
Algorithm 1 sample-svs(N,α): Sample singular val-
ues.
Input: N ≥ 2, the size of the system; and 0 ≤ α ≤ 3N , the

target σ-factor of the system.
Output: Σ, the N × 2 array of singular values, satisfying 0 ≤

Σk,2 ≤ Σk,1 ≤ 1 (∀ k = 1, . . . , N) and
∑N

i=1(Σi,1 +
2Σi,2) = α.

1: Initialize: Σ← 0N×2, the array of singular values
2: Initialize: bl ← α− 3N + 3, sampling lower bound
3: Initialize: bu ← α, sampling upper bound
4: for k = 1 to N − 1 do
5: Sample σk,1 ∼ U(max(0, 1

3
bl),min(1, bu))

6: Update bl ← bl − σk,1 and bu ← bu − σk,1

7: Sample σk,2 ∼ U(max(0, 1
2
bl),min(σk,1,

1
2
bu))

8: Update bl ← bl − 2σk,2 + 3 and bu ← bu − 2σk,2

9: Update Σk,1 ← σk,1 and Σk,2 ← σk,2

10: end for
11: {Note the use of bu in both places below}
12: Sample σN,2 ∼ U(max(0, 1

2
(bu − 1)), 1

3
bu)

13: Set σN,1 ← bu − 2σN,2

14: Update ΣN,1 ← σN,1 and ΣN,2 ← σN,2

15: return Σ

Appendix

A. Algorithms
Described in the main paper in Section 3.2.2, we here

provide precise descriptions for the sample-svs and
sample-system algorithms, respectively in Algs. 1 and
2. We use these algorithms in our experiments to sample
the IFS codes used in our fractal dataset.

B. Fractal Pre-training Images
Here we provide additional details on the proposed frac-

tal pre-training images, including details on how the images
are rendered as well as our procedures for “just-in-time“
(on-the-fly) image generation during training.

B.1. Rendering Details

In order to add additional diversity to the rendered frac-
tal images—to encourage the neural network to learn better,
more robust representations—we supplement the rendering
process (described in Section 3.1) in three ways. First, we
follow the example of [15] and apply patch-based render-
ing, which was shown to perform better than simple point
rendering. Second, we color the points on the fractal instead
of rendering them as grayscale. And third, we add randomly
generated backgrounds. Fig. 4 shows an example rendered
fractal image with these properties (far right).

Patch-based Rendering Instead of mapping each point
in Â to a single pixel, we follow the approach taken in [15]

Algorithm 2 sample-system(N,b): Sample a system
composed of N 2D affine transforms {(Ak,bk) : k =
1, . . . , N}.
Input: N ≥ 2, the size of the system; and b, a bound on the

values of bk such that −b ≤ bk,i ≤ b
Output: A set of N affine transformation parameters (Ak,bk)

1: Initialize: S ← {}, empty set of transforms
2: Sample α ∼ U(1

2
(5 +N), 1

2
(6 +N))

3: Σ←sample-svs(N,α), N × 2 array of singular values
4: for k = 1 to N do
5: Sample θk, ϕk ∼ U(−π, π)
6: Sample dk,1, dk,2 ∼ U({−1, 1})
7: Sample bk,1, bk,2 ∼ U(−b, b)

8: Rθk ←
[
cos θk − sin θk
sin θk cos θk

]
9: Rϕk ←

[
cosϕk − sinϕk

sinϕk cosϕk

]
10: Ak ← Rθk

[
Σk,1 0
0 Σk,2

]
Rϕk

[
dk,1 0
0 dk,2

]
11: bk ←

[
bk,1
bk,2

]
12: Insert (Ak,bk) into S
13: end for
14: return S

55 60 65

63.6
67.0

CUB
Rendering

No patch
Patch

80 85
Accuracy

86.3
85.4

Stanford Cars

70 75 80

77.9
80.6

CIFAR-100

Figure 9. Fine-tuning results using models pre-trained with or
without patch-based rendering.

and map each point to a patch centered on that pixel. For
each image, a patch is sampled uniformly from the set of
3 × 3 binary patches {0, 1}3×3. This patch is applied for
each point in Â.
Note: Kataoka et al. [15] found that patch rendering pro-
vided a fairly significant performance boost to fine-tuning.
We trained a model without patch-based rendering in order
to validate their findings—the results are shown in Figure 9.
Our findings are consistent with [15], although for Stanford
Cars the results were slightly better without patch-rendering
for some reason.

Colored Fractals We adopt a simple approach for ran-
domly coloring a fractal. First, we render the fractal in
grayscale, using density-based rendering (instead of bi-
nary). Then we choose a random reference hue value, h,
and assign a hue to each pixel by treating its (normalized
density) grayscale value as an offset from h. We randomly
sample saturation s ∼ U(0.3, 1) and value v ∼ U(0.5, 1)
and apply them globally to each pixel to get an HSV im-
age Xhsv , where the color for pixel i is set to be Xhsv

i =

FractalDB Multi-class Multi-instance ImageNet

Figure 10. First layer filters learned by different pre-training methods.

((h + Xi) (mod 256), s, v). We then convert Xhsv to its
RGB representation Xrgb.

Random Backgrounds Adding backgrounds to the frac-
tal images increases the diversity of images, and should
cause the neural network model to learn to ignore back-
grounds when making classification decisions. We use
the midpoint-displacement, or “diamond-square” algo-
rithm [11], to efficiently generate background textures. A
parameter γ controls the roughness of the resulting texture.
To generate a background, we first sample γ ∼ U(0.4, 0.8)
and generate a grayscale texture image using the diamond-
square algorithm. Then we colorize the texture using a pro-
cess similar to the one previously described for colorizing
the fractals. The final image is formed by compositing the
colored fractal image on top of the random background.

B.2. Just-In-Time Image Generation

With the correct procedure, we are able to generate all
images “on the fly” as they’re needed for training. This is
significant, as we circumvent the typical need to store or
transmit a huge quantity of data. The entire dataset can be
generated from the set of IFS codes, which can be stored
in tens or hundreds of megabytes (depending on the num-
ber and size of the systems). For context, the ILSVRC2012
subset of ImageNet that is typically used for pre-training
comprises 1.281M images and occupies 150GB of disk
space. While in practice, we use dozens of systems per
class and their augmentations (approximately 7.2MB for
1000 classes), even if 1.28M images were stored systemat-
ically as unique IFS parameters on disk, that only occupies
184.5MB, an 800× reduction in storage.

Three things are necessary in order for image genera-
tion to keep up with model throughput: the first is compute-
efficient fractal images; the second is efficient code; and
the third is retaining a cache of recently-computed ob-
jects. Affine Iterated Function Systems are computation-
ally efficient—a good approximation of the attractor can
be achieved with a few tens or hundreds of thousands of

Figure 11. Examples of the effect that small perturbations in pa-
rameters can have on the resulting fractal images. In each of the
two examples shown, the value of a single parameter in the IFS
code was shifted by 0.1.

iterations, and don’t require any operations beyond basic
arithmetic. We are able to get highly-efficient code by
carefully writing our algorithms and compiling them with
Numba [22].

Even with fast code and efficient fractals, it may not be
possible to generate images fast enough to match model
throughput, particularly when training on multiple GPUs.
As a solution, we keep a cache of recently-computed frac-
tal images, which gets updated on a fixed schedule. For
example, when training a multi-class classification model,
we keep a cache of the last 512 generated images. Half of
each training batch consists of images drawn from the cache
and augmented using standard data augmentation practices.
The other half of the batch consists of newly-generated im-
ages, which are then used to update the cache. This cuts in
half the number of images that need to be generated from
scratch at each iteration of training, greatly easing the com-
putational load. Using a cache is even more critical when
generating multi-instance images, as we describe in Sec-
tion 4.2.2.

Note: Our target in this work is to generate images fast
enough to keep up with training a ResNet50 model us-
ing distributed training on a workstation with 8 GPUs.
Different hardware setups and different models may re-
quire adjustments—such as different cache sizes or update
intervals—but with proper tuning the approach should work
in a wide variety of circumstances.

N

2 3 4 5 6 7 8
Sample-svs 11.7± 0.49 17.3± 0.76 22.4± 0.28 28.2± 0.38 33.1± 0.17 38.3± 0.48 43.3± 0.43

Sample-system 42.8± 1.04 49.2± 0.75 55.4± 0.25 60.5± 0.40 67.0± 0.43 72.7± 0.55 80.7± 2.86

Table 1. Average time (in microseconds) for sampling IFS codes of different size (N), using our Python implementation. The first row
shows times for sampling singular values alone, and the second row shows times for sampling the full system (including sampling singular
values).

Operation Time (ms)
Iterate (105) 4.39± 0.034

Render (256× 256) 1.46± 0.017

Colorize 0.23± 0.002

Background (256× 256) 0.77± 0.001

Table 2. Average time (in milliseconds) for various stages of
the fractal image rendering process, using our implementation
(Python and Numba [22]). (Iterate) produces coordinates on the
attractor through random iteration (100,000 iterations); (Render)
maps the coordinates to a 256× 256 grayscale image using patch-
based rendering; (Colorize) converts the grayscale image to a
color image; (Background) renders a random background. See
B.1 for details.

C. Computational Requirements

Fractal Sampling and Rendering For reference, we re-
port compute time for sampling systems and rendering frac-
tal images. Compute time was measured using an Intel
Xeon E3-1245 3.7GHz CPU. In Table B.2, we report the av-
erage time for sampling IFS codes for systems of size 2 up
to size 8, along with the time for sampling just the singular
values. In Table 2, we report the average time required for
various stages of the image rendering process. The memory
requirements for rendering a single image are low, requiring
little more than the size of the output array.
Training In Table 3, we report training time under two
different hardware settings. The first is a single node with 8
1080-Ti GPUs and 48 CPU cores. The second is two nodes,
each with 4 Tesla P100 GPUs and a total of 56 CPU cores.
We report the time required to train a model for 90 epochs,
or 90,000,000 iterations (1,000,000 images per epoch, com-
parable to ILSVRC 2012), for both single-instance multi-
class classification and multi-instance prediction.

D. Additional Data Examples

D.1. Small Changes to Parameters

Section 4.1.1 pointed out that small perturbations to IFS
codes can sometimes result in large visual differences in the
corresponding fractal images. We show examples of this in
Figure 11.

Task 1×8 1080-Ti 2×4 P100

Multi-class 23h (15.3m) 18h (12m)
Multi-instance 25h (16.6m) 19.5h (13m)

Table 3. Representative pre-training times for both multi-class
classification and multi-instance prediction, for two different hard-
ware stacks: one node with 8 1080-Ti GPUs, and two nodes with
4 P100 GPUs each. The time in hours to train for 90 epochs is
shown, with the approximate per-epoch training time (in minutes)
shown in parentheses.

Figure 12. Examples of degenerate FractalDB images, caused by
IFS parameter augmentation leading to non-contractive systems.

D.2. Problems in FractalDB

Since the data augmentation process used for Frac-
talDB [15] doesn’t enforce contractivity in the resulting
IFS codes, some of the resulting images are degenerate.
Figure 12 shows some sample images from the FractalDB
dataset that exhibit this degeneracy, leading to small clouds
of points or mostly empty images.

D.3. Example Images

Figure 16 shows images of 500 (out of 50,000) Iter-
ated Function Systems sampled according to Algorithms 1
and 2, and used to pre-train the models for which we re-
port results in the paper. We show just the binary-rendered
fractal images (without color or background) to give a clear
picture of the fractal geometry.

R = 0.8994 R = 0.4448

R = 0.1487 R = 0.0646

Figure 13. Rendered IFS codes using different probabilities
(determinant-based on the left, uniform on the right of each pair).
Uniform probabilities don’t work well when the determinants of
the system have significantly different magnitudes. R is the ratio
of the smaller to the larger determinant.

D.4. System Probabilities pi

An affine IFS code consists of a set of affine func-
tions, each with an associated sampling probability (see
Section 3). The sampling probabilities pi don’t affect the
shape of the underlying attractor, but they do influence the
distribution of points on the attractor that are visited during
iteration. Figure 13 shows several IFS rendered using two
different choices for pi: (1) pi is proportional to the magni-
tude of the determinant of the linear part of the transform,
pi ∝ |detAi|; and (2) pi is uniform, pi = 1

|S| . When one
determinant is significantly larger than the other, there are
parts of the attractor that don’t get visited during iteration
using uniform pi. We use the determinant method for set-
ting pi in all our experiments.

E. First Layer Filters

In Figure 10, we show a comparison of the filters from
the first layer of ResNet50, pre-trained using different meth-
ods. Interestingly, it appears that filters learned from multi-
instance prediction are closest to those learned by pre-
training on ImageNet.

F. Additional Results

Here we include some additional experimental results
that didn’t fit in the main body of the paper. Our main
set of experiments evaluated fine-tuning performance using
image resolution 224 × 224. One common way to achieve
better performance is to use a larger image resolution, such
as 448× 448. We fine-tuned on CUB using this resolution,
and the results are shown in Figure 14. We see better perfor-
mance across the board, with FractalDB now outperforming
training-from-scratch, and with the relative performance or-
der otherwise staying the same. At the higher resolution, we
also see the gap between ImageNet and fractal pre-training

55 60 65 70 75 80 85
Accuracy

63.5
68.4

73.5
75.6

84.9

CUB
Pre-training

Scratch
FractalDB
Multi-class
Multi-instance
ImageNet

Figure 14. Results of fine-tuning on CUB using a larger image
resolution (448× 448). The pre-trained networks are the same as
in Figure 6.

0 1 2 3 4 5 6
0

1

1
2 (5 + N) to 12 (6 + N)0N 3N

N=2 labeled good
N=2 labeled bad
target -factor range

0 2 4 6 8
0.0

0.5

1.0

1
2 (5 + N) to 12 (6 + N)0N 3N

N=3 labeled good
N=3 labeled bad
target -factor range

0 2 4 6 8 10 12
0.0

0.5

1.0

1
2 (5 + N) to 12 (6 + N)0N 3N

N=4 labeled good
N=4 labeled bad
target -factor range

Figure 15. Plot of σ-factor densities of hand-labeled systems with
N = 2, 3, 4. It is important to note that the 1

2
(5 +N) to

1
2
(6 +N) range was chosen well before these plots were gen-

erated; the plots strongly validate the selected range.

get wider, indicating there is still plenty of work to do to
improve the fractal pre-training methods.

G. σ-factor Density for Hand-labeled Systems
In Figure 15, we show the distribution of σ-factors for

the hand-labeled systems discussed in Section 3.2.2. For
each value of N ∈ {2, 3, 4}, several hundred systems were
labeled as to whether or not they had subjectively “good”
geometry. It is critical to point out here that these plots were
generated only after the range of 1

2 (5 +N) to 1
2 (6 +N)

was determined empirically; however, the plots strongly
validate the range selected.

Figure 16. Example images from 500 different systems used in our fractal pre-training.

