground ROI
features. Thus, we take the background ROIs into consider-
ation for computing instance level alignment loss.

3.3.2 Moving Average Centroid

As illustrated by MSTN [29], the moving average centroids
are robust against label noises. Therefore, we employ the
moving average centroid method to mitigate the second
problem of d-SNE, as shown in Figure 2 (a)→(b). In each
iteration, suppose we obtain the source classification fea-
tures Os and target classification features Ot from the extra
feature layer. Since we are working under the supervised
domain adaptation setting, we are aware of the label for
xs ∈ Os and xt ∈ Ot, which are ys and yt, respectively.
As aforementioned, Os and Ot contain background ROIs
which have many label noises and may make the instance
alignment fail. Moreover, due to the scarcity of labeled in-
stances in the target domain, Ot includes rare foreground
ROI features and there may be no instances of some classes

in a mini-batch. This makes the cross-domain intra-class
distance calculation impossible for a source instance if there
is no target instance with the same class label. Therefore, to
address these problems, we first calculate the moving aver-
age centroid for each class as follows,

Ck
S(t)
← 1

|Ok
s |

∑
xs∈Ok

s

xs (10)

Ck
T(t)
← 1

|Ok
t |

∑
xt∈Ok

t

xt (11)

Ck
S ← θCk

S + (1− θ)Ck
S(t)

(12)

Ck
T ← θCk

T + (1− θ)Ck
T(t)

(13)

where Ok
s = {∀xs|ys = k}, Ok

t = {∀xt|yt = k}, Ck
S(t)

and Ck
T(t)

denote the average centroid of current iteration
of category k for source and target domain respectively, Ck

S

and Ck
T denote the moving average centroid of category k

for source and target domain respectively, θ denote the mov-
ing average coefficient.

Then, the centroid of each category is added into Os and
Ot respectively, so that the intra-class distance and inter-
class distance can be calculated for instances of any class.
Since the background ROIs contain label noises, they are
removed from Os and Ot to alleviate the second problem of
original d-SNE,

Os ← Os − {∀xs|ys = 0}+ {Ck
S |k = 0 · · · C} (14)

Ot ← Ot − {∀xt|yt = 0}+ {Ck
T |k = 0 · · · C} (15)

where C is the total number of classes and ys = 0 or
yt = 0 denotes the background category.

3.3.3 Instance Balancing

The category imbalance problem would decrease the per-
formance of models. Similarly, the imbalanced instance
distribution would also have negative impact on the in-
stance level alignment. In the data sets for object detec-
tion, e.g., Cityscapes [2], the instance distribution is ex-
tremely imbalanced, where car and person are dominant
classes, which have 26,889 and 15,802 labeled instances re-
spectively, whereas train and bus have only 339 and 166
instances respectively.

Therefore, to tackle the third problem, we perform un-
dersampling on Os and Ot to alleviate this problem, as
shown in Figure 2 (b)→(c),

Os ← undersample(Os, ñ) (16)
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Ot ← undersample(Ot, ñ) (17)

where undersample() denotes a pre-defined function
that limits the maximum number of instances of each cat-
egory to be threshold ñ by removing extra instances at ran-
dom.

3.3.4 New Instance Level Alignment Loss

As depicted in Figure 2 (c)→(d), considering the d-SNE
loss only enlarges the relative difference between maxi-
mum intra-class distance and minimum inter-class distance
for each target instance, we propose an improved instance
alignment loss as follows to overcome the fourth problem,

Lins(F,R) =
1

|Ot|
∑

xt∈Ot

max(0,m2 − inf
xs∈O

/k
s

{b|b ∈ d(xs, st)})

+ max(0, sup
xs∈Ok

s

{a|a ∈ d(xs, xt)}

− inf
xs∈O

/k
s

{b|b ∈ d(xs, st)}+m) (18)

where m2 denotes another pre-defined margin for max-
imizing the absolute minimum inter-class distance. There-
fore, our improved instance alignment loss function can bet-
ter separate classes from each other than original d-SNE,
although we need one more hyper parameter m2.

3.4. Overall Objective Function

The overall objective of our method is as follows,

max
Dl,Dg

min
F,R
Ldet(F,R)− λ1Ladv(F,D) + λ2Lins(F,R) (19)

where λ1 and λ2 are the weights of adversarial loss and
instance level alignment loss respectively, which are used
to control the trade-off between detection, adversarial train-
ing and instance level alignment losses. The mini-max loss
function is achieved by a gradient reversal layer (GRL) [4].

4. Experiments
4.1. Datasets and Scenarios

Datasets Following [27], we utilize four datasets to estab-
lish and simulate the cross-domain adaptation scenarios
for evaluating the adaptation performance of our model
and comparing models. The first dataset is Cityscapes [2]
which consists of around 5000 accurately labeled real
world images. The second dataset Foggy Cityscapes [21]
is derived from Cityscapes and constitutes a collection
of synthetic foggy images. The third is the SIM10K [9]
which contains 10K synthetic images with bounding box
annotation for car, motorbike and person. And the last

one is an open source dataset Udacity self-driving [25]
(Udacity for short). The illumination, camera condition
and surroundings of the images contained in Udacity are
different from Cityscapes.

Scenarios In order to compare with the state-of-the-art
method [27], we construct the following three scenarios:
Cityscapes to Foggy Cityscapes (C→F), SIM10K to
Cityscapes (S→C) and Udacity to Cityscapes (U→C). The
first scenario (C→F) simulates the domain shift caused by
the extreme weather change of normal to foggy condition.
The second scenario (S→C) captures the domain shift
between synthetic and real worlds. The last scenario
(U→C) is designed for the domain shift between two real
worlds, which is caused by illumination, camera condition,
etc.

4.2. Baselines

Our method is compared with the following baselines:
(1) Source-only model. This model is trained with source
data and evaluated on a target test set. Its performance is
considered as the lower bound of adaptation. (2) Target-
only model. This model is trained with target training set
and evaluated on target test set. Its performance is con-
sidered as the upper bound of adaptation. (3) UDA mod-
els. These models are trained with labeled source data and
a large set of unlabeled target data. Besides SWDA and
FAFRCNN, we also compare our method with two state-
of-the-art UDA methods [33, 28]. (4) FUDA models. We
directly apply the UDA (SWDA) method in FDA setting to
assess its performance. (5) FDA models. The FAFRCNN
model, which is the state-of-the-art method for FDA is used.

4.3. Implementation Details

In the experiments, we establish our method upon
SWDA and use VGG16 [22] network pre-trained on Ima-
geNet [3] as a backbone network. For the local discrimina-
tor Dl, global discriminator Dg , feature extractor F , region
proposal network (RPN) and bounding box branch, we use
the same network architecture as [20]. The extra feature
layer in the classification branch is a fully connected layer
with 128 hidden units.

All models are trained using mini-batch stochastic gra-
dient descent (SGD) with a momentum of 0.9. Following
the setting used in [20], we first train the networks with
a learning rate of 0.001 for 50K iterations, then reduce the
learning rate to 0.0001 and train for 20K more iterations.
All models are trained with this scheduling and we report
the performance trained after 70K iterations. We set γ to
5.0. For C→F, we set λ1 to 1.0. For S→C and U→C, we
set λ1 to 0.1. For all experiments, we increase λ2 gradu-
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Method Setting person rider car truck bus train mcycle bicycle mAP
Faster R-CNN [18] Source-only 24.1 33.1 34.3 4.1 22.3 3.0 26.5 15.3 20.3
Faster R-CNN [18] Target-only 33.2 45.9 49.7 35.6 50.0 37.4 36.2 34.7 40.3
SWDA CVPR’19 [20]

UDA

29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
FAFRCNN CVPR’19 [27] 29.1 39.7 42.9 20.8 37.4 24.1 26.5 29.9 31.3
iFAN AAAI’20 [33] - - - - - - - - 35.3
Wu, et al. TPAMI’21 [28] 33.12 43.41 49.63 21.98 45.75 32.04 29.59 37.08 36.57
SWDA CVPR’19 [20] FUDA 28.0±1.5 39.9±0.9 40.5±2.3 23.8±2.3 35.9±2.2 20.9±7.0 24.0±0.8 31.7±2.7 30.6±1.8
FAFRCNN CVPR’19 [27] FDA 27.9±0.6 37.8±0.6 42.3±0.7 20.1±0.5 31.9±1.1 13.1±1.5 24.9±1.3 30.6±0.9 28.6±0.5
PICA (Ours) 28.3±2.2 41.3±0.3 43.0±0.4 23.8±2.2 38.1±1.5 24.3±0.8 25.4±1.4 33.7±0.4 32.2±0.8

Table 1. Quantitative results of our method (PICA) on C→F. The unsupervised setting (UDA) uses all the unlabeled images in target
domain. In few-shot supervised setting (FDA), 8 images (1 image per class) are sampled for each experiment round, and 1 object bounding
box is annotated for corresponding class per image. The few-shot unsupervised setting (FUDA) uses 8 images which are the same as FDA
without using corresponding annotations. In Table 1 to 3, except for those results from original papers, all results are averaged over three
random runs.

Method Setting S→C U→C
Faster R-CNN [18] Source-only 34.6 44.0
Faster R-CNN [18] Target-only 53.1 53.1
SWDA CVPR’19 [20] UDA 40.1 51.9
FAFRCNN CVPR’19 [27] 41.2 50.2
SWDA CVPR’19 [20] FUDA 40.2±0.6 51.9±0.3
FAFRCNN CVPR’19 [27] FDA 39.8±0.6 50.6±0.6
PICA (Ours) 42.1±0.7 52.4±0.1

Table 2. Quantitative results of our method (PICA) on S→C and
U→C. The UDA uses all the unlabeled images in target domain. In
few-shot supervised setting (FDA), for target domain, 8 images are
sampled for each experiment round and 3 car objects are annotated
per image. The FUDA uses 8 images which are the same as FDA
without using corresponding annotations.

ally using the schedule λ2 = min(0.1, p2), where p denotes
the training progress linearly changing from 0 to 1. In all
experiments, we set the moving average coefficient θ to 0.5
and the undersampling threshold ñ to 8. The batch size of
input source and target images is set to 1 in all experiments.
We use the default Faster R-CNN ROI sampling scheme to
create training data for classification and regression heads,
which separates foreground and background ROIs with an
IoU threshold of 0.5 and samples them at a ratio 1:3. The
batch size of source and target ROIs is set to 256. For in-
stance level alignment loss, we set m = 1 and m2 = 30.

4.4. Quantitative Results

As summarized in Table 1, our method (PICA) outper-
forms the state-of-the-art FDA method FAFRCNN signif-
icantly on C→F scenario. Compared with the SWDA in
FUDA setting, our method provides 1.6 AP gain on mean
value, which indicates the effectiveness of our method to
make use of the scarce and loose target annotation for in-
stance level alignment. Moreover, our method is superior to
FAFRCNN even in UDA setting. For other UDA models,
although they do not use the annotation of target samples,
they obtain better performance than our model, due to the
rich information hidden in diverse unlabeled target samples.

Our method shows the consistent results on S→C and
U→C scenarios as well. As shown in Table 2, our method

Method S→C
SWDA CVPR’19 [20] 40.2±0.6
PICA 42.1±0.7
PICA w/o Instance balancing 41.2±0.7
PICA w/o Extra feature layer 40.6±0.6
PICA w/ Original d-SNE loss 40.7±0.6
PICA w/o Adding centroids 34.7±2.3
PICA w/o Removing background ROIs 36.3±2.8
PICA w/o SWDA 40.4±0.3

Table 3. Ablation study.

gives around 2.0 AP gain on the two scenarios compared
with FAFRCNN. Compared with SWDA in FUDA setting,
our method also achieves 1.9 AP gain on S→C and 0.5 AP
gain on U→C. In these two scenarios, there is only one
foreground category. Thus, the background ROIs must be
considered when conducting point-wise alignment, other-
wise the inter-class distance cannot be computed. There-
fore, the AP improvement on these two scenarios can con-
firm the effectiveness of our proposed instance level align-
ment method.

4.5. Qualitative Results

Figure 3 shows the detection results of three images sam-
pled from S→C scenario. The first row is the outputs from
the source-only model, the second row is the outputs from
the FAFRCNN model and the third row is the outputs from
our model (PICA). From the results, we can see that our
method can predict more accurate bounding boxes, such as
the objects marked in red boxes. Moreover, our model can
detect the objects that are difficult to detect using other mod-
els, such as the car marked in the purple box. A drawback
of our model is that it tends to mis-detect more objects with
small bounding boxes. This may be because our method
does not use multi-scale feature extraction.

4.6. Ablation Study

We conduct an ablation study on S→C to evaluate the
contribution of each component. As depicted in Table 3,
our method can lead to 1.0 AP improvement compared with
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Figure 3. Qualitative results. We compare detection results of three images sampled from S→C scenario. The bounding box visualization
threshold is set to 0.05. The first row shows the outputs from the source-only model, the second row shows the outputs from the FAFRCNN
model, and the third row shows the outputs from our model (PICA).

SWDA even without instance balancing. The instance bal-
ancing can bring a further 0.9 AP improvement. We also
find the extra feature layer and our proposed instance level
alignment loss are critical. Without them, the improvements
become marginal. However, if centroids are not added, the
background ROIs must be kept for instance level alignment,
as there is only one foreground category. In this case, the
performance decreases from 42.1 to 34.7 due to label noises
and missing classes. If the centroids are added but the
background ROIs containing label noises are not removed,
the performance also decreases severely. Finally, we find
the performance of PICA alone is comparable with that of
SWDA.

4.7. Alignment Effect Analysis

We compare the maximum intra-class distances and min-
imum inter-class distances of centroids and instances on
S→C in the feature spaces learned with different instance
level alignment loss functions. As shown in Figure 4, the re-
sults of our proposed instance alignment loss can better sep-
arate classes from each other than original d-SNE, since it
not only enlarges the relative difference between minimum
inter-class distance and maximum intra-class distance, but
also enlarges the absolute minimum inter-class distance.
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Figure 4. Comparison of the maximum intra-class distances and
minimum inter-class distances of centroids and instances on S→C.
(a) PICA w/ d-SNE loss. (b) PICA w/ our proposed instance align-
ment loss.

5. Conclusion

A new instance level alignment method is proposed by
extending the point-wise alignment from classification to
object detection. We conduct experiments in three typi-
cal scenarios and the results show that our method is supe-
rior to state-of-the-art methods and baseline model. Qual-
itative results show that our method can predict more ac-
curate bounding boxes and detect objects that are difficult
to detect when using other models. As for future work,
this method will be improved by using multi-scale feature
extraction to solve the problem of mis-detection of small
bounding boxes.
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