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Abstract

In this paper, we perform audio-visual sound source sep-
aration, i.e. to separate component audios from a mixture
based on the videos of sound sources. Moreover, we aim
to pinpoint the source location in the input video sequence.
Recent works have shown impressive audio-visual separa-
tion results when using prior knowledge of the source type
(e.g. human playing instrument) and pre-trained motion de-
tectors (e.g. keypoints or optical flows). However, at the
same time, the models are limited to a certain application
domain. In this paper, we address these limitations and
make the following contributions: i) we propose a two-stage
architecture, called Appearance and Motion network (AM-
net), where the stages specialise to appearance and motion
cues, respectively. The entire system is trained in a self-
supervised manner; ii) we introduce an Audio-Motion Em-
bedding (AME) framework to explicitly represent the mo-
tions that related to sound; iii) we propose an audio-motion
transformer architecture for audio and motion feature fu-
sion; iv) we demonstrate state-of-the-art performance on
two challenging datasets (MUSIC-21 and AVE) despite the
fact that we do not use any pre-trained keypoint detec-
tors or optical flow estimators. Project page: https://ly-
zhu.github.io/self-supervised-motion-representations

1. Introduction

Sound source separation is a classical task of extract-
ing a target sound source from a given audio mixture
[21, 36, 47, 10]. A well-known example is so called cock-
tail party problem, where one attempts to listen to a person
while multiple people are speaking in the same space. Sim-
ilarly, one might be interested in extracting the sound of a
single instrument from a concert recording or other signals
from the background noise. Despite being extensively stud-
ied, the audio-based source separation remains a challeng-
ing problem.

Recent works [33, 22, 13, 18, 34, 54, 53, 51, 19, 59, 60]

Figure 1. We introduce a new sound-related motion representation
for localizing and separating sound sources. When combined with
the appearance cues, we obtain a highly effective model for the
visual sound separation.

have shown that visual observations of the sound source
(e.g. speaking face) may substantially simplify the separa-
tion task. For instance, the lip movements can be applied to
extract the desired speech signal in the cocktail party prob-
lem [33, 22, 13]. Similarly, other visual cues like object
categories or motions can be exploited to guide the separa-
tion process [18, 34, 54, 53, 51, 19, 59, 60, 61]. This kind
of problem setup is often referred as visual sound source
separation or visually guided sound source separation.

A popular approach in visual sound source separation is
to encode both visual input and mixture audio into feature
representations, and then fuse them to decode the compo-
nent signal corresponding to the visual content. The visual
feature encoding is one of the key elements in the approach,
and previous works have studied different options for this
part. For instance, several works utilise frame-based ap-
pearance features [54, 18, 19, 51, 60], which contain infor-
mation about the object categories (e.g. instrument types)
but not from the object motion. While the appearance alone
can be a strong cue, the motion may often be the only reli-
able cue (e.g. lip motion while speaking).

Several recent works have proposed approaches to in-
clude motion information in the separation process. These
models utilise optical flow [53], dynamic image [59], and
keypoint-based human body dynamics [15]. While optical
flow and dynamic images are good in representing the over-
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all motion (e.g. for action recognition), they do not provide
significant gain over the pure appearance-based methods in
source separation. The recent work by Gan et al. [15] pro-
posed to use human keypoints to encode the motion cues.
Their main motivation was to explicitly model body and fin-
ger movements of musicians when they perform music. The
results demonstrated impressive performance over the prior
state-of-the-art, but unfortunately this approach is limited to
sounds resulting from human motion. Moreover, the work
relies on pre-trained human keypoint detectors. Owens et
al. [34] presented an alternative approach for learning the
visual representation by classifying artificially misaligned
audio and visual streams. Their idea is interesting as the
misalignment naturally encourages to focus on the correla-
tion between motion and audio.

In this paper, we introduce a two-stage visual sound
source separation architecture, called Appearance and Mo-
tion network (AMnet), where the stages specialise to ap-
pearance and motion cues, respectively. We propose an
Audio-Motion Embedding (AME) framework to learn the
motions of sounds in a self-supervised manner. Further-
more, we design a new Audio-Motion Transformer (AMT)
module to facilitate the fusion of audio and motion cues.

We demonstrate the performance of the proposed AM-
net with two challenging datasets, MUSIC-21 and AVE,
and obtain the state-of-the-art results. Interestingly, AMnet
outperforms the keypoint-based approach [15] without any
prior knowledge or limitations to human induced motion or
pre-extracted keypoints. Moreover, we apply the learned
motion cues from the AME to pinpoint the sound source
location in the input video stream (see Figure 1).

In summary, our contributions are: i) AMnet for self-
supervised visual sound separation. The approach makes
no pre-assumptions on the sound source type (e.g. human
induced motion); ii) self-supervised motion representation
learned by mapping the audio and motions into a common
embedding space; iii) audio-motion transformer module for
audio and motion feature fusion; iv) state-of-the-art results
in two challenging visual sound separation datasets.

2. Related Work
Audio-Visual Learning In recent years, leveraging con-
straints between different modalities, such as audio and
vision, has been applied in various cross-model learning
tasks. Aytar et al. [4] learned joint audio-visual embed-
dings to minimize the KL-divergence of their represen-
tations. Arandjelovic et al. [2, 3] associated the audio
with vision by modeling their correspondence. More re-
cently, researchers have demonstrated the works of audio-
visual scene understanding [1, 38, 58, 45], audio-visual
synchronization [34, 30, 9], talking face generation [56],
audio-driven 3D facial animation [11], audio-visual navi-
gation [16], and visual-to-auditory [26, 14, 57].

Visually Guided Sound Separation Early works of
sound separation were mainly based on probabilistic meth-
ods [21, 36, 47, 10], while recent approaches utilise deep
learning architectures [24, 7]. Despite of the substantial im-
provements, general form of the problem is challenging and
highly underdetermined. Visual sound separation is gaining
increasing attentions recently. Ephrat et al. [13] extracted
face embeddings for speech separation. Similarly, Gao et
al. [19, 18] applied object detection to facilitate source sep-
aration. Zhao et al. [54] proposed to separate sounds by a
linear combination of semantic cues and sound spectrogram
features. A subsequent work [53] introduced trajectory op-
tical flows to the sound separation. Xu et al. [51] separated
sounds by recursively removing large energy components
from sound mixture. Zhu et al. [61] utilized slow and fast
spectrograms to separate sounds. Gan et al. [15] associated
body and finger movements with audio signals by learning
a keypoint-based structured representation. While impres-
sive, these methods either have limited capabilities to cap-
ture the motion cues or rely on prior knowledge (e.g. object
detection, optical flows, or keypoints).

The works by Owens et al. [34] and Zhu et al. [59] are
most related to ours. [34] presented a classification-based
audio-visual misalignment model to analyse multisensory
features for sound separation. In [59], the authors utilized
visual features of all the sources to look for incorrectly as-
signed sound components between sources in a multi-stage
manner. Our work learns new motion cues by mapping
the audio and motions into a common embedding space,
and separates sounds with the proposed AMnet, which spe-
cialises to appearance and the motion cues.

Motion Representations of Video Sequence Early
works of video representations were largely based on hand-
crafted spatio-temporal features [31, 29, 48, 49]. These
have been recently shifted to deep neural networks, which
can be roughly grouped into following categories: i) 2D
CNN with summarized motions from dynamic images [6];
ii) 3D CNN on spatio-temporal video volume [44]; iii) two-
stream CNNs [41], where motions are modeled from prior
computed optical flows; iv) LSTM [12], Graph CNN [50]
and attention clusters [32] based techniques. These meth-
ods are proposed mainly for action recognition problem. In
contrast, our goal is to model the visual motions of sound
and further to facilitate the sound separation task.

Sound Source Localization Visually identifying sound
source location is another challenging task. Hershey et
al. [25] utilized non-stationary Gaussian process to model
audio-visual synchrony for locating sound sources. The
subsequent work brought the ideas of canonical correla-
tions [28] and temporal coincidences [5]. More recent
works, including semantics [3, 40, 54, 51, 60, 8], tra-
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Figure 2. The overall architecture of the proposed Appearance and Motion network (AMnet). The Audio-Appearance stage encodes a
video keyframe and a mixture audio spectrogram into an appearance feature vector and a spectrum feature volume, respectively. These are
subsequently fused by calculating a weighted sum of spectrum features using appearance features as weights. The result is further converted
to a binary mask and multiplied with the input spectrogram to produce the separated output. The Audio-Motion stage again encodes the
spectrograms and the video sequence into feature representations. These are fused with the proposed Audio-Motion Transformer module,
decoded, and passed to produce a refined mask, which is multiplied with the input mixture spectrogram to produce the final output.

jectory optical flows [53], misalignment [34, 30], loca-
tion masking [59], spatial audios [17, 52, 16], and atten-
tion [3, 35, 9, 1, 60] based methods.

3. Approach
3.1. Overview

The input to the proposed system consists of a mixture
audio and video sequences depicting the sound sources.
The objective is to extract the component audio that cor-
responds to the sound source in the given video. Figure 2
illustrates the overall architecture of the proposed Appear-
ance and Motion network (AMnet). The first part, called
Audio-Appearance stage, performs source separation using
pure appearance-based features (e.g. object types). To this
end, we first randomly extract a frame from the video se-
quence and encode it into a visual feature vector of dimen-
sion CA. The input mixture audio is converted to a HS×WS

spectrogram image and then encoded into a feature volume
of size CS × HS × WS . The obtained feature volume is
multiplied channel-wise with the visual feature vector and
converted to a HS × WS binary mask. The output of the
Audio-Appearance stage is formed by multiplying the mix-
ture spectrogram with the binary mask.

The obtained result is further passed to the Audio-
Motion stage (see Figure 2), which refines the source sep-
aration using motion cues. The corresponding features are
extracted by the Motion Network, which encodes the video
sequence into a motion representation of size T

′
× CM ,

where T
′

corresponds to the time dimension of the se-

quence. Here we do not make any pre-assumptions of the
motion type (e.g. human body motions). The subsequent
Sound Spectrogram Refinement network (SSR) combines
the motion features with the output spectrogram from the
previous stage. The core part of the refinement network is
the Audio-Motion Transformer (AMT) module that asso-
ciates motion representations with the spectrogram features
using a multimodal transformer architecture. The final out-
put is formed by multiplying the original mixture spectro-
gram with a binary mask obtained from the refinement net-
work. In addition, the Motion Network provides an estimate
of the sound source location in the video (see Figure 5).

The Motion Network is trained using the new Audio-
Motion Embedding (AME) framework. In AME, we learn
mappings from both audio and video streams into a com-
mon embedding space (see Figure 3), where distance would
be correlated with temporal alignment of the input se-
quences. The following sections provide further details of
the system parts and the training procedure. We start by
describing the AME framework and related learning objec-
tives. The detailed network architectures are provided in the
supplementary material.

3.2. Audio-Motion Embedding Framework

The proposed Audio-Motion Embedding (AME) frame-
work exploits the natural correlation between the audio and
motion of a natural video. The AME framework (see Fig-
ure 3) consists of Motion Network and Sound Network,
which map the motion and audio sequences into a common
embedding space, respectively. We formulate the learning
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Figure 3. An illustration of the proposed Audio-Motion Embed-
ding (AME) framework.

objectives to enforce small embedding distances between
well synchronised streams and large distances for out-of-
sync streams. We hypothesize that this learning objective
encourages the Motion Network to focus mainly on the
sound related motion features in the input video.

The AME maps the motions and audio into the common
embedding space. The mappings are learned in the follow-
ing manner: i) given a video clip v with an aligned audio
xaligned, we generate a misaligned audio xmisaligned by
randomly shifting the waveform in time domain; ii) we en-
code the video stream, aligned audio, and the misaligned
audio into embedding representations using the motion and
sound networks, respectively; iii) we calculate the distances
between the video embedding and the both audio embed-
dings, and formulate a cost function using a triplet loss ap-
proach [39]; and iv) we optimise the embedding networks
by minimizing the loss function over a large set of videos.

Previous works using audio-visual synchronization for
self-supervised representation learning formulate the prob-
lem as a classification task where the system decides if
the given audio and video are synchronized (1) or not (0)
[34, 30, 9]. Moreover, the information along the temporal
dimension is mostly neglected by marginalizing the corre-
sponding dimension with pooling operation. In contrast, we
formulate the problem as a mapping from motion and au-
dio domains to a common embedding space, where the dis-
tances correlate with the temporal alignment. Moreover, the
representation retains the temporal dimension at the output
features. Following paragraphs outline details of the em-
bedding networks and the learning objective.

Motion Network The Motion Network EM maps the in-
put video frames v into a vector space. We forward the
input video sequence v of size 3 × T × H × W to a 3D
version of Res18 [23] and produce a representation fM1 of
size CM × T

′
× H

′
× W

′
, where T

′
=T/4, H

′
=H/16, and

W
′
=W/16. With an additional 3D convolution, we obtain

a single channel feature map fM2 of size 1× T
′
×H

′
×W

′
.

We obtain the final embedding vector fM3 of size 1×T
′

by
applying a spatial average pooling.

Sound Network The Sound Network ES maps the audio
waveform into a common embedding space with the Motion

Network EM . Here we use Res18-1D architecture, which
consists of a series of strided 1D convolutions, applied until
the size of the output representation matches to the Motion
Network output fM3, i.e. 1 × T

′
.

Learning Objective We utilize the natural audio and mo-
tion temporal alignment to train the AME. Given a video
clip, aligned audio, and misaligned audio {v, xaligned,
xmisaligned}, and their corresponding embeddings EM (v),
ES(xaligned), and ES(xmisaligned), we define a triplet loss
function as follows:

LAME = max
(
d
(
EM (v), ES(xaligned)

)
− d

(
EM (v), ES(xmisaligned)

)
+margin, 0

) (1)

where d measures the similarity between the motion and au-
dio embeddings. We use margin = 2.0 in all experiments.
The embedding networks are optimized with respect to the
loss function over a large set of input triplets.

3.3. Audio-Appearance Sound Source Separation

The Audio-Appearance stage aims to perform source
separation using object appearances. The stage consists
of appearance network, sound spectrogram network, and
sound source separation module.

Appearance Network The Appearance Network receives
a random single frame from the input video and applies a
dilated Res18-2D [23] to obtain a compact semantic repre-
sentation. More specifically, given an input RGB image, the
Appearance Network produces a representation fA of size
1×CA as the output of the last spatial average pooling layer.

Sound Spectrogram Network The input audio wave-
form is first converted to a spectrogram presentation Xmix

using Short-time Fourier Transform (STFT). The Sound
Spectrogram Network encodes Xmix into a set of feature
maps. The network is implemented using MobileNetV2
(MV2) [37] architecture and it converts the input spectro-
gram of size 1 × HS × WS to a feature map fmix of size
CS × HS × WS . Note that the number of produced feature
maps CS is equal to the appearance feature vector dimen-
sion CA in the previous section.

Sound Source Separation The sound source separation
module utilises the feature maps fA and fmix to produce an
estimate of the component audio corresponding to the input
video. More specifically,

fappearance
S,n =fA,n ⊗ fmix,

B̂appearance
n =th(σ(fappearance

S,n )),

X̂appearance
S,n =B̂appearance

n ⊙Xmix,

(2)
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where ⊗ and ⊙ denote the channel-wise and element-wise
product, respectively. σ represents the sigmoid operation.
th(x) = 1 if x > 0.5 and 0 otherwise. fA,n is the ap-
pearance network output for the n-th source (n-th input
video). The output spectrogram X̂appearance

S,n is formulated
by element-wise multiplying the binary mask B̂appearance

n

with the original mixture spectrogram Xmix.

3.4. Audio-Motion Sound Source Separation

The Audio-Motion stage utilises the motion cues for the
sound source separation. The stage contains four compo-
nents: motion network (see Section 3.2), sound spectro-
gram refinement (SSR) network, audio-motion transformer
(AMT), and residual fusion module.

Sound Spectrogram Refinement Network The Sound
Spectrogram Refinement (SSR) network is an encoder-
decoder architecture, which consists of 7 down- and 7
up- convolutional layers followed by a BatchNorm layer
and Leaky ReLU. The encoder (SSRE) takes the spectro-
gram X̂appearance

S,n from the Audio-Appearance stage and
produces a feature representation fmotion,encoder

S,n (the su-
perscript motion refers to the Audio-Motion stage). The
encoder is followed by the Audio-Motion Transformer
(AMT), which fuses fmotion,encoder

S,n with the motion fea-
tures fM (fM1 following with a spatial pooling, which is
produced by the Motion Network of AME in Section 3.2).
The transformed output fAMT

S,n−>m from the AMT is passed
to the up-convolutional decoder (SSRD) to produce resid-
ual spectrum representation of size HS×WS . We adopt sim-
ilar opponent filter approach as in [59] to relocate the iden-
tified residual sound components from Audio-Appearance
outputs to final corresponding outputs. The procedure of
the SSR network is defined as Eq. 3 and 4.

fmotion,encoder
S,n =SSRE(X̂

appearance
S,n ),

fAMT
S,n−>m =AMT (fM,m, fmotion,encoder

S,n ),

fmotion,decoder
S,n−>m =SSRD(fAMT

S,n−>m),

(3)

Audio-Motion Transformer The Audio-Motion Trans-
former (AMT) module is used to leverage the obtained
motion cues (the motions of sound learned with AME)
for sound source separation. The overall architecture fol-
lows [46, 27] and is visualised in Figure 4. First the in-
put embeddings are positional encoded [46] to preserve or-
dering of the sequence. The following encoder and de-
coder modules are composed of stacked multi-head atten-
tion, point-wise, and fully connected layers.

The encoder applies fM,m of m-th source as query QM ,
key KM , and value VM inputs. This type of multi-head at-
tention which has identical Q, K, and V is often referred as
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Figure 4. The architecture of the Audio-Motion Transformer.

self-multi-head attention. Similarly, at the very beginning
of the decoder, the AMT has a self-multi-head attention
(QS , KS , and VS) of n-th sound features fmotion,encoder

S,n .
After self-attention, the decoder infuses the motions into
the sound components by an audio-motion multi-head at-
tention, which considers the sound embedding fAMT

S,n of
n-th source as the query QS , motions embeddings fAMT

M,m

of m-th source as the key KM and value VM , where the
m,n ∈ (1, . . . N),m ̸= n, and N is the number of sources.

Residual Fusion Module The SSRD output
fmotion,decoder
S,n−>m (Eq. 3) is interpreted as a residual

spectrum. That is, the spectrum indicates the parts of
the Audio-Appearance outputs (Eq. 2), which need to
be reallocated. For instance fmotion,decoder

S,n−>m defines the
component that should belong to source m but is currently
assigned to source n. Similar to [59], we relocate these
components between the spectrograms, as follows

fS,n =fappearance
S,n ⊖ fmotion,decoder

S,n−>m ,

fS,m =fappearance
S,m ⊕ fmotion,decoder

S,n−>m ,

B̂motion
n = th(σ(fS,n)),

X̂motion
S,n = B̂motion

n ⊙Xmix

(4)

where the fappearance
S,n is the output spectrum of Audio-

Appearance stage for n-th source, fmotion,decoder
S,n−>m is the

residual spectrum from sound n to sound m. ⊕ and ⊖
denote the element-wise sum and subtraction, respectively.
The obtained feature maps fS,n are passed through sigmoid
and thresholding operations, and the final spectrogram out-
put X̂motion

S,n is formed by multiplying the original mixture
spectrogram with the obtained result. An inverse STFT is
applied to produce the final separated audio waveforms.

3.5. Overall learning Objective

We formulate the overall learning objective in terms of
the binary masks B̂n, which are used to obtain the final out-
put spectrograms (Eq. 2 and 4). The ground truth masks Bn

are formed as follows,

Bn(t, f) = [Xn(t, f) ≥ Xm(t, f)] (5)
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Figure 5. Visualization of the CAM responses for MUSIC-21
(top) and AVE (bottom) with our AME, COF [59], and Multisen-
sory [34].

where ∀m = (1, . . . , N), (t, f) represents the time-frequency
coordinates in the sound spectrogram X . The AMnet is
trained by minimizing the binary cross entropy (BCE) loss
between the estimated binary masks B̂n and the ground-
truth binary masks Bn,

L =

N∑
n=1

BCE(B̂appearance
n , Bn) + BCE(B̂motion

n , Bn)

(6)
where B̂appearance

n and B̂motion
n represent the predicted bi-

nary masks at Audio-Appearance and Audio-Motion stages.

4. Experiments
In this section, we start by assessing the Audio-Motion

Embedding framework and continue with source separation
experiments. The results are compared with the current
state-of-the-art baseline methods.

4.1. Datasets and evaluation metrics

We use MUSIC-21 [53] and Audio-Visual Event (AVE)
[20, 43] datasets in our experiments. MUSIC-21 [53] con-
tains 1365 videos from 21 instrumental categories. We ex-
tract video frames at 8 fps and sub-sample audio streams at
11kHz. The AVE [43] dataset, a subset of AudioSet [20],
contains 4143 10-second videos covering 28 event cate-
gories. The dataset covers a wide range of audio-visual
events from different domains, e.g. human activities and
vehicle sounds. For AVE, we use the full frame-rate (29.97
fps) and sub-sample audio signal at 22kHz. The sound sep-
aration performance is measured in terms of: Signal to Dis-

Models \ Metrics MUSIC-21 AVE UCF-101
cIoU AUC cIoU AUC Acc

Multisensory [34] 44.62 45.99 23.88 28.64 64.29%
AME (ours) 67.18 54.58 25.62 29.81 71.69%

Table 1. Quantitative localization results on MUSIC-21 and AVE
datasets, and action recognition results on UCF-101 (split 1).

Models SDR SIR SAR
Multisensory [34] 3.18 11.42 6.68
Sound of Pixels [54]⋆ 7.52 13.01 11.53
Co-Separation [19]⋆ 7.64 13.8 11.3
Sound of Motions [53]⋆ 8.31 14.82 13.11
Minus-Plus [51] 9.15 15.38 12.11
Cascaded Opponent Filter [59] 9.80 17.16 12.33
Music Gesture [15]⋆ 10.12 15.81 -
AMnet (ours) 11.08 18.00 13.22

Table 2. The source separation performance using mixtures of two
sources from the MUSIC-21 dataset. The results indicated with ⋆
are obtained from [15].

tortion Ratio (SDR), Signal to Interference Ratio (SIR), and
Signal to Artifact Ratio (SAR). For measures, higher value
indicates better performance.

4.2. Implementation details

The Audio-Motion Embedding (AME) framework is
trained with MUSIC-21 dataset. We adopt random scaling,
horizontal flipping, and cropping (224 × 224) as the frame
augmentation. A stream of T = 48 frames is forwarded to
the Motion Network EM . We randomly crop 6-second au-
dio clip and randomly shift the audio forward or backward
by 1 to 7 seconds. In the source separation experiments,
we follow the same setup as in [15]. Both datasets are split
into disjoint train, val (AVE), and test sets. The audio mix-
ture is obtained by adding the audio tracks of N videos. For
MUSIC-21, we use the same split as in [15]. The input au-
dio is converted to spectrogram using STFT with a hanning
window of size 1022 and a hop lengths of 256 and 184 for
MUSIC-21 and AVE datasets, respectively.

4.3. Audio-Motion Embedding Framework

Although our main objective is to perform audio-visual
source separation, we assess the AME based motion cues in
three different motion related tasks: i) sound source local-
ization; ii) action recognition; and iii) audio-visual sound
source separation (in sec. 4.4). The motivation behind the
additional comparisons is to provide wider picture of our
model with respect to similar frameworks such as [34]. The
evaluation details are provided in supplementary material.

Sound Source Localization For examining the ability of
pinpointing the source location in the input stream, we mea-
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Models SDR SIR SAR
Multisensory [34] 0.84 3.44 6.69
Sound of Pixels [54] 1.21 7.08 6.84
Sound of Motions [53] 1.48 7.41 7.39
Minus-Plus [51] 1.96 7.95 8.08
Cascaded Opponent Filter [59] 2.68 8.18 8.48
AMnet (ours) 3.71 9.15 11.00

Table 3. The source separation performance for mixtures of two
sources from the AVE dataset.

Models SDR SIR SAR
Multisensory [34] -1.92 2.13 5.71
Sound of Pixels [54] 2.31 9.34 5.77
Sound of Motions [53] 2.77 10.20 5.81
Minus-Plus [51] 3.36 9.22 7.15
Cascaded Opponent Filter [59] 4.08 9.95 7.68
AMnet (ours) 4.82 11.75 7.77

Table 4. The source separation performance with mixtures of three
sources from the MUSIC-21 dataset.

sure the consensus Intersection over Union (cIoU) and Area
Under Curve (AUC) [40] in Table 1 and visualize the source
locations in Figure 5. Figure 5 contains example results ob-
tained using the Class Activation Map (CAM) [55]. More
examples are provided in the supplementary material.

The results in Table 1 and Figure 5 indicate that the
sound related motion is nicely captured by the AME. For
instance, the AME accurately captures both hands of the
guitar player (first column in top Figure 5). When playing a
congas (fifth column in top Figure 5), AME highlights hand
and arm motions which are highly correlated with the out-
put sound. The AVE dataset is more challenging due to the
large scale of natural sounds it contains. Compared to the
baseline models, our method can localize motions in vari-
ous categories of videos. For example, our method detects
the moving vehicles (first column in bottom Figure 5), both
of the human body and the chainsaw motions (third column
in bottom Figure 5) as these motions occur always with the
sounds. Moreover, as shown in the fourth column (bottom
Figure 5), the woman on the right side is speaking while the
man on the left is not. Even though they have similar ap-
pearance, the AME module localizes the motions precisely,
whereas both COF [59] and Multisensory [34] localize the
head region of both the two persons. These results indicate
that the AME mechanism facilitates the network to capture
discriminative motions that correlated to the sound sources
in the scenes instead of semantics.

Action Recognition We further evaluate the performance
of the AME motion cues in comparison with Multisen-
sory [34] for recognition tasks in Table 1 (last column). To
study this, we fine-tuned the methods (motion only) for ac-
tion recognition using the UCF-101 dataset [42].

M
U

SI
C
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1

AV
E

Video frames Xmix Ground truth Multisensory COF AMnet (ours)

Figure 6. Visualization of the source separation results with the
MUSIC-21 and AVE datasets.

4.4. Audio-Visual Sound Source Separation

Separating Two Sound Sources Tables 2 and 3 sum-
marise the results for separating two sound sources using
the proposed AMnet and recent baseline works [34, 54,
53, 19, 51, 15, 59]. The AMnet outperforms the baseline
methods consistently and for most cases with a large mar-
gin. Compared to the closely related Multisensory [34] and
COF [59] works, we obtain 7.90dB and 1.28dB improve-
ment on MUSIC-21 and 2.87dB and 1.03dB improvement
on AVE, respectively. Figure 6 contains qualitative exam-
ples, which clearly illustrate the differences. Additional ex-
amples are provided in the supplementary material.

Interestingly, the proposed AMnet also outperforms the
keypoint-assisted Music Gesture [15] model, which is par-
ticularly designed to exploit human body and finger dynam-
ics. This result further indicates that the introduced AME
model is able to capture fine-grained motion information
from the sequences. Moreover, the transformer-based fu-
sion with the motion features seems to provide a strong
combination for the sound separation.

Separating Three Sound Sources The separation task
turns more difficult when the mixture contains more
sources. To this end, we assess the methods by separat-
ing mixtures of three sources created from the MUSIC-211.
Table 4 contains the results for AMnet and the baselines
[34, 54, 53, 51, 59]. We can observe a clear drop in all
performances compared to the two sources case (Table 2).
However, AMnet still outperforms the baselines with a clear
margin.

Separating Sources of the Same Type In addition to the
number of sources, the source type affects the performance.

1Due to limited information, we were not able to exactly reproduce the
results reported in [53, 15] for three sources and same instrument mixtures.
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Xmix Ground truth AMnetVideo frames

Figure 7. Illustration of the result for separating sound sources of
the same type from MUSIC-21 dataset.

Models cello erhu guzheng pipa xylophone
Copy-Paste 0.55 0.12 0.29 0.24 0.30
SoP -0.44 -0.37 -0.02 -0.95 0.34
SoM -4.04 -0.92 0.62 -2.34 0.25
Multisensory -1.45 1.34 -0.65 -2.86 -2.12
COF -3.47 2.33 -0.75 1.40 1.07
AMnet (ours) 2.47 3.91 1.30 2.28 1.57

Table 5. The source separation performance using mixtures of
same instrument types from MUSIC-21 in terms of SDR.

Particularly difficult case occurs when the sources are of
the same type (e.g. two cellos) and the appearance cues do
not provide useful information. To this end, we pick video
pairs with the same instrument type from MUSIC-21 and
mix them for testing. We compare AMnet with Sound of
Pixels (SoP) [54], Sound of Motions (SoM) [53], Multisen-
sory [34], and COF [59]. The SoP is a pure appearance-
based method, while the others utilise motion information
in different ways. To gain further insight, we include a triv-
ial “Copy-Paste” baseline that simply copies the input mix-
ture spectrogram to the output.

Table 5 shows the results in terms of SDR for cello, erhu,
guzheng, pipa, and xylophone categories. Interestingly,
the Copy-Paste baseline outperforms comparison methods
in most cases, whereas the proposed AMnet provides a
clear improvement for all categories. The results indicate
the challenges related to optical flow or dynamic image
based motion modelling in self-supervised source separa-
tion. The classification-based multisensory features in [34]
suffer similar challenges. The motions of sound that learned
through the audio-motion common embedding space seem
to be the best option for capturing the motion cues in a self-
supervised manner.

Ablation Study We conducted ablation study to inves-
tigate the performance of the Audio-Motion Transformer
(AMT) and the role of the appearance and motions in our
model. For this purpose, we repeat the source separation
experiments with MUSIC-21 using different configurations.

The AMT fuses the audio and motion for sound separa-
tion. To verify its efficacy, with a 1-stage model of using

stages Models SDR SIR SAR
1 Motion (EF) 3.71 10.61 8.22
1 Motion (AMT) 4.82 12.04 8.46

Table 6. The ablation results of using EF [34] and AMT.

stages Models SDR SIR SAR
1 Motion 4.82 12.04 8.46
1 Appearance 7.40 12.88 11.00
1 Appearance-Motion 8.99 16.38 11.32
2 Motion+Appearance 9.63 16.75 11.98
2 Appearance+Motion (AMnet) 11.08 18.00 13.22

Table 7. The ablation results comparing the appearance and mo-
tion stages, and their combination. “Appearance-Motion” rep-
resents a 1-stage model which fuses (by concatenation) the ap-
pearance and motions and continues to separate sound sources.
“Motion+Appearance” and “Appearance+Motion” indicate 2-
stage models, which includes appearance and motions at Audio-
Appearance and Audio-Motion stage.

only motions to separate sounds, we replace the AMT mod-
ule with the Early Fusion (EF) used in Multisensory [34].
The comparison results are shown in Table 6. Our proposed
AMT module brings 1.11dB improvement in SDR.

Table 7 shows the results using only Motion, only Ap-
pearance, Appearance-Motion, Motion+Appearance, and
Appearance+Motion. The appearance results in better per-
formance compared to using motion alone. Their combi-
nation in 1-stage improves the performance by 1.59dB in
SDR. The 2-stage models of “Motion+Appearance” and
“Appearance+Motion” achieve better results in comparison
with their 1-stage counterparts by a large margin. How-
ever, the full model AMnet (“Appearance+Motion”) pro-
vides clearly the best results suggesting that appearance
and motion cues contain highly complementary informa-
tion. Appearance and motion cues are different in nature
and the AMnet lets each stage specialize in one type.

5. Conclusions
In this paper, we show that the motion representations

that learned through the Audio-Motion Embedding (AME)
framework, together with the Appearance and Motion net-
work (AMnet), obtain the new state-of-the-art results on vi-
sually guided sound source separation. The proposed AME
approach results in better sound source localization and ac-
tion recognition in comparison to baselines. The AMnet
contains an Audio-Appearance and Audio-Motion stage,
which specialise to appearance and motion cues, respec-
tively. Our method, trained in a self-supervised manner, has
no limitation on source types and outperforms the methods
specifically designed to utilise human body motions.
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