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A. Training stages and loss functions

In this section, we describe the style transfer stage, the
depth estimation stage, and relevant loss functions in more
details. Please also see Section 3 in our main paper.

A.1. Style transfer stage

In this stage, we aim to train the image-to-image transla-
tion networks GS→T and GT→S . GS→T learns a mapping
between the synthetic (i.e. source) and realistic (i.e. target)
domain. GT→S learns a mapping in the opposite direction.
Previous work [17, 16] has shown that the depth supervi-
sion can help to improve the quality of style transfer com-
pared to the standalone training of the translation networks.
Although the effect of the depth supervision seems minor
based on our experiment as shown in Table 7, we adopt it for
all experiments and jointly train the image-to-image trans-
lation networks GS→T and GT→S , and the image-to-depth
task network F with synthetic depth labels. Here, based on
previous work [17, 2], we adopt six loss functions: adver-
sarial loss Ladv , cycle consistency loss Lcycle, identity map-
ping loss Lidentity (or reconstruction loss in [17]), task loss
Ltask, smooth loss Lsmooth, and cross domain consistency
loss Lcrdoco. These losses are described in the following.

Adversarial loss We utilize adversarial training for the
image translation. Following CycleGAN [18], we employ
two generators GS→T and GT→S , and two discriminators
Ds and Dt for the source and target domains, respectively.
GS→T tries to learn the mapping from the source to the
target domain, i.e. GS→T : IS → IS→T , such that the data
distribution of the translated images from the source domain
IS→T is indistinguishable from that of the target domain IT .
Then, DT aims to distinguish between the images in the tar-
get domain IT and the translated images from the source
domain IS→T . Thus, using the technique of a least-square
loss [11] for stable training, we define adversarial loss [7]

in the target domain as

Ladv(GS→T , DT , XS , XT )

= EIT∼XT
[(DT (IT )− 1)2]

+ EIS∼XS
[(DT (GS→T (IS)))

2].

(3)

Similarly, the adversarial loss for the mapping func-
tion GT→S : IT → IT→S is introduced as
Ladv(GT→S , DS , XT , XS). Please note that as a result of
the bidirectional adversarial training, we obtain two labeled
types of images IS and IS→T , and two unlabeled types of
images IT and IT→S as shown in Fig 2 in our main paper.

Cycle consistency loss Lcycle. Generally, training GS→T

and GT→S with only the adversarial loss are highly under-
constrained. To further regularize the translation network,
we use a cycle consistency loss [18, 15]. This loss function
is based on the idea that when images are translated from
one domain to another, followed by an inverse translation,
the reconstructed images should be the same as the original,
i.e. GT→S(GS→T (IS)) ≈ IS and GS→T (GT→S(IT )) ≈
IT . Therefore, we define the cycle consistency loss as

Lcycle(GS→T , GT→S , XS , XT )

= EIS∼XS
[∥GT→S(GS→T (IS)))− IS∥1]

+ EIT∼XT
[∥GS→T (GT→S(IT ))− IT ∥1].

(4)

Identity mapping loss Lidentity. In addition to Lcycle,
we also use an identity mapping loss [18, 13] to regular-
ize the training of GS→T and GT→S . Note that in [17],
this loss function is named as ‘reconstruction loss’. The
identity mapping loss encourages GS→T and GT→S to pre-
serve image styles when the input images already belong
to the translation-target domain, i.e. GS→T (IT ) ≈ IT and



Lower is better Higher is betterMethod Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

No depth supervision 0.174 1.490 5.751 0.244 0.766 0.910 0.964
depth supervision 0.174 1.439 5.701 0.241 0.770 0.914 0.967

Table 7: Ablation studies on the effect of the depth supervision in the style transfer stage using CrDoCo* [2] on KITTI [5].

Lower is better Higher is betterMethod Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

λcrdoco = 10.0 0.178 1.269 5.845 0.245 0.742 0.910 0.970
λcrdoco = 1.0 0.168 1.228 5.498 0.235 0.771 0.921 0.973
w/o λcrdoco 0.176 1.443 5.676 0.240 0.768 0.917 0.971

Table 8: Ablation studies with the different number of λcrdoco on KITTI [5].

GT→S(IS) ≈ IS . Specifically, we define the identity map-
ping loss as

Lidentity(GS→T , GT→S , XS , XT )

= EIS∼XS
[∥GT→S(IS))− IS∥1]

+ EIT∼XT
[∥GS→T (IT )− IT ∥1].

(5)

Task loss Ltask. To train the image-to-depth task network
F , we provide supervision to F using synthetic ground truth
depth maps IS,lab. Specifically, we pass the two labeled
types of images IS and IS→T to F to obtain corresponding
depth maps PS = F (IS) and PS→T = F (IS→T ) as shown
in Fig 1 in our main paper. Since these depth maps should
have the same label IS,lab, we define the task loss as

Ltask(GS→T , F,XS)

= EIS∼XS
[∥F (IS)− IS,lab∥1]

+ EIS∼XS
[∥F (GS→T (IS))− IS,lab∥1].

(6)

Smooth loss Lsmooth. Following previous works [17, 4,
6, 8, 9, 16, 2] we utilize a a smooth loss to guide a more
reasonable depth estimation using the unlabeled images IT
and IS→T . Specifically, we use a robust penalty with an
edge-aware term for IT as

Lsmooth(F,XT ) = EIT∼XT
[|∂xF (IT )|e−|∂xIT |]

+ EIT∼XT
[|∂yF (IT )|e−|∂yIT |].

(7)

Similarly, the smooth loss for IS→T is introduced, i.e.
Lsmooth(F,XS→T ).

Cross domain consistency loss Lcrdoco. Following the
previous work [2], we also introduce a cross domain consis-
tency loss to enforce the consistency between the depth pre-
dictions of the two unlabeled types of images PT = F (IT )

and PT→S = F (IT→S). More specifically, we define the
cross domain consistency loss as

Lcrdoco(GT→S , F,XT )

= EIT∼XT
[∥F (IT )− F (GT→S(IT ))∥1].

(8)

Full objective. The overall objective function in the style
transfer stage is defined as

Lstyle transfer = Ladv + λcycle · Lcycle

+ λidentity · Lidentity

+ λtask · Ltask + λsmooth · Lsmooth

+ λcrdoco · Lcrdoco,

(9)

where each λ controls the relative importance of each ob-
jective. Then, we optimize the following min-max problem
in the style transfer stage:

F ∗ = argmin
F

min
GS→T
GT→S

max
DS ,
DT

Lstyle transfer. (10)

In later stages, we leverage GS→T and GT→S pre-
trained in this style transfer stage.

A.2. Depth estimation stage

As the last stage in our UDA framework, we fine-tune the
image-to-depth task network F trained in the SSRL stage,
by using both synthetic and real-world datasets as shown
in Fig 2 in our main paper. The network architecture in
this stage is similar to that in the style transfer stage but the
weights of the image-to-image translation networks GS→T

and GT→S are fixed for faster training. Specifically, We
train F , i.e. both Fenc and Fdec, by minimizing the follow-
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Figure 4: Qualitative results for successful and failure cases on KITTI [5].

ing objectives:

Ldepth estimation = λtask · Ltask + λsmooth · Lsmooth

+ λcrdoco · Lcrdoco,

(11)

where each λ controls the relative importance of each
objective.

B. Training detail
In this section, we provide more details of our hyper-

parameter setting and training strategy.

B.1. Hyper-parameters

As mentioned in Section 5 in our main paper, we set
the relative weights of the different loss functions based on
previous works and our experiments. Specifically, we fol-
low [18] to set λcycle = 10 for our bidirectional image-
to-image translation network. Also, similar to [17], we set
λidentity = 100, λtask = 100, λsmooth = 0.1. Lastly, we
set λcrdoco = 1 based on our ablation study as in Table 8.

B.2. Encoder with ImageNet initialization

As mentioned in Section 5 in our main paper, we lever-
age EfficientNet-B5 [14] pre-trained on ImageNet [3] as
the encoder Fenc of the task network F . EfficientNet-B5
mainly consists of 9 stages and each stage yields feature
maps with a different number of channel and resolution
sizes. To build the encoder-decoder architecture, we re-
move its last dense layer. Note that we follow previous
works [1, 10, 17, 2] to utilize skip connections [12].

During optimization, we utilize differential learning
rates for the encoder Fenc based on the stage as shown in
Table 9. More specifically. we use relatively lower learn-
ing rates for the initial few stages since these stages are al-
ready good at extracting general information, such as edges,

Stage Output channels Learning rate
1 48 lr / 103

2 24 lr / 103

3 40 lr / 103

4 64 lr / 103

5 128 lr / 102

6 176 lr / 102

7 304 lr / 101

8 512 lr / 101

9 2048 lr / 101

Table 9: Details of differential learning rates applied to
EfficientNet-B5 [14] pre-trained on ImageNet [3] as the en-
coder Fenc of the task network F . Note that we set a base
learning rate lr = 0.0004 for F as mentioned in Section 5
in our main paper.

through ImageNet initialization. By contrast, the last few
stages are trained with relatively higher learning rates to en-
able Fenc to adopt to our depth estimation task. Note that
we train our comparison methods using our task network F
together with the ImageNet initialization and the differen-
tial learning rates for a fair comparison. Please refer to our
implementation code for more details.

C. Additional qualitative result

We provide additional qualitative results in Fig 4, high-
lighting relatively successful and failure cases. From the
successful cases, our method is better at estimating con-
sistent depth values on objects’ surfaces than comparable
methods [17, 2]. It is also worth analyzing the failure cases
for future research. As a common trend, current UDA meth-
ods including our method fail to handle reflective surfaces
(or overexposed white regions) in images. We suspect that
this is because the larger surfaces with such a uniform color



do not provide useful information for depth estimation. One
possible solution would be an introduction of an attention
mechanism to utilize global information between pixels.
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