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Figure 1: Sample sequences from the Mixamo and the Kinetics datasets. Keypoints are also provided for the Mixamo dataset.

Abstract
Unsupervised domain adaptation (UDA) methods have

become very popular in computer vision. However, while
several techniques have been proposed for images, much
less attention has been devoted to videos. This paper
introduces a novel UDA approach for action recogni-
tion from videos, inspired by recent literature on con-
trastive learning. In particular, we propose a novel
two-headed deep architecture that simultaneously adopts
cross-entropy and contrastive losses from different net-
work branches to robustly learn a target classifier. More-
over, this work introduces a novel large-scale UDA dataset,
Mixamo→Kinetics, which, to the best of our knowledge,
is the first dataset that considers the domain shift aris-
ing when transferring knowledge from synthetic to real
video sequences. Our extensive experimental evaluation
conducted on three publicly available benchmarks and on
our new Mixamo→Kinetics dataset demonstrate the effec-
tiveness of our approach, which outperforms the current
state-of-the-art methods. Code is available at https:
//github.com/vturrisi/CO2A.

1. Introduction

Visual recognition models are built under the assump-
tion that the training and test data are drawn from the same

distribution. Unfortunately, this assumption rarely holds in
practice, leading to a drop in performance on the test data.
To address this problem, over the years, several unsuper-
vised domain adaptation (UDA) methods [11] have been
developed. UDA approaches leverage relevant knowledge
from labelled data in a source domain to learn a model
for a different, but related, target domain where no anno-
tations are provided. These methods have already proved
to be effective in several image-related tasks, ranging from
object recognition [30, 41, 50, 29] to semantic segmenta-
tion [19, 57, 18, 8] and object detection [24]. However, so
far much less attention has been devoted to video analysis
which, compared to image-related applications, is undoubt-
edly more challenging. In particular, videos introduce one
more level of variation in the data, i.e. the temporal dimen-
sion, which increases the demand for hardware and leads
to additional complexity. To address UDA in the context
of video analysis, researchers have proposed to rethink the
traditional strategies for images in order to learn robust clas-
sifiers for videos, using domain-invariant deep feature rep-
resentations [9, 10, 34, 35, 5].

Action recognition [13, 58, 48, 4] is one of the funda-
mental problems in video analysis. This task is inherently
challenging as actions can vary over time according to sev-
eral factors, such as speed, duration, relative movement be-
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tween the actor and the camera, and the actor’s interaction
with surrounding objects. Also, people can perform the
same action in different ways, raising a challenging am-
biguity. Although Convolutional Neural Networks-based
(CNN) approaches have enabled significant advances, this
task still poses many open problems. In particular, the im-
portant variation derived from video sequences makes the
domain shift harder to address compared to the case of im-
ages. One way to address the variation issue without in-
creasing the cost of data acquisition is to rely on synthetic
data; however, such data still present the challenge of the
large domain gap.

This paper advances the state of the art in UDA for video
action recognition by proposing a novel two-headed deep
architecture. The design of our model is motivated by the
idea of jointly leveraging source supervision, target pseudo-
labelling and contrastive learning to mitigate the domain
shift arising in video action recognition. Our network con-
sists of a shared encoder that extracts feature representa-
tions from clips of source and target videos and aggregates
them with an attention mechanism. The video-level fea-
tures provided by the encoder are then fed to two sepa-
rate network heads that learn complementary classification
models, one based on a cross-entropy loss and the other
trained with contrastive losses. A key element of our ap-
proach is a novel consistency loss term that enforces the
network to produce coherent predictions among the two net-
work heads, resulting in more reliable pseudo-labels for the
target samples. Target pseudo-labels and source labels are
then jointly exploited by a novel inter-domain contrastive
loss, which performs conditional feature alignment among
data distributions of different domains, thus counteracting
domain shift. Lastly, inspired by recent literature on con-
trastive learning [6], we leverage video-specific data aug-
mentations, both at clip and video-level, to learn multi-scale
spatio-temporal feature representations for target videos.
Our Contrastive Conditional domain Alignment approach
is named as CO2A.

An important contribution of this work is also the intro-
duction of Mixamo→Kinetics, a new large-scale dataset for
video action recognition. The proposed dataset is the first
benchmark that allows studying the challenging problem of
UDA when source data are synthetically generated videos
and target data are real Youtube videos. In our dataset,
frame sequences in the synthetic domain are generated us-
ing realistic motion sequences gathered from Mixamo1 and
rendered using Blender2, resulting in videos depicting ac-
tions performed by 3D avatars with different visual appear-
ances in a randomised 3D scene. Data of the real domain,
instead, are obtained from the popular Kinetics dataset [3].
Sample frames for two sequences of our dataset are shown
in Figure 1.

1https://www.mixamo.com/
2https://www.blender.org/

Contributions. To summarise, our contributions are
the following: (i) a UDA approach for action recognition
in videos that exploits label and pseudo label information
for semantic alignment of the source and target data dis-
tributions. The proposed method achieves state-of-the-art
performance on several challenging benchmarks for action
recognition, such as UCF↔HMDB[5], UCF↔Olimpics
Sports[5] and Kinetics→NEC-Drone[9]; (ii) a novel deep
architecture that seamlessly integrates three components: a
dual head structure to learn two different but coherent mod-
els (based on classification loss and contrastive losses, re-
spectively), an inter-domain contrastive loss, which exploits
source labels and target pseudo-labels for domain distribu-
tion alignment, and a multi-level contrastive loss for target
feature learning; (iii) a novel large-scale synthetic-to-real
dataset, Mixamo→Kinetics, devised for testing UDA meth-
ods for action recognition.

To the best of our knowledge, the dataset we propose is
the only benchmark that will be publicly available for as-
sessing the ability of UDA approaches to transfer knowl-
edge from the synthetic to the real domain in videos.

2. Related Work

Action recognition. Different deep architectures for ac-
tion recognition have been proposed in the last few years.
For instance, in [13], two-stream networks were proposed
to jointly use RGB and optical flow frames within two 2D
CNNs, modelling temporal information. Zhou et al. [58]
introduced Temporal Relation Networks, a deep model that
employs a specialised pooling layer to model temporal re-
lations between frames. Other works considered 3D CNNs
to learn spatio-temporal features. Tran et al. [48] proposed
C3D, which directly employs 3D convolutions rather than
2D ones. Carreira et al. [4] introduced I3D, a deep network
that integrates inflated 2D convolutional filters to leverage
large-scale pre-trained 2D models. Very recently, some
other works have proposed approaches based on contrastive
learning for extracting useful motion representations for ac-
tion recognition [56, 39, 54, 37]. Different from our work,
all mentioned studies tackle the traditional supervised ac-
tion recognition problem (no domain shift).

UDA for images. Existing approaches mostly differ on
the strategy used to cope with domain shift. One cate-
gory of methods performs domain distribution alignment by
matching statistical moments of the first and second-order
of the source and target data distributions [28, 2, 40, 31, 50].
Recently, these methods were improved considering la-
bel information during the alignment process [21]. An-
other prominent strategy in UDA is adversarial training
[27, 19, 15, 49], where discriminative and domain-agnostic
feature representations are learned by coupling a domain
discriminator with the source classification loss. Simi-
lar to moment matching methods, the best performing ap-
proaches of this category leverage the semantic informa-
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tion given by classifier predictions to perform adversarial
adaptation. Generative adversarial networks [16] have also
been considered to address the domain shift [17, 53, 42],
as they permit to generate target-like images that can then
be used to train a target classification model. Furthermore,
recent works have considered self-supervised learning and
auxiliary tasks, such as predicting rotations [47] or image
patches permutations in a jigsaw setting [1] to learn domain-
invariant features.

Our work is related to previous methods based on se-
mantic distribution alignment [27, 21, 33], but innovates
over past literature since adaptation is performed thanks to a
novel domain contrastive alignment loss. CO2A also shares
some similarities with previous UDA approaches with dou-
ble classifier structure [41]. However, one particular aspect
of CO2A is the choice of the supervised contrastive loss [22]
for one of the two network heads. Lastly, contrastive learn-
ing for UDA has been recently studied in [36, 23]. How-
ever, the deep architectures in [36, 23] are radically differ-
ent from ours and do not exploit contrastive learning within
a two-headed neural network. Moreover, these works do not
tackle the more challenging problem of video action recog-
nition.

UDA for action recognition. Despite its importance
in many real-world applications, only a few works ad-
dressed the problem of domain shift for action recognition
[34, 35, 5, 9, 10]. Chen et al. [5] proposed the Temporal
Attentive Adversarial Adaptation Network (TA3N), which
integrates a temporal relation module to simultaneously
learn the temporal dynamics and achieve domain alignment.
Pan et al. [35] introduced Temporal Co-attention Network
(TCoN), a deep architecture with a cross-domain attention
module to match the distributions of temporally aligned fea-
tures between source and target domains. In [9], the prob-
lem of UDA for recognising actions was considered in the
specific case of videos collected by drones and an adver-
sarial adaptation framework was proposed. Furthermore, in
[10], the problem of open-set domain adaptation has been
also investigated. Choi et al. [10] introduced an atten-
tion mechanism to determine discriminative clips and used
this information for video-level alignment within an adver-
sarial learning framework. In [34], a domain adaptation
approach based on self-supervision and multimodal learn-
ing (RGB+optical flow) was proposed for fine-grained first-
person view action recognition. RGB+optical flow modal-
ities were also exploited in [45] within a contrastive ap-
proach. Whereas [45] considers positives using the same
data on another modality and negatives by perturbing the
frames temporally, we consider positives and negatives in
different ways: using the real labels for a source only con-
trastive loss, using real and pseudo-labels for an across do-
main contrastive loss, and using different augmentations for
a target only contrastive. None of these previous works con-
siders a dual-head contrastive framework for learning and
aligning source and target video representations.

Table 1: UDA benchmarks for video action recognition

Dataset # classes # videos 1st person 3rd person Methods

HMDB↔UCF 12 3,209 X [10] [5] [35]
Kinetics↔NEC Drone 7 994 X [9] [10]
UCF↔Olympic Sports 6 1,145 X [5] [35]
Charades-Ego dataset 157 4,000 X X [44] [9]
EPIC Kitchens DA 8 ∼ 8, 500 X [34]

Mixamo→Kinetics 14 36,195 X This work

UDA benchmarks for action recognition. Table 1 pro-
vides an overview of the publicly available benchmarks for
UDA and video action recognition along with the previ-
ous UDA methods that have considered them. Only three
datasets, HMDB↔UCF [5], Kinetics→NEC Drone [9] and
UCF↔Olympic Sports [5] are available in a third-person
view setting. Additionally, two other datasets for domain
adaptation in a first-person view setting have been intro-
duced, EPIC Kitchens [12] DA, and, in the hybrid first-
person/third-person view settings, Charades-Ego dataset
[44]. However, first-person and third-person views set-
ting are quite different in terms of visual appearance. The
Jester dataset used in [35] has not been publicly released,
whereas the Gameplay dataset considered in [5] only ad-
dresses the real→synthetic scenario. As shown in Table
1, the proposed Mixamo→Kinetics dataset is significantly
larger than the existing benchmarks. Furthermore, it can be
easily extended in the future by generating more synthetic
data. There are other synthetically-generated datasets for
action recognition, such as SURREAL [52], SURREACT
[51] and 3DPeople [38]. However, all of them render syn-
thetic humans over a static photo background. Furthermore,
they have not been generated with the purpose of UDA, and
the overlap in terms of categories with existing datasets of
real videos, e.g. Kinetics [3], is very limited.

3. Mixamo→Kinetics dataset
Synthetically generated images and videos are nowadays

recognised as an important resource in the computer vision
community and are widely used in many tasks. By using
computer graphics software and simulators, it is possible
to generate large-scale datasets with virtually infinite visual
variability and with annotations readily available. How-
ever, when models are trained on synthetic data but tested
on images and videos from the real world, the problem
of domain shift naturally arises. This section describes
Mixamo→Kinetics, the first large scale dataset for bench-
marking domain adaptation methods for action recognition
in the challenging task of transferring knowledge from the
synthetic to the real domain. Our dataset comprises 36, 195
videos, divided into 14 action categories and two domains,
i.e., the source domain (synthetic videos from Mixamo) and
the target domain (real videos from Kinetics).

Source dataset (Mixamo). It consists of 24, 533 videos
synthetically generated using the 3D characters from Mix-
amo. The dataset comprises videos depicting actions per-
formed by 6 distinct avatars, with different backgrounds,
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Figure 2: Overview of the proposed CO2A approach.

camera positions and random 3D objects in the scene. Also,
key-points are provided for each character following the
scheme from the COCO dataset [26], but without the key-
points for eyes and ears. Each frame is generated with a
resolution of 512 by 512 and the mean length of the videos
is 138 frames. To generate each video, we first created a
Blender graphic environment; subsequently, for each video,
the background and floor images were randomly selected
from a set of ∼200 natural images and geometric patterns
(e.g., wood floor or other tiling patterns), all collected from
the web. Different images were chosen for the background
and the floor to avoid the unnatural effect of a “floating”
avatar. We further enriched each scene with random 3D ob-
jects of varying shape, size and position. Since the objects
were positioned using a predefined reference grid around
the character, partial occlusions could be performed with-
out the risk of completely hiding the character. Finally, we
added to the scene a static sun-like light source and rendered
it from 8 different camera angles. Using the light source, it
was possible to produce realistic shadows for both the char-
acters and the 3D objects in the scene, which is not possible
on datasets that simply place a character in front of a back-
ground image. We also plan on generating a larger version
of the dataset, with more camera angles and moving light
source.

Target dataset (Kinetics). The target dataset was cre-
ated considering 11, 662 videos from 14 action categories
extracted from the Kinetics dataset [3]. The overlapping
actions between the two datasets are swing dancing, break-
dancing, salsa dancing, throwing, capoeira, jogging, shout-
ing, side kick, clapping, texting, golf putting, squat, punch-
ing and backflip. Additional details about the dataset are
provided in the supplementary material.

4. UDA for Action Recognition
4.1. Problem and Notation

The problem of UDA for action recognition can be for-
malised as follows. Let X be the sequence of frames from
videos and Y the set of action categories. Given a labelled
source domain S and an unlabelled target domain T , the
aim is to learn a function fΘ : X → Y , where Θ denotes
a model’s parameters, that successfully predicts the corre-
sponding action category from videos of the target domain.

Since no annotation is available for the target domain, the
training process leverages information from labelled videos
of the source domain. The training set T = TS

⋃
TT is

composed by NS annotated videos in the source domain
TS = {(V S1 , Y S1 ), . . . , (V SNS

, Y SNS
)} and NT unlabelled

videos from the target domain TT = {V T1 , . . . , V TNT
}. The

main challenge of learning fΘ lies in addressing the do-
main shift, i.e. the fact that the data from the two domains
are drawn from two different distributions pS(V, Y ) and
pT (V, Y ) over X × Y .

4.2. Proposed Architecture

Overview. An overview of the proposed architecture is il-
lustrated in Figure 2. First, source and target videos are
divided into K non-overlapping parts of equal size, de-
nominated clips. For simplicity, we omitted the fact that
we used a minibatch of data and augmented target data.
More formally, a video Vi is divided into K clips Ci,1, ...,
Ci,K consisting of evenly spaced frames, which are fed to
an encoder network φ(·) that produces clip-level features
ci,j = φ(Ci,j). From here onward, the video indexes i are
omitted for simplicity (cj indicates ci,j). At this level, a
self-supervised contrastive loss LCc is applied to learn clip-
level feature representations. Following [6], we apply a pro-
jection head before computing the contrastive loss. In prac-
tice, the clip-level features cj are passed through a module
that outputs zcj = ωc(cj) to which the contrastive loss is
applied.

To produce video representations, clip features cj are ag-
gregated into video-level feature v =

∑K
j=1 αjcj , where

the weight vector α ∈ RK is computed using a simple
attention module κ(·), implemented as multi-layer percep-
tron (MLP) that receivesK clip feature vectors as input, i.e.
α = κ(c1, . . . , cK). Subsequently, v is fed to two sepa-
rate network branches, with a similar base structure, imple-
menting our two-headed architecture. In the first branch,
the classification head hCE(·) produces logits l = hCE(v).
In the second branch, v is first provided as input to the con-
trastive head hCT (·) to produce features v̄ = hCT (v), and
then to a projection head ωv , resulting in a latent vector
zv = ωv(v̄). The first head is trained using a cross-entropy
loss LCE , whereas the second head uses a combination of
three contrastive losses: a supervised contrastive loss LSC
[22] for source data, a self-supervised contrastive loss LCv
to learn better video-level representations for the target data
and a class-aware inter-domain contrastive loss LIDC that
aligns the distributions of the features of both domains. Fi-
nally, the stability loss LST enforces an agreement between
the predictions of the two main network heads hCE(·) and
hCT (·).

Our network is trained on minibatches of size 3M , i.e.
composed ofMS randomly chosen source videos, MT ran-
domly chosen target videos and their MT augmented ver-
sions. So we end up with MS source videos and 2MT tar-
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get videos. In practice, data augmentations are only used for
target data to train the unsupervised contrastive loss terms.

Next, we describe in detail the main components of our
approach: (i) the proposed multi-scale feature representa-
tions, where we used self-supervised contrastive learning
to compute both video-level and clip-level features; (ii) our
novel contrastive domain alignment loss LIDC and (iii) our
novel dual-head classifier structure.

Multi-scale Contrastive Video Feature Learning.
Clip-level and video-level features carry different informa-
tion about a video [32]. While the first ones focus on sub-
parts of an action, the second ones are intended to repre-
sent the complete action. This work proposes to leverage
the complementary clip-level and video-level information
to learn representations on the target domain within a con-
trastive learning framework. Specifically, we resort to data
augmentation on the target domain and, inspired by recent
works on video representation learning [39], we define two
self-supervised contrastive loss terms, one at video-level
and the other at clip-level.

At the video-level, we use the output of the projection
head ωv , which produces the projected video-level features
zv , and define the loss:

LiCv = −
2MT∑
j=1

1ϕi,j
· log

sz
v
i ,z

v
j∑2MT

p=1 1i6=p · sz
v
i ,z

v
p

. (1)

where szi,zj = exp(
zi·zj/τ
||zi||·||zj || ), τ > 0 is a temperature

parameter, 1 is an indicator function which is 1 if its argu-
ment is true or 0 otherwise, and ϕi,j is true if i and j are two
different augmentations of the same video. In practice, this
loss has the effect of pulling together representations in the
embedding space of augmented versions of the same target
video (positive samples), while pushing away those associ-
ated with different videos in the same mini-batch (negative
samples).

Similarly, at clip-level, we use the output of the projec-
tion head ωc, which produces the projected clip-level fea-
tures zcj , and define the loss:

LiCc = − 1

K

2MT∑
j=1

K∑
u=1

1ϕi,j log
sz

cu
i ,zcu

j

sz
cu
i ,zcu

j + Negi,u
, (2)

where Negi,u =
∑2MT

p=1 1p 6=i,p 6=j
∑K
v=1 s

zcu
i ,zcv

p is the set
of negatives for instance i and clip u. In practice, this loss
considers different augmentations of the same clip as posi-
tives and clips from different videos as negatives. Selecting
different clips from the same video to form the set of neg-
atives, in fact, could be harmful, since an action may span
over multiple clips. The final self-supervised contrastive
loss on target data is:

LiC = LiCc + LiCv (3)

It is worth noting that the two proposed losses are comple-
mentary since they use different notions of positives and
negatives and operate at different temporal resolutions. Our
experimental results (Sec. 5) demonstrate the benefit of
our multi-scale self-supervised video representation learn-
ing strategy.
Contrastive Domain Alignment. To specifically address
the domain shift problem and perform feature alignment
of the source and target data, we introduce a novel inter-
domain contrastive loss. Previous works on supervised con-
trastive learning [22] introduced a loss that has the effect of
pulling together in the embedding space samples belong-
ing to the same class while pushing far apart samples from
different classes. In practice, in [22], positive and nega-
tive samples are obtained by only considering label infor-
mation. In this work, we propose to revisit this idea by
jointly combining samples from the two domains. However,
while each source video V S has an associated label Y S , for
the unsupervised target videos, we compute pseudo-labels
Ỹ T = argmax σ(lT ), where σ denotes the softmax oper-
ator. We employed a simple pseudo-labelling strategy, but
other more complex strategies could be used. Therefore, we
propose to consider as positives, instances from different
domains that share the same label/pseudo-label, while in-
stances with different labels/pseudo-labels and different do-
mains are regarded as negatives. In this way, feature align-
ment among different domains is realised, while also taking
into account semantic information. Formally, our proposed
inter-domain contrastive loss is defined as:

LiIDC = − 1

γi

3M∑
j=1

1ρi,j · 1Ỹi=Ỹj
· log

sz
v
i ,z

v
j∑3M

p=1 1ρi,p · sz
v
i ,z

v
p

,

(4)
where 1ρa,b

= 1a/∈Ω1b/∈Ω1D(a)6=D(b), γi is the number
of positives for instance i and D(·) is a function that re-
turns the domain of an instance. Ω denotes the set of target
instances for which pseudo-labels are not considered reli-
able. Note that alternative losses such as those based on
domain discrepancy minimisation and adversarial learning
are designed to encourage the network to produce domain-
agnostic features, whereas our proposed inter-domain con-
trastive loss encourages the network to produce tight rep-
resentations and exploits label/pseudo-label information to
push together features belonging to the same class and pull
apart those belonging to different classes. To limit the
effect of noise that is typically present in pseudo-labels,
we propose to employ a simple sample filtering proce-
dure: target instances are added to Ω when H(σ(lTi )) >
log(nclasses)/η, where H is an entropy function and η a
user-defined parameter that represents the percentage of the
maximum allowed entropy.

Two-headed network. As discussed above, we design
an architecture with two different heads. Each head is su-
pervised with different losses. The first head, hCE , is mainly
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trained with a cross-entropy loss on source instances, i.e.:

LiCE = −
∑

Y Si log σ(li). (5)

Differently, the second head, hCT , is trained using the con-
trastive losses. Besides the previously described LiCv and
LiIDC , we also introduce a supervised contrastive loss [22]:

LiSC = − 1

γi

M∑
j=1

1i 6=j · 1Ỹi=Ỹj
· log

sz
v
i,z

v
j∑MS

p=1 1i 6=p · sz
v
i,z

v
p

.

(6)
By leveraging from source supervision in a different way,
the two heads promote the learning of different feature rep-
resentations. To maximally benefit from this dual head
structure, we introduce an additional loss term that enforces
coherence between the predictions of the two heads. Be-
sides stabilising the training of both heads, it makes addi-
tional information flow directly from the hCT to hCE and
vice versa. As the contrastive head operates on instance
pairs, we propose to define this coherence loss considering
pairwise predictions associated to pairs of source and target
videos in the minibatch, as follows:

Li,jST = qi,j log(pi,j) + (1− qi,j) log(1− pi,j) (7)

Here pi,j = lilj
T denotes the pairwise predictions com-

puted on source video i and target video j using of the log-
its produced by hCE . Similarly, qi,j indicates the binary
prediction label which is computed though hCT as:

qi,j =

{
1, if cos(v̄i, v̄j) > θ

0, otherwise
(8)

where cos(·, ·) indicates the cosine similarity between two
vectors and θ is a threshold that we set equal to 0.5.

Overall Loss. The whole model is trained by combining
the losses and weighting them accordingly as follows:

L =
1

M

M∑
i=1

wceLiCE + wscLiSC +
1

µ

3M∑
i=1

widcLiIDC+

1

2M

2M∑
i=1

wcLiC +
1

2M2

2M∑
i=1

M∑
j=1

wstLi,jST ,

(9)
where µ is the number of instances with at least one posi-
tive.

Inference. At inference time, the projection heads ωc
and ωv , and hCT are discarded. Data is only forwarded
through the shared backbone and hCE , producing the logits
l that are further normalised by a softmax function to gen-
erate the classes probabilities. It is worth noting that while
at training time the addition of the double head implies an
increase in terms of parameters, during inference, since the
ωc, ωv and hCT are discarded, the number of parameters is
the same as if we used a single head architecture.

5. Experimental Results
5.1. Setup

Datasets. We conduct experiments on three standard
UDA benchmarks for action recognition: UCF↔HMDB
[5], UCF↔Olympic Sports [5], Kinetics→NEC-Drone
[9], and on our newly proposed Mixamo→Kinetics. In
UCF↔HMDB and UCF↔Olympic Sports, the domain shift
is caused by varying visual appearance, lighting, camera
viewpoint, etc. However, source and target domains are
both associated with videos depicting real scenes. In the
Kinetics→NEC-Drone, the domain shift is large as data of
the source domain consist of Youtube videos, while the tar-
get domain comprises videos taken from a camera installed
on a drone. Lastly, the Mixamo→Kinetics dataset presents
the most severe domain shift, comprising synthetically gen-
erated video sequences in the source domain and Youtube
videos in the target.
Baselines. We compare with three state-of-the-art UDA
methods for action recognition: (i) TA3N [5], consider-
ing both the original implementation of the 2D encoder
(from [59]) and the adapted 3D version (similar to [10])
using the I3D [4] backbone; (ii) TCoN [35], considering
the Resnet101 architecture as backbone, and (iii) SAVA
[10], which employs I3D as clip feature extractor. We did
not compare with [45] because their approach combines
RGB with optical flow information, whereas ours solely
uses RGB. Results are also reported for each backbone con-
sidering the following settings: (i) supervised source only,
when the network is trained only with supervised source
data, and (ii) supervised target only, when the network is
trained (fine-tuned) with supervised target data. These set-
tings correspond respectively to a lower and an upper bound
for UDA methods. Note that while code for TA3N [5]
is publicly available, we did not find implementations for
TCoN [35] and SAVA [10]. The associated results are taken
from the original papers. Methods are compared in terms of
Top-1 Accuracy.
Implementation details. We employ an I3D architecture as
backbone network to be comparable with our closest com-
petitor [10]. φ(·) since . The I3D is pretrained on Kinet-
ics for all datasets, except on the Mixamo→Kinetics where
it is initialised by inflating the weights from an Imagenet-
pretrained Inception-v1 network, as in [4], and fine-tuned
on Mixamo labelled data. We implemented κ as MLP with
architecture Linear/ReLU/Linear/Sigmoid that receives as
input K = 4 clips, following [10]. The two heads hCE(·)
and hCT (·) are both implemented as 2-layers MLPs with
ReLU activation and without BatchNorm layers, with the
only difference that a linear classifier is appended to hCE(·).
Both take as input the video-level features, but hCE(·) out-
puts a vector of size equal to the number of classes and
hCT (·) a vector of size 256. The projection heads ωv and
ωc are both implemented as Linear/ReLU/Linear with out-
put 128. The input space of ωv is 256, whereas in ωc it is
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Table 2: Results on UCF↔HMDB

Method Encoder U→H H→U
Supervised source only [5]

Resnet101-TRN

71.7 73.9
DANN [14] 75.2 76.3
JAN [29] 74.7 79.6
AdaBN [25] 72.2 77.4
MCD [41] 73.8 79.3
TA3N [5] 78.3 81.8
Supervised target only [5] 82.8 94.9

Supervised source only [7]
I3D-based TRN

80.6 88.8
TA3N [5] 81.4 90.5
Supervised target only [5] 93.1 97.0

Supervised source only [10]
I3D

80.3 88.8
SAVA [10] 82.2 91.2
Supervised target only [10] 95.0 96.8

TCoN [35] 2D/3D CNN 87.2 89.1

CO2A I3D 87.8 95.8

1024.
We perform video-based data augmentations on target

data. Following [39], given a video, the same transforma-
tion is applied to all frames coherently. Colour, spatial and
random horizontal flip augmentations are considered. Ad-
ditional details about augmentations are reported in the sup-
plementary material.

Hyper-parameters selection is performed following a
common protocol in UDA literature [43], i.e. by select-
ing a subset (here, 5 annotated videos per class) in the tar-
get training set and by using them as validation set. On
HMDB↔UCF and UCF↔Olimpic, the losses weights are
wce = 1, wsc = 1, widc = 1.5, wc = 0.2 and wst = 0.02;
for Kinetics→NEC-Drone we set widc = 0.2, wc = 1.2 and
wst = 0.01 and for Mixamo→Kinetics we set widc = 2,
wc = 0.2 and wst = 0.02. All values were found us-
ing grid-search. We trained our network with SGD with
learning rate 0.02, momentum of 0.9 and weight decay of
1−9. We set η = 6 for Mixamo→Kinetics and η = 4 for
the other experiments. Experiments were carried out on 4
Nvidia RTX 5000 GPUs for around 1 hour HMDB↔UCF
and UCF↔Olimpic, 3 hours for Kinetics→NEC-Drone and
4 hours for Mixamo→Kinetics.

5.2. Results

Comparison with state of the art. We first report the re-
sults obtained comparing our approach with state-of-the-
art methods. Tables 2, 3 and 4 show the results of our
experiments on HMDB↔UCF, UCF↔Olympic Sports and
Kinetics→NEC-Drone, respectively. In all tables, the best
results are indicated in bold and the second-best in italic.

As shown in Table 2, our approach outperforms all pre-
vious methods for the HMDB↔UCF setting. In particular,
it achieves an accuracy of 87.8% for U→H and 95.8% for
H→U, outperforming its best competitor, SAVA [10] with
the same I3D backbone, by 5% and almost 4%, respectively.
Notably, all recent UDA methods specifically designed for

Table 3: Results on UCF↔Olympic Sports

Method U→OS OS→U
W. Sultani et al. [46] 33.3 47.9
T. Xu et al. [55] 87.0 75.0
AMLS (GFK) [20] 84.6 86.4
AMLS (SA) [20] 83.9 86.0
DAAA [20] 91.6 89.9
TA3N [5] (Resnet101-TRN) 98.2 92.9
TCoN [35] (Resnet101-TRN) 96.8 96.7
SAVA [10] (I3D) 98.1 96.7

CO2A (I3D) 100 97.5

action recognition, i.e. TA3N [5], TCoN [35], SAVA [10]
and our method, significantly outperform traditional image-
based UDA approaches, i.e. DANN [14], JAN [29], AdaBN
[25] and MCD [41].

Similar observations can be made looking at results in
Table 3. Our method outperforms the best competing meth-
ods, i.e. TA3N [5] on UCF→Olympic Sports and TCoN
[35] and SAVA [10] on Olympic Sports→UCF. Again,
modern UDA methods for action recognition, , i.e. TA3N
[5], TCoN [35], SAVA [10] and CO2A, are significantly
more accurate than traditional techniques [20, 46, 55].

Finally, Table 4 reports the results obtained in the more
challenging Kinetics→NEC-Drone setting. The gap in per-
formance between supervised source only (lower bound)
and supervised target only (upper bound) indicates a do-
main shift that is significantly more pronounced than that
observed in the HMDB↔UCF and the UCF↔Olympic
Sports datasets. Even in this challenging setting, our ap-
proach outperforms state of the art methods. In particular,
the accuracy of CO2A is 1.6% higher than its best competi-
tor SAVA [10].
Results on the Mixamo→Kinetics dataset. Table 5
shows the results obtained on our newly proposed
Mixamo→Kinetics dataset. This setting is much more chal-
lenging than previous ones, not only due to the large domain
gap but also because it contains more action categories than
Kinetics→NEC-Drone (14 classes versus 7) and previous
benchmarks. For this dataset, we only consider baseline
methods for which the code is publicly available, i.e. TA3N
[5]. Additionally, we run a previous image-based UDA ap-
proach, i.e. ADDA [49]. Due to the intrinsic difficulty of the
Mixamo→Kinetics dataset, it is not surprising that all the
methods achieve lower performance than in other settings.
Still, our approach sets the state-of-the-art, outperforming
its best competitor TA3N [5].

The table also reports the performance of CO2A and
baselines considering a weakly supervised setting, i.e. as-
suming that annotations are available for 5 randomly se-
lected target instances per class. As shown in the table, our
method again outperforms the competitors. The table addi-
tionally reports, as upper bound, the score of the supervised
target only method, which considers annotations available
on the entire target training set. The large gap between the
performance of UDA methods and the upper bound encour-
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Table 4: Results on Kinetics→NEC-Drone.

Method Encoder Top-1 acc
Supervised source only [5] ResNet-101-based TRN 15.8
TA3N [5] ResNet-101-based TRN 25.0

Supervised source only [5] I3D-based TRN 15.8
TA3N [5] I3D-based TRN 28.1

Supervised source only [10] I3D 17.2
DANN [14] I3D 22.3
ADDA [49] I3D 23.7
Choi et al. [9] (on val set) I3D 15.1
SAVA [10] I3D 31.6
Supervised target only I3D 81.7

CO2A I3D 33.2

Table 5: Results on Mixamo→Kinetics.

Method Weak Supervision Encoder Top-1 acc
Supervised source only I3D 11.2

ADDA [49] I3D 11.0
TA3N [5] Resnet101-TRN 7.0
TA3N [5] I3D-based TRN 10.0

ADDA [49] X I3D 17.0
TA3N [5] X Resnet101-TRN 13.0
TA3N [5] X I3D-based TRN 19.1

Supervised target only X I3D 79.3

CO2A I3D 16.4
CO2A X I3D 20.1

ages further research on this challenging synthetic-to-real
UDA setting that we introduced with this paper.
Ablation Study. We also perform an ablation study to
assess and empirically demonstrate the importance of our
technical contributions. Table 6 reports the results of a set
of experiments conducted to analyze the role of the dis-
tinct losses employed in our framework. The ablation ex-
periments consider the HMDB↔UCF and Kinetics→NEC-
Drone datasets and report results obtained by disabling one
loss at the time. Looking at Table 6 the following obser-
vations can be made: (i) The scores obtained with the full
model (last line of the table) show that the different losses
are complementary and the model achieves the best re-
sults when combining all of them; (ii) the inter-domain loss
LIDC is beneficial in all the settings, enabling to reduce the
domain shift by promoting domain distribution alignment;
(iii) the heads consistency loss LST provides a significant
benefit in term of performance in the most challenging set-
ting, i.e. in the Kinetics→NEC-Drone setting: the accuracy
drops by 6% when this loss is disabled; (iv) disabling the
clip-level and video-level losses is also detrimental for per-
formance, with different performance among datasets. This
suggests that both video-level and clip-level information are
important to describe action videos. Lastly, (vi) disabling
the supervised contrastive loss greatly reduces the perfor-
mance on HMDB→UCF and Kinetics→NEC-Drone, which
is related to the fact that the second head is not performing
on par on source data.

Figure 3 shows the results of a sensitivity analysis of
our model concerning the weights associated to LIDC and
LSC .The sensitivity analysis for the weights of LCc , LCv
and LST are provided in the supplementary material due to
lack of space. We considered the HMDB↔UCF setting and

Table 6: Ablation study on HMDB↔UCF and
Kinetics→NEC-Drone: importance of different losses.

Method H→U U→H K→N-D.

CO2A w/o LIDC 92.5 87.5 30.9
CO2A w/o LST 94.4 82.4 27.0
CO2A w/o LCc 91.9 85.5 29.6
CO2A w/o LCv 95.8 81.5 24.8
CO2A w/o LSC 91.5 86.9 28.1

CO2A (full) 95.8 87.8 33.2
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HMDB↔UCF

UCF↔HMDB

Figure 3: Sensitivity analysis of the weights of the losses
LIDC and LSC .

we show that both losses are beneficial for the final score
when the optimal values of their weights are set. Figure 3
(left) shows that a value ofwidc equal to zero corresponds to
the worst performance since no domain distribution align-
ment takes place. Figure 3 (right) shows that a value of wsc
equal to zero, corresponding to no supervision provided on
the contrastive head, is suboptimal and performance can be
improved if supervision on both network heads is provided.
Similarly, using a high weight for LSC implies relying too
strongly on source data and losing the benefit of the losses
applied to the target data. Additional results are provided in
the supplementary material, due to lack of space.

6. Conclusions
We presented CO2A, a novel UDA approach for video

action recognition that explores conditional feature align-
ment across domains within a contrastive learning frame-
work. Our approach achieved state-of-the-art perfor-
mance on three publicly available UDA benchmarks.
Moreover, we introduced the novel large-scale dataset
Mixamo→Kinetics. This new benchmark will foster future
research in domain adaptation from synthetic to real video
sequences. In the future, we plan to improve our approach
by integrating more sophisticated methods for obtaining re-
liable pseudo-labels. Additionally, we plan to extend Mix-
amo to include videos generated with random light source
position and strength and with moving cameras.
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