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This supplementary material includes details of our net-
work architecture (Sec. 1) and our synthetic testing set (Sec.
2), additional ablation studies (Sec. 3), and additional qual-
itative results (Sec. 4).

1. Network Architecture

We adopted the GridNet architecture [11, 15]. Our net-
work consists of six columns and four rows. As shown in
Figure 1, our network includes three main units, which are:
the residual unit (shown in blue in Figure 1), the downsam-
pling unit (shown in green in Figure 1), and the upsampling
unit (shown in yellow in Figure 1).

The number of input/output channels, stride, and
padding size of each conv layer are shown in Figure 1-(B).
The first residual unit of our network accepts concatenated
input images with 3×k channels, where k refers to the num-
ber of images rendered with k WB settings. For example,
when using WB={t,d,s}, the value of k is three. Regard-
less of the value of k, we set the number of output channels
of the first residual to unit to eight.

Each residual block (except for the first one), produces
features with the same dimensions of the input feature. For
the first three columns, the dimensions of each feature re-
ceived from the upper row are reduced by two, while the
number of output channels is duplicated, as shown in the
downsampling unit in Figure 1-(B). In contrast, the upsam-
pling unit (shown in Figure 1-[B]) increases the dimensions
of the received features by two in the last three columns.
Lastly, the last residual unit produces output weights with k
channels.

2. Our Synthetic Test Set

As mentioned in the main paper, we have generated a set
of 150 images with mixed illuminations. The ground-truth
of each image is provided by rendering the same scene with
a fixed color temperature used for all light sources in the
scene and the camera AWB.
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(B) Details of main block of the network

(A) Network architecture

Figure 1: Network architecture. We adopted the GridNet
architecture [11, 15], as shown in (A). (B) shows the details
of the residual, downsampling, and upsampling units. The
symbol c refer to the number of channels in each conv layer.

Existing paired multi-illuminant datasets provide
ground-truth images as either color maps or albedo layers
(i.e., reflectance) [9, 8, 14, 13]. For instance, the two-
illuminant dataset [8] includes 78 images (58 laboratory
images taken under close-to-ideal conditions and 20
real-world images). Each test image has a corresponding
ground-truth illuminant color map, as shown in Figure
2-(B). Unfortunately, the two-illuminant dataset [8] cannot



Table 1: Impact of ensembling and edge-aware smoothing (EAS) [6] at inference time. In this set of experiments, we used
WB={t,d,s} with training patch-size p = 64. We reported the mean, first, second (median), and third quantile (Q1, Q2,
and Q3) of mean square error (MSE), mean angular error (MAE), and △E 2000 [18]. The top results are indicated with
yellow and bold.

MSE MAE △E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
w/o ensembling, w/o EAS 849.33 694.68 846.80 1051.24 5.58° 4.55° 5.05° 6.46° 10.73 9.51 10.76 11.95
w/ ensembling, w/o EAS 831.41 662.25 855.24 1005.04 5.42° 4.38° 4.98° 6.08° 10.64 9.46 10.66 11.91
w/ ensembling, w/ EAS 819.47 655.88 845.79 1000.82 5.43° 4.27° 4.89° 6.23° 10.61 9.42 10.72 11.81

(A) Input image (B) Illuminant map (D) Ground-truth image

Figure 2: Example from the two-illuminant dataset [8]. (A)
Input sRGB image. (B) Provided ground-truth illuminant
map. (C) Generated ground-truth image using the illumi-
nant map in (B).

be used by our method as it does not provide the same
scene rendered with different WB settings. The provided
raw images are in the PNG format and there are no DNG
metadata provided to render such images to sRGB with
different WB settings. In addition, creating the final
ground-truth image in sRGB space, given the ground-truth
illuminant map, does not always give satisfying results; see
the specular region shown in Figure 2-(C).

Recently, the MIST dataset [14, 13] was generated by
rendering 3D scenes using Blender Cycles [1]. The MIST
dataset was proposed to handle the limitations of existing
multi-illuminant datasets (e.g., [8, 12, 7]) by providing ac-
curate ground-truth image intrinsic properties (i.e., albedo,
diffuse, and specular layers) after an accurate measurement
of the illumination at every point in each 3D scene. Despite
its useful impact on testing image intrinsic decomposition
methods, there is no ground-truth image provided for our
task—namely, pixel-wise image white balancing.

Due to the aforementioned limitations of existing multi-
illuminant test sets, we generated our test set with accurate
ground-truth images for evaluating WB methods targeting
mixed-illuminant scenes; see Figure 3

3. Additional Ablation Studies

In the main paper, we showed the results of ablation stud-
ies on the impact of different settings, including the size of
training patches (p), the WB settings used to render input
small images, and the smoothing loss term (Ls).

In this section, we show additional ablation study con-
ducted to show the impact of the ensembling step and the
post-processing edge-aware smoothing (EAS) step [6]. Ta-

ble 1 shows the results of our method with and without the
ensemble approach and the EAS post-processing step. The
size of the input images is 384×384 pixels when ensembling
is applied; otherwise, we used images of 256×256 pixels.
Empirically, we found that image size of 256×256 pixels
or 128×128 pixels give always the best results when the
ensemble approach is not used.

Figures 4 and 5 show qualitative comparisons of our re-
sults with and without the ensembling and the EAS steps.
As shown, when the ensemble testing is used, our predicted
weights have more local coherence, which is further im-
proved when using the EAS step.

4. Additional Results
In the main paper, we reported quantitative results on our

test set of our method and other methods for WB correction,
which are: gray pixel [16], grayness index [17], KNN WB
[5], Interactive WB [4], and Deep WB [3]. Here, we show
qualitative comparisons between our method and the afore-
mentioned methods in Figure 6.

Finally, we show additional results on the MIT-Adobe
5K dataset [10] in Figure . Note that none of cam-
eras/images in these sets were used in training either our
method or the other methods.
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(A) Rendered with 7500 Kelvin (K) (B) Rendered with 5500 K (C) Rendered with 3800 K (D) Ground truth

Figure 3: Examples from our synthetic test set. (A-C) Rendered images with different color temperatures that are associated
to the following WB settings: shade, daylight, and fluorescent, respectively [2]. (D) Ground-truth image.
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[11] Damien Fourure, Rémi Emonet, Elisa Fromont, Damien
Muselet, Alain Tremeau, and Christian Wolf. Residual conv-
deconv grid network for semantic segmentation. In BMVC,
2017.

[12] Arjan Gijsenij, Rui Lu, and Theo Gevers. Color constancy
for multiple light sources. IEEE Transactions on Image Pro-
cessing, 21(2):697–707, 2011.

[13] Xiangpeng Hao and Brian Funt. A multi-illuminant synthetic
image test set. Color Research & Application, 45(6):1055–
1066, 2020.

[14] Xiangpeng Hao, Brian Funt, and Hanxiao Jiang. Evaluating
colour constancy on the new mist dataset of multi-illuminant
scenes. In Color and Imaging Conference, volume 2019,
2019.

[15] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In CVPR, 2018.

[16] Yanlin Qian, Ke Chen, Jarno Nikkanen, Joni-Kristian
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(A) Initial sRGB (daylight) (C) Mapped outdoor (shade) (B) Mapped indoor (tungsten) 

(E) Daylight weigh (G) Shade weight (H) AWB result(F) Tungsten weight

(I) Daylight weight (K) Shade weight (L) AWB result(J) Tungsten weight

(M) Daylight weight (O) Shade weight (P) AWB result(N) Tungsten weight
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(D) Traditional camera AWB

Figure 4: Qualitative examples showing the impact of ensembling and edge-aware smoothing (EAS) at inference time. The
first row shows: (A) the initial rendered image with daylight white-balance setting, (B-C) indoor and outdoor high-resolution
images after mapping, and (D) the result of traditional camera AWB correction. The second row shows: (E-G) the predicted
weights without ensembling nor the EAS post-processing, along with the final AWB result after blending in (H). The third
row shows the results when using the ensemble processing. The fourth row shows the results when using ensembling and
EAS post-processing. Input images are from the the MIT-Adobe 5K dataset [10].



(A) Initial sRGB (daylight) (C) Mapped outdoor (shade) (B) Mapped indoor (tungsten) 

(E) Daylight weigh (G) Shade weight (H) AWB result(F) Tungsten weight

(I) Daylight weight (K) Shade weight (L) AWB result(J) Tungsten weight
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(D) Traditional camera AWB

Figure 5: Additional qualitative examples showing the impact of ensembling and edge-aware smoothing (EAS) at inference
time. The first row shows: (A) the initial rendered image with daylight white-balance setting, (B-C) indoor and outdoor
high-resolution images after mapping, and (D) the result of traditional camera AWB correction. The second row shows:
(E-G) the predicted weights without ensembling nor the EAS post-processing, along with the final AWB result after blending
in (H). The third row shows the results when using the ensemble processing. The fourth row shows the results when using
ensembling and EAS post-processing. Input images are from the the MIT-Adobe 5K dataset [10].



(A) Input image (C) Grayness index (D) Interactive WB

(E) KNN WB (F) Deep WB (G) Ours (H) Ground truth

E= 26.90 E= 21.20 E= 17.23

E= 19.92 E= 17.82 E=12.54

(B) Grayness pixel

E= 38.83

(A) Input image (C) Grayness index (D) Interactive WB

(E) KNN WB (F) Deep WB (G) Ours (H) Ground truth

E= 18.92 E= 14.41 E= 13.20

E= 12.96 E= 13.61 E= 12.11

(B) Grayness pixel

E= 31.77

Figure 6: Qualitative comparisons with other AWB methods on our mixed-illuminant evaluation set. Shown are the results
of the following methods: gray pixel [16], grayness index [17], interactive WB [4], KNN WB [5], deep WB [3], and our
method.



(A) Camera AWB (C) Camera AWB + Deep WB (D) Ours(B) Camera AWB + KNN WB

Figure 7: Additional qualitative comparisons with other AWB methods on the MIT-Adobe 5K dataset [10]. Shown are the
results of the following methods: gray pixel [16], grayness index [17], interactive WB [4], KNN WB [5], deep WB [3], and
our method.


