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Abstract

Tracking by detection paradigm is one of the most popu-
lar object tracking methods. However, it is very dependent
on the performance of the detector. When the detector has
a behavior of missing detection, the tracking result will be
directly affected. In this paper, we analyze the phenomenon
of the lost tracking object in real-time tracking model on
MOT2020 dataset. Based on simple and traditional meth-
ods, we propose a compensation tracker to further alleviate
the lost tracking problem caused by missing detection. It
consists of a motion compensation module and an object se-
lection module. The proposed method not only can re-track
missing tracking objects from lost objects, but also does
not require additional networks so as to maintain speed-
accuracy trade-off of the real-time model. Our method only
needs to be embedded into the tracker to work without re-
training the network. Experiments show that the compen-
sation tracker can efficaciously improve the performance of
the model and reduce identity switches. With limited costs,
the compensation tracker successfully enhances the base-
line tracking performance by a large margin and reaches
66% of MOTA and 67% of IDF1 on MOT2020 dataset.

1. Introduction

Currently, multi-object tracking is one of the basic tasks
of computer vision with wide applications in many fields,
for example, intelligent security, automatic driving, pedes-
trian tracking, intelligent monitoring and so on [13]. Track-
ing by detection (TBD) framework is the current main-
stream tracking paradigm.

In order to improve tracking performance, existing re-
searches usually use multiple sub-networks for object in-
formation extraction and data association. Such methods
generally use networks or modules with information shar-
ing function such as RNN [32], LSTM [24] and Siamese
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network [39, 12] to save information of tracked objects and
complete spatio-temporal matching. In addition, the use of
various object information, for example motion informa-
tion, spatio-temporal information, appearance information
and affinity information [48, 20, 47, 10, 41], will complicate
the information extraction network. Also, these methods
will increase additional computation cost and do harm to the
inference speed. Many researchers notice that the speed of
tracking model is as important as the tracking performance.
For the real-time model, the structure of the detection net-
work cannot be too complicated. Simultaneously, methods
of data association should be simple and effective. So, real-
time model usually uses detector with speed-accuracy trade-
off, for instance, RetinaNet [29], CenterNet [54, 56, 57, 52],
Yolov3 [36, 45, 44], Faster RCNN [1] and so on. On the
other hand, a series of simple and fast data association meth-
ods are also proposed such as bounding box (BBox) inter-
section ratio (IoU) matching [5, 6, 3], motion prediction
[22, 20] and appearance matching [50, 54, 49, 37]. This
kinds of information can be obtained by traditional meth-
ods or can be learned together with detection task. There-
fore, these easily available object characteristics are often
used for data association in the real-time model.

In the existing real-time model, both end-to-end model
and non-end-to-end model are essentially TBD paradigm.
In other words, the performance of the detector plays a de-
cisive role in the tracking result. It’s seen in Fig.1. When
an object can be tracked in the past frame but cannot be de-
tected in a certain frame due to the unstable performance
of the detector (Yellow Arrow Object), the object will not
be able to be matched by data association and is considered
as an unmatched tracked object. To this end, the tracking
result will not include this object and mark them as lost ob-
ject. This phenomenon will lead to missing tracking and
cause ID switches of the missing tracking object so as to
impair the tracking performance.

The above discussion raises some questions: Is the
detector stable enough to avoid missing detection? Are
these missing tracking objects not in the tracking area or
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Figure 1. Comparison diagram of model detection result, model tracking result and model with compensation tracker result. The red dashed
boxes is the missing detection area, their tracking result area and compensation area of two models. After motion compensation and object
selection, the compensation tracker is able to compensate for some previously tracked objects with high reliability (Yellow Arrow Objects).

invisible? The answer is negative! In the existing re-
searches, additional neural networks such as Siamese net-
works [10, 48, 9] and RNN [18, 47, 38] are often used in the
model to re-track lost objects. However, these methods will
increase a lot of computation costs and are not friendly to
real-time tracking. Using lightweight networks to re-track
lost objects will not perform well under complicated scenes
[8]. We hope to maintain the speed-accuracy trade-off and
re-track the missing tracking objects from the lost objects
with computation costs as little as possible. We believe that
the tracker not only can exploit the information provided by
the detector to perform data association, but also can use
the past information to predict positon and compensate for
missing tracking objects. Based on this motivation, we pro-
pose compensation tracker (CT) based on simple and effec-
tive methods to reprocess the lost objects. It contains a mo-
tion compensation module and an object selection module.
CT screens out the highly credible missing tracking objects
from lost objects and re-tracks them without adding abun-
dant computation consumption. As can be seen in Fig.1.
The proposed method can effectively alleviate the problem
of missing tracking caused by the instability of the detector.
Especially in dense crowd regions, the proposed method can
greatly improve the tracking performance of the model and
reduce ID switches without re-training the network. The
contributions of this paper are summarized as follows:

(1) Indicating and analyzing the lost tracking phe-
nomenon of each sub-dataset on MOT2020 dataset.

(2) We propose a compensation tracker based on motion
compensation and object selection. By performing motion
prediction and reasonable features judgment for the lost ob-
jects, CT selects out missing tracking objects with high re-
liability and re-tracks them in the result.

(3) Extensive experiments show that the reasonable use
of traditional methods not only can achieve outstanding
compensation result, but also only limited computation
costs is produced. Particularly in the dense crowd areas,

our method has prominent improvements for the tracking
performance of the model.

2. Related Works

Towards Real-Time Tracking. According to the asso-
ciation way of detection information, TBD paradigm can
be divided into end-to-end tracking model and non-end-
to-end tracking model. POI [50] obtains appearance fea-
tures through GoogLeNet [43] and combines offline and
online tracking methods for object similarity association.
Similarly, Sort [3] utilizes IoU correlation between the pre-
dicted BBox and the detected BBox to accomplish data as-
sociation. IoU Tracker [5] only employs the IoU between
tracked BBox and the detected BBox for data association.
Although its tracking speed is very fast, the tracking per-
formance is not accurate enough. Based on Sort, Deep-Sort
[45] treats the detection result as the tracking benchmark
and uses a Re-Identification network (Re-ID) to acquire ap-
pearance information for further data matching. It also pro-
poses a cascade matching method and combines with the
Hungarian [25] algorithm for appearance features match-
ing. Subsequently, MOTDT [8] uses a lightweight network
(SqueezeNet[21]) to estimate the trajectory scores of each
lost object and makes use of the score map to re-track the
missing tracking objects from lost objects. JDE [44] si-
multaneously learns detection information and appearance
embedding information in Yolov3 [36]. Some researches
[56, 1, 29, 34] also use other detectors or detection opti-
mization methods to improve tracking performance. Based
on the JDE, FairMOTV1 [52] utilizes CenterNet [57] to
learn detection information and appearance information. It
exploits the advantages of heatmaps detection to obtain ob-
ject information that is more friendly to data association.
FairMOVT?2 [54] optimizes the training methods and cor-
rects the ground truth (GT) labels on the basis of Fair-
MOTV1. We use FairMOTV1 (FairV1) as the baseline and
analyze the phenomenon of lost object on it.
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Model FairV1 JDE
Sets Qbjects Lost Objects Number | Compensation Objects Number | Lost Objects Number | Compensation Objects Number
MOT20-01 5016 1559 5888 1832
MOT20-02 34434 11361 41949 15147
MOT20-03 86814 32531 72649 30985
MOT20-05 255953 96167 223091 90558

Table 1. The Statistical number of lost objects and compensation objects in FairV1 and JDE on MOT2020 training dataset.

In the sequels, the pipeline end-to-end methods [42, 33]
associate tracked objects in spatio-temporal sequences in
adjacent frame. The author designs a pipeline IoU learn-
ing method and a pipeline IoU matching method for ob-
ject association. Chained-Tracker [35] considers that the
BBox of adjacent frame are the paired-matching relation-
ship. The author designs a paired boxes loss and corre-
sponding matching method for data association. Center-
Track [56] provides a more concise tracking framework. It
directly exploits the heatmap offsets direction of adjacent
frame for data association. Quasi-Dense [34] makes use
of Bi-Softmax and Quasi-Dense similarity learning to im-
prove the robustness of Re-ID features. However, whether
it is end-to-end or non-end-to-end tracking paradigm, they
excessively rely on the detection quality and emerge from
the phenomenon of missing tracking.

Towards Lost Object Tracking. Using a variety of ob-
ject information to improve matching accuracy is one of
the solutions to avoid lost tracking. Therefore, many re-
searchers prone to use RNN, LSTM [18, 59, 38, 24] or
other methods with information preservation and decision-
making to optimize the data association of multiple ob-
ject information. Besides, employing Siamese network
[12, 10, 11] for each detected object is also another net-
work solution. Some researchers utilize additional attention
networks to extract more powerful appearance features and
solve the ambiguous featue problems caused by frequent
object interaction and insufficient affinity [48, 59]. In recent
years, graph neural networks (GNN) have been gradually
used for object tracking. Some researches [58, 7, 30, 27] ex-
ploit the powerful information transmission capability and
graph matching ability of GNN for data matching so as to
improve the tracking performance. Multi-hypothesis track-
ing [4] generates real trajectory and hypothesis trajectory by
Kalman filtering [22]. Through clustering and pruning, the
algorithm controls the number of hypothetical trajectories
and evaluates the credibility of hypothetical trajectories as
real trajectories by log-likelihood estimation scores [4, 23].
This method also depends on the performance of the detec-
tor and makes insufficient use of the input image features.
Based on IoU Tracker, V-IoU [6] processes the lost objects
with a visual single object tracker to enhance the continuity
of the trajectory. But it depends on the performance of the
filter and it will fail to track the missing tracking object un-
der the condition of object deformation and camera motion.
Our method only needs to be embedded into the tracker and
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Figure 2. Statistical result of MOT2020 training dataset. The his-
togram shows the percentage between the tracking result of each
sub-dataset and GT in two models. The line chart shows the track-

ing result growth rate of two models after embedding CT.

does not require extra networks. When the object cannot
be matched by the basic tracker, CT firstly performs motion
compensation to re-predict its position. Then the motion
compensation information and hand-crafted appearance in-
formation of the object are used to determine whether the
object is credible or not. Our method not only inherits the
advantages of V-IoU, but also takes the advantages of ap-
pearance information to improve the accuracy of object se-
lection.

3. Analysis of Lost Object

Experiments Setting. All trained network parameters
in experiments are from the corresponding authors. The
model parameters used for statistic and analysis have not
been trained by MOT2020 training dataset. We use DLA34
[51] with DCNv2 [60] in FairV1 and JDE-1088x608 in JDE
for statistical experiments. All hyper-parameters will be
consistent and the same as authors setting.

Analysis on MOT2020 Result. MOT2020 dataset is a
dense crowd sequences with an average of 246 pedestrians
in each frame [15]. These sequences include indoor/outdoor
and day/night scenes. The sequences with dense crowds and
insufficient illumination are a great challenge for detection
stability and tracking performance. As can be seen in Fig.2.
The tracking quantity of two models (FairV1 & JDE) ac-
counts for about 60% in GT. These results indicate that the
generalization ability of two models are not good enough in
dense regions. There is a high probability in lost tracking
due to the poor performance of detector. As can be seen
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in Table 1, the two models have lost objects in each sub-
dataset. In lost objects set, there are some missing tracking
objects caused by missing detection. We believe that the
tracker can make full use of the existing tracked informa-
tion to predict position and compensate the output for miss-
ing tracking objects. Based on this idea, we use the mo-
tion compensation module and the object selection module
in CT instead of CNN or GNN. The motion compensation
module is used to re-predict the position of the lost object
while the object selection module is responsible for feature
selection and feature matching. By position judgment and
hand-crafted feature matching, CT selects out the highly re-
liable objects (missing tracking objects) from lost objects
and compensates output sequences for them (compesation
objects). As can be seen in Fig.2. To this end, FairV1 can
be added the tracking sequences by an average of 12.7%
and JDE can be increased in the tracking sequences by an
average of 17%. This result proves that our compensation
objects is effective and credible. To sum up, CT succeeds in
improving the tracking performance of the model in dense
crowd areas.

4. Methods
4.1. Design of Compensation Tracker

In this section, we will introduce the compensation
tracker in detail. It contains three main tracking modules:
basic tracker, motion compensation (MC) and object selec-
tion (OS). The tracking pipeline can be seen in Fig.3 (K and
J represent the object number in the corresponding set).

Basic Tracker. Given an image of frame ¢, the detected
object set D; can be obtained by network recognition. At
frame ¢ — 1, we can get successfully tracked object set T} 1
and lost tracking object set L;_; from the previous frame.
Then, the basic tracker performs cascade matching includ-
ing IoU matching and appearance matching on Dy, L;_;
and T;_1 [52, 44]. Cascade matching outputs three kinds of
objects containing matched tracked objects, newly detected
objects (unmatched detected objects) and lost tracking ob-
jects (unmatched tracked objects). For the matched tracked
objects and the newly detected objects, we update their in-
formation and their tracked clipping box images C'B;. Sub-
sequently, the matched tracked objects and the newly de-
tected objects are transmitted in the tracked object set T}
(tracking result). And the lost tracking object set L; is in-
puted in CT.

Motion Compensation. Motion compensation module
re-predicts the positions for lost tracking object set L; and
outputs the re-predicted results set PB;. Next, CT imple-
ments object selection based on re-predicted results PB;.

Object Selection. For filtering out the invisible BBox
and correcting BBox’s size, CT carries out confidence inter-
ference filtering, boundary interference filtering and BBox

correction for predicted P B;. Afterwards, IoU interference
filtering is used for suppressing the overlap BBox between
the predicted P B, and the tracked object set 7;. Next, we
crop the BBox image PC B/ according to the predicted
BBox. Because the object is tracked in the previous frame,
the finally tracked clipping BBox image C'BX | is retained.
We use PCBE and C B[ | for hand-crafted appearance ex-
traction and matching in appearance interference filtering.
If an object can be selected out by object selection, we con-
sider that it is the missing tracking object M T/ that caused
by failing to be detected and we compensate for them in the
tracked object set ;. Otherwise, this lost object that cannot
be compensated will be saved in L; at most 30 frames.

4.2. Motion Compensation

In the motion compensation module, we use the Kalman
filter with uniform motion and linear observation by default.
Its input can be defined as:

Mean = [x,y, a,h, &7, a, h] (1)

where = and y are the horizontal and vertical coordinates
of the BBox respectively. a is the ratio between BBox’s
width and BBox’s height. h is the height of the BBox.
T,1,a, h are the velocities of the corresponding compo-
nents. [x,y, a, h] are directly observed as object states.

Then, taking Mean;_; as input and calculating the error
covariance matrix between the calculation value at frame ¢
and the real value at frame ¢ — 1:

Mecm; = F,Mean;—1 + A Xy 2)
C’ova,/5 = FtCovat,lFtT +Q 3)

where M ecm; is the estimation value of the system state at
frame t. Mean;_; is the real value of the system state at
frame ¢t — 1. F} is the motion transformation matrix from
the previous state to the current state. A is the control mar-
tix. X; is the control variable. Covat/ is the covariance
matrix of the error between the calculation value and the
real value. C'ovas_ is the covariance matrix of the error
between the estimation value and the real value. T is the
transpose operator. (Q is the multi-variate normal distribu-
tion of covariance matrix. Next, Kalman gain is calculated:

Kt = CO’l)at/HtT(HtCOUCLt/HtT + R)il (4)

Mean; = Mean; + Ki(Z, — Ht]V[ean;) (%)

where K is the Kalman gain. Z; is the system measure-
ment value. H,; is the measurement transfer matrix and R is
covariance matrix of observation noise [45, 22].

Finally, the error covariance matrix between the estima-
tion value and the real value is updated:

Cova; = (1 — Ky - H;)Cova, (6)
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Figure 3. Online tracking pipeline of compensation tracker. The above figure shows the overall data flow and the relationship between the
basic tracker and the compensation tracker. Actually, CT is the extension of the basic tracker. When an object is tracked at frame ¢ — 1 and
is not detected at frame ¢, the object cannot be matched by cascade matching and is considered as lost object L. Then, L is transmitted
in the compensation tracker for motion compensation and object selection. Meanwhile, tracked object J will be updated their information.
After processing the selection result and the association result, the tracker outputs the final tracking result for object tracking.

4.3. Object Selection

Experiments show that only using the motion compensa-
tion module to unconditionally compensate for the lost ob-
jects will result in wrong compensation. In this section, we
will further introduce how to screen the BBox predicted by
motion compensation to find out the missing tracking object
and compensate for them.

Confidence Interference Filtering(CI_Filtering). Er-
ror bounding box (EBBox) is generated by the fact that the
tracked object has been lost or the object has not been de-
tected in so many frames, but the motion compensation is
still carried out. Referring to the maximum reserving frame
value of the lost object in the baseline, we consider it as
the maximum of compensation frame value and employ the
compensation confidence threshold to avoid the generation
of EBBox. The compensation confidence is defined as fol-
low:

Cci = H{Sts — Lts > 0} S.t.StS > CF (7)
where C,; is the compensation confidence. Sy, is the num-
ber of times that the object is successfully tracked. Ly, is
the number of times that the object is lost in tracking and
CF is the compensation frame value. When a lost object
does not meet the above formula, the object will be filtered
out. It’s seen in Fig.4.

Boundary Interference Filtering(BI_Filtering). When
the tracked scene moves relatively fast, only using the confi-
dence interference filtering will not achieve an optimal com-
pensation result. When a lost object moves away from the
tracking area, we need to judge the center position of its
predicted BBox by the following formula:

Coi =I{z —zpxa>0 AN w—x—z,*xa>0}
(3)
where Cy; is the confidence of BI_Filtering. x is the center
point abscissa of the predicted BBox. z,, is the width of the

W/ Confidence Interference Filtering

W/O Confidence Interference Filtering
Figure 4. Diagram of confidence interference filtering result. After
using the confidence interference filtering, the BBox (ID 15, ID 98
and ID 146) that does not meet the formula (7) will be filtered out
and the others are retained because they satisfy the condition.

predicted BBox. « is a boundary weight. w is the width of
the image. When a predicted BBox of lost object does not
satisfy formula (8), the object will be filtered out. As it’s
seen in Fig.5.

Lost Object

Figure 5. Diagram of boundary interference filtering result. The
width and height of the image are 640 and 480 respectively. The
center coordinate of the lost object 129 is (596, 242.3) and its
width z,, is 206.9. Because the object 129 does not satisty the
formula (8), it will be filtered out.

IoU Interference Filtering(IoU Filtering). In order
to improve the compensation result, we also eliminate the
BBox with object occlusion and object overlap to further
prevent wrong compensation. The filtering effect can be
seen in Fig.6. We compare the predicted compensation
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BBox set PB; with the tracked object set 7} containing
their area ratio, IoU and BBox embedding degree.

W/O loU Interference
Filtering Filtering

W/ loU Interference

Figure 6. Diagram of IoU interference filtering result. It is obvious
from the figure that the wrong BBox has been removed.

Appearance Interference Filtering(AI Filtering). [oU
Filtering cannot solve the problem of occlusion by other
objects and severe drift of BBox. So, we use the position
information predicted by motion compensation to extract
the clipping box image PC B at the current frame. After-
wards, the hand-crafted feature similarity between PC B
and the finally tracked clopping box image C B ; will be
evaluated. Firstly, the two clipping BBox images will be fil-
tered by Gaussian kernel and down-sampled twice respec-
tively. Then, the Gaussian difference calculation between
them and themselves will be performed [28]:

D(pwapy7o) :L(pw7pyasf0)_L(p$apy7U) (9)

where D(-) is a Gaussian differential operator. D(p,, py, o)
is the Gaussian differential image. p, and p, are pixel po-
sition of the image. L(-) is the Gassian smoothed image
which is produced from the convoluition of a variable-scale
Gassian with an input image. o is the scale space opera-
tor of the Gauss kernel function. Sy is the feature pyramid
scaling factor. After getting D(pa, py, o) from formula (9),
the algorithm finds the extremum in it and inputs the ex-
tremum point sets into formula (10) to obtain the modulus
and direction of each extremum region [28].

m(pz, py) = [[(L(pat1,Py) — L(Pz—1,py))+

(L(pccii(ny+1) _)LL((pmvpy*%))”Q (10)
0(pa,py) = tan™ (T T )

where m(p,, py) is the modulus of the extreme points and
0(pz, py) is the direction of the extreme points.

Set m and set # are input into the Histogram of Oriented
Gradients [14] to generate the 128 dimension vectors set.
Finally, K-Nearest-Neighbor (KNN) matching is performed
for measuring the Euclidean distance of these vectors [19].
If there are enough matching points, the lost object is treated
as the missing tracking object and will be re-tracked. The
matching formula is as follows:

Cai =1 [K(H(m{ilveﬁl)aH(mf(?etK)) > Um} (11)

Algorithm 1: Compensation Tracker

Input:
L, is the lost object set at frame ¢
T is the tracked object set at frame ¢
C'BX | is the K-th clipping box image at frame ¢ — 1
PCB,{( is the K-th clipping box image at frame ¢
QOutput:
MT; is the missing tracking object set at frame ¢
1: forlx € L; do
2. Meanys, Covay < MC(lg.Mean, lx.Cova)
by(1)(2)(3)(4)(5)(6)

3: Mean; < BBox_Correction (M ean,,li.Mean)
4. C,; < Cl Filtering(lx) by(7)

5:  Cp; < BL Filtering (Mean;) by(8)

6: for T} € T} do

7 Ix + ToU Filtering(M eany,T})

8:  end for

9:  Cai < Al Filtering (CB;* ,,PCB[)

by(9)(10)(11)

10: if C.; N\ Cpi A Cy; then
11: li < Update_Parameter(M ean;, Covay)
12: MT;.append(lx)
13:  endif

14: end for

15: return M T}

where C,; is the confidence of Al Filtering. K is the KNN
matching function. H is the Histogram of Oriented Gra-
dients. m/, and <, are the modulus and direction of
CBE | respectively. m and 0/ are the modulus and di-
rection of PCBJ respectively. o, is the threshold for
KNN matching.

BBox Correction(BBox_Correction). Since the pre-
dicted BBox will have an inaccurate size, the object cannot
be marked accurately. The BBox’s size in adjacent frame
changes very limited. When the change of area between
lost BBox and its predicted BBox is greater than 1.1, the
compensation BBox will be resized in the original size. Al-
gorithm 1 describes how the proposed method works for the
lost objects.

5. Experiments
5.1. Experiment Details

We carry out extensive evaluations on MOT2015[26]
dataset, MOT2016[31] dataset, MOT2017[31] dataset and
the latest MOT2020[15] dataset. Besides, we achieved rel-
atively good results and metrics precision in all datasets.

Experiments Platform. Our experiments are imple-
mented on Pytorch. The computer used in the exper-
iment is equipped with Xeon Platinum 8163 CPU and
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Cr | MOTAT IDFIt IDSW/ | o,, | MOTAT IDFIT ID.SW|
10 | 46.5/76.0 66.0/76.8 284/516 | 1 | 45.5/76.1 65.2/76.7 278/508
20 | 46.2/76.0 66.3/76.9 266/514 | 3 | 457/76.0 64.9/76.9 284/514
30 | 46.2/76.0 65.6/77.1 263/518 | 5 | 46.0/76.0 65.5/76.8 282/509
40 | 46.0/76.0 65.8/76.8 269/510 | 7 | 46.2/76.0 64.8/76.8 274/506
o MOTAT IDF1{ ID.SW| FP| FN|

0.1 | 46.1/760  65.5/76.8  249/508  18940/7467  4061/18534
0.3 | 4627760  65.5/77.0 249511  18891/7449  4065/18526
0.5 | 46.2/76.0  65.5/769  250/505  18871/7434  4071/18542
07 | 462/760  65.5/76.8  253/512  18855/7436  4083/18565

Table 2. Hyper-parameters experiments on MOT15/MOT16. We
uses C'r=30, 0,,»,=5 and a=0.5 for all datasets and experiments.

RTX2080Ti. Furthermore, we use the trained model pa-
rameters of the DLA network for experiments in baseline.
And JDE-1088x608 is employed in JDE in ablation exper-
iments. All the trained model parameters are provided by
corresponding author. These networks are trained with the
following datasets including MOT2017[31], Caltech[16],
CityPersons[53], CuhkSysu[46], PRW[55] and ETH[17].
Evaluation Metrics. CLEAR MOT Metrics [2] and
IDF1 are used for measuring tracking result. These met-
rics include multi-object tracking accuracy (MOTA), ID
switches (ID.Sw), the ratio of correctly identified detections
over the average number of GT and computed detections
(IDF1), multi-object tracking precision (MOTP), the most
tracked object (MT), the most lost object (ML), the average
number of false alarms per frame (FAF), the total number of
times a trajectory is fragmented (Frag), the number of false
positives (FP) and the number of false negatives (FN) [13].
And FPS is obtained by running on a single RTX2080Ti.

5.2. Hyper-Parameter Experiments

There are three adjustable parameters in CT. They are the
compensation frame value C'r, matching threshold o,,, and
boundary weight « respectively. Parameters setting do not
require heuristic algorithms and do not need to be adjusted
for each dataset. Cp is a hyper-parameter that already ex-
ists in baseline and JDE. Considering that it also has an im-
pact on the compensation result, we also discuss its robust-
ness. The sensitivity experiments of three hyperparameters
on MOT15 and MOT16 are shown in Table 2. CF is the
maximum pre-stored threshold for lost objects. Too large
Cr will result in too many pre-stored lost objects and too
many memory costs. This setting will lead to ambiguous
object matching and reduce tracking accuracy. Too small
C'r will raise the problem that missing tracking objects can-
not be re-tracked and its ID switches frequently. o, affects
the appearance matching precision of missing tracking ob-
jects. If o,, is too large, the objects with high reliability
cannot be re-tracked. Besides, « is used to filter out the
objects that are out of boundary and deal with the drifting
problem of the predicted BBox. It only has weak influences
on IDF1, FP and FN. Experiments on MOT15 and MOT16
show that the hyper-parameters in CT are robust.

MOT2020 Test Dataset

Component MOTATIDF11 MT{ ML, ID.SwJFPS 1
Baseline 58.7 63.7 66.3% 8.5% 6013 152
Baseline+MC 65.0 66.6 59.1%13.0% 2119 14.6
Baseline+MC+0S| 66.0 67.0 56.3% 13.3% 2237 13.5
Table 3. Module ablation experiments on MOT2020.
Models ‘MOTATIDFIT MTT ML] ID.Sw|FPS?t
MQOT2016 Test Dataset
JDE[44] 644 55.8 35.4%20.0% 1544 223
JDE with CT | 65.0 59.1 36.1% 18.8% 1525 19.7
FairV1[52] 68.7 704 39.5% 19.0% 953 21.7
FairV1 with CT| 69.8  71.1 42.0% 15.8% 912 19.2
MOT2020 Training Dataset
JDE*[44] 482 32,1 318 497 18631 15.0
JDE with CT | 544 43.1 526 372 11157 12.3
FairV1[52]* | 623 47.5 790 288 16395 15.2
FairV1 with CT| 65.6 57.5 1030 247 7816 13.5

s

Table 4. "Private’ model ablation experiments. **’ means that the

result is evaluated by ourselves.

5.3. Ablation Experiments

As can be seen in Table 3. After using the motion com-
pensation module, some metrics such as MOTA, IDF1 and
ID.Sw have been significantly improved due to compensa-
tion for the missing tracking objects. However, because of
unconditional compensation, some EBBoxes still appear.
After conducting the object selection, MOTA and IDF1
can be further improved while only a little quantity of ID
switches are raised. Additionally, the speed costs of motion
compensation and object selection are only 0.6 FPS and 1.1
FPS respectively.

As can be seen in Table 4. On MOT2016 test dataset, the
result of the JDE with CT is better than itself. CT improves
JDE by 3.3% on IDF1, 0.6% on MOTA, 0.7% on MT and
1.2% on ML. This result manifests that our tracker can ef-
fectively enhance tracking performance and optimize data
association of lost objects. Especially on the 2020 train-
ing dataset, the improvement is more prominent and various
metrics achieve greater gains. Among this metrics, MOTA
increased by 6.2%, IDF1 increased by 11% and ID.Sw de-
creased by 7474. For the baseline model, various metrics
have also been improved on MOT2016 dataset. CT ame-
liorates baseline by 1.1% on MOTA, 2.5% on MT, 3.2%
on ML and 41 on ID.Sw. It can also be seen in Table 4
that there is a significant gains in MOT2020 tracking result.
After employing CT, tracking instability problem is further
alleviated and various metrics such as MOTA, IDF1 have
been improved to a certain extent. More importantly, ID.Sw
on MOT2020 surpasses baseline by 8579.

This is because CT alleviates the lost tracking problem
caused by the detector instability so that missing tracking
objects can be effectively re-tracked. Also, our tracker not
only accurately compensates for missing tracking objects,
but also lessen unnecessary ID switches. Something is wor-
thy noticeable that time consumption of CT is limited and
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the average costs approximate 2-3 frames on two ’Private’
real-time models.

For the sake of further demonstrating the data association
performance of the CT, Sort, MOTDT and Tracktor (’Pub-
lic’ Tracker) are also used for *Pubilc’ ablation experiments.

As can be seen in Table 5. After using CT, the per-
formance of Sort can be further improved on MOT2020
test dataset. Among these metrics, MOTA increased by
0.6% and MT increased by 0.9%. Especially in ID.Sw
and Frag, the reductions are 1499 and 10313 respectively.
On MOT2020 training dataset, Sort with CT can obtain 7.1
gains, 18.1 gains to Sort counterparts in MOTA and IDF1.
Above all, ID.Sw declines by 9253. It can be seen in Ta-
ble 5 that the tracking continuity (MT & ML) have also
been greatly improved. On the other hand, MOTDT utilizes
SqueezeNet [21] to score and re-track lost objects. We re-
place this network with CT. As it’s seen in Table 5. There is
a great challenge for the performance of the lightweight net-
work on MOT2020 dataset. However, CT uses historical re-
liable information and hand-crafted featrue information ob-
tained by traditional methods. The extraction way of tradi-
tional methods is stabler than network prediction under the
complicated circumstances. Compared with MOTDT, our
method has various degrees improvements on MOT2020
dataset. Notably on MOT2020 test dataset, our method
achieves 2513 gains in Frag, 211 gains in ID.Sw, 1.4 gains
in MOTA, 4.4% gains in MT and 1.1 gains in IDF1. Also,
we replace Tracktor’s camera motion wtih CT for experi-
ments on MOT2020. Although CT’s ID.Sw is higher than
camera motion, CT still outperforms Tracktor on MOTA,
MT and ML. There are 2.3 gains and 1.2 gains in MOTA
of Tracktor wtih CT on MOT2020 training dataset and test
dataset respectively. In terms of the performance in Public’
ablation experiments, CT is effective in data association and
has the capability to re-track missing tracking objects.

5.4. Comparison with state-of-art Online Models

MOT2016 & MOT2017. As can be seen in Table
6, the evaluation result of our method on MOT2016 and
MOT2017 are outstanding. There are improvements in
MOTA (69.8%), IDF1 (71.1%), MT (42%) and ML (15.8%)
on MOT2016 test channel. On MOT2017 test channel,
MOTA, IDF1, MT and ML are 68.8%, 70.2%, 40.8% and
17.7% respectively. These metrics are higher than other on-
line traking models and reach the state-of-art performance.

MOT2020. The effect of CT is more remarkable on
MOT2020 test result. It can be clearly seen in Table 7.
CT can reach great gains in MOTA (66%), IDF1 (67%),
Frag (4154) and ID.Sw (2237). What’s more, CT surpasses
FairV1 by 7.3% on MOTA, 3.3% on IDF1 and 14.9% on
FAF. Our method outperforms other ’private’ models on
Frag and ID.Sw. Compared with FairV1, the total num-
ber of ID.Sw drops from 6013 to 2237. Based on the per-

Models  [MOTAT IDFIT MT{ ML{ FAF| ID.Sw| Frag |
MOT2020 Test Dataset
SORTI3] 427 451 16.7%262% 6.1 4470 17798

452 17.6%263% 6.3 2971 7485
MOTDT[8]* 437 40.8 14.4% 27.7% 3.4 3705 9225
MOTDT with CT| 45.1 419 188% 27.1% 4.6 3494 6712
Tracktor[1] 526 526 365 331 / 1648 /
Tracktor with CT| 53.8 51.1 386 310 2.0 2456 5046
MOT2020 Training Dataset

SORT with CT | 43.3

SORT([3]* 458 34.1 288 593 /o 12992/
SORT with CT | 529 522 424 417 / 3739 /
MOTDT[8]* 48.5 40.1 393 499 /7754 /
MOTDT with CT| 50.2  40.7 498 499 /7421 /
Tracktor[1] 66.4 60.7 892 259 /2664 /
Tracktor wtih CT| 68.7 60.6 926 251 / 3654 /

Table 5. ‘Public’ model ablation experiments. **’ means that the

result is evaluated by ourselves.

Models [MOTAT IDFI1 MOTPT MT{ ML| ID.Sw
MOT2016 Test Dataset

JDE[44] 644 5538 / 35.4%20.0% 1544

POI[50] 66.1 65.1 79.5 34.0%20.8% 805

Tube TK POI[33]| 66.9 622 785 39.0% 16.1% 1236
CTracker[35] 67.6 572 784 32.9%23.1% 1897
FairV1[52] 68.7 704 802 39.5% 19.0% 953
QuasiDense[34] | 69.8 67.1 79.0 41.6% 19.8% 1097

Ours 69.8 71.1 80.0 42.0% 15.8% 912
MOT2017 Test Dataset

SST[41] 524 495 769 21.4%30.7% 8431

Tube_TK[33] 63.0 58.6 783 31.2% 19.9% 4137

CTracker([35] 66.6 574 782 32.2%242% 5529
FairV1[52] 67.5 698 80.3 37.7%20.8% 2868
CTTracker17[56]| 67.8 647 784 34.6% 24.6% 3039
QuasiDense[34] | 68.7 663 79.0 40.6% 21.9% 3378
Ours 68.8 702 80.0 40.8% 17.7% 2805

Table 6. Comparison experiment on MOT2016 and MOT2017.

MOT2020 Test Dataset
Models |[MOTAT IDFI1 MOTPT MT{ MLJ FAFJ ID.Sw] Frag]
FairV1[52]| 58.7 637 772 663% 8.5% 24.7 6013 8140
TrTrack[40]| 64.5 592 80.0 49.1% 13.6% 6.4 3565 11383
Ours 66.0 670 718 563%13.3% 9.8 2237 4154
Table 7. Comparison experiment on MOT2020.

formance on the three datasets, our tracker effectively opti-
mizes tracking performance by preventing the performance
degradation caused by missing detection.

6. Conclusion

In this paper, we point out the shortcomings of track-
ing by detection model and analyze the phenomenon of lost
object in the real-time model in dense crowd area. Con-
sidering the computation burden, we propose a simple and
effective compensation tracker and name it as CT. The pro-
posed method has the advantage of plug and play with-
out re-training the network. Our method employs tradition
methods to re-track lost objects instead of additional net-
works. Extensive experiments indicate that the proposed
method is able to effectively improve the tracking perfor-
mance of real-time models with limited time consumption.
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