
8. Supplementary material

8.1. More details on the datasets

We did not split the data into train and test subsets to
train disentanglement methods in order to exclude the ef-
fect of possible differences in the train/test distributions on
the disentanglement results. It does not lead to overfitting
because the task is unsupervised and we never observe any
ground truth during training.

3D-Shapes. We modified the 3D Shapes [17] dataset com-
monly used to evaluate disentanglement in representation
learning. The original dataset contains the following at-
tributes: object shape, object hue, object size, wall hue,
floor hue, and orientation. We modified the 3D-Shapes
dataset according to the protocol in Section 4 as follows:
Content attributes: shape and hue of the foreground object.
Domain A-specific attributes: floor hue (fixed to red in do-
main B), wall hue (fixed to blue in domain B). Domain B-
specific attributes: object size (fixed to 5 out of 8 in domain
A) and orientation (fixed in domain A to -30). Due to the
very limited number of attributes in this dataset, we omitted
the domain-splitting attribute and considered only the fixed
attributes for the evaluation of domain translation quality.
The resulting domains A and B contain 4000 and 4800 im-
ages respectively.

SynAction. The SynAction [33] dataset is a synthetic
dataset containing videos of 10 different actors (identities)
performing the same set of actions on 5 various back-
grounds. We extended the dataset by introducing 5 more
backgrounds by cropping and stitching the available back-
grounds to make the dataset more balanced. For this dataset,
the available attributes are: identity, pose and background.
We created the disentanglement dataset by assigning the
pose as the shared attribute, the background as the domain
A-specific attribute and the identity as the domain B-specific
attribute. To compare the pose attribute, we count the trans-
lation pose attribute as 1 if its pose is closer to that of the in-
put image and 0 otherwise. The resulting SynAction dataset
contains 6720 images in the domain A and 7560 images in
the domain B.

CelebA-D. To perform the evaluation on a more challeng-
ing and commonly used image translation dataset, we mod-
ified the CelebA [27] dataset containing centered photos of
celebrities annotated with 40 attributes, such as hair color,
gender, age etc. First, we chose the domain-splitting at-
tribute to be ”Male”, i.e. the dataset was split into Male and
Female subsets. We chose hair color as the varied attribute
for Female domain, and presence or absence of facial hair,
smile and age for Male domain; the hair color for Male do-
main was fixed to black. We considered the attributes asso-
ciated with facial features, lighting and pose as the shared
attributes (see Table 3 for a short description and Section 8.1

Attributes Male Female
Hair color fixed (black) varied

Age varied fixed (young)
Smile varied fixed (yes)

Facial hair varied fixed (no)
Makeup varied fixed (yes)

Facial attributes* content content

Table 3. Short description of the domain attribute splitting used
assemble the CelebA-D dataset. *The full list of content attributes
can be found in Section 8.1 of the supplementary material.

of the supplementary material for a detailed list of shared
attributes). Our modified CelebA-D subset contains 24661
and 29627 images in domains A and B respectively.

To remove inconsistency in the original labels of
CelebA, we removed the examples for which the hair color
is not annotated. Such choice of style attributes is dictated
by the aim to leave as many examples from the original
dataset as possible, i.e. to filter out the smallest number
of examples when the opposite domain style attributes are
being fixed, while using the most visible attributes as style
attributes.

The list of content attributes: “5 o Clock Shadow”,
“Arched Eyebrows”, “Bags Under Eyes”, “Big Lips”,
“Big Nose”, “Blurry”, “Bushy Eyebrows”, “Chubby”,
“Double Chin”, “Eyeglasses”, “High Cheekbones”, “Nar-
row Eyes”, “Oval Face”, “Pale Skin”, “Pointy Nose”,
“Straight Hair”, “Wavy Hair”, “Wearing Hat”.

8.2. Attribute prediction networks

If not stated otherwise, the attribute prediction networks
are implemented in Tensorflow [1].

3D-Shapes For wall hue, floor hue, object hue, size and
shape classification, we used the CNNs with the follow-
ing architecture: 2D convolution with 16 3 × 3 filters fol-
lowed by a ReLU activation function and max pooling layer
with pooling stride 2×2, another convolution layer with 32
3×3 with ReLU activation and 2×2 max pooling; dropout
layer with the drop probability 0.2, flattening layer, a dense
layer with 128 units and a final dense prediction layer with
the number of units equal to the number of classes in the
task. The networks are trained with Adam optimizer [19]
using a sparse categorical cross-entropy loss for until con-
vergence. All classifiers achieve nearly 100% test accuracy
for all tasks. For the orientation regression task, we use the
following architecture: 2D convolution with 32 3× 3 filters
followed by a ReLU activation function and max pooling
layer with pooling stride 2 × 2, another convolution layer
with 16 3× 3 with ReLU activation and 2× 2 max pooling;
dropout layer with the drop probability 0.2, flattening layer,
and the dense layer with a single unit for the final prediction.
We use the mean squared error loss and Adam optimizer to



train the network. The resulting accuracy on the orientation
task is > 98% on test set.

SynAction To predict the identity and background, we use
the following classification network architecture: three con-
volution layers with 16, 32 and 64 filters 3×3 filters respec-
tively all followed by a ReLU activation function and max
pooling layer with pooling stride 2 × 2, dropout layer with
the drop probability 0.2, flattening layer, a dense layer with
128 units and a final dense prediction layer with the number
of units equal to the number of classes in the task. The net-
works are trained with Adam optimizer [19] using a sparse
categorical cross-entropy loss for until convergence. The
classifiers achieve > 98% test accuracy for both tasks. For
pose estimation, we use the pretrained Personlab [29] model
from Tensorflow Lite (see pose estimation visualization on
SynAction in Figure 15).

CelebA For attribute on the CelebA dataset, we used the
MobileNetv2 [32] feature extractor followed by two dense
layers with 1024 and 512 units respectively and ELU non-
linearity [5], and the last dense layer with 40 units and the
sigmoid non-linearity. The average attribute classification
accuracy of this network is 92%, see the detailed informa-
tion on per-attribute accuracy on Figure 14. Additionally,
we measured how well the translation preserves the pose
with the HopeNet [30] model pretrained on the 300W LP
dataset [41] and reported the results in Table 7.

8.3. Additional Tables

Please see Tables 4 and 5 for attribute-wise disentangle-
ment quality and Table 7 for the pose preservation results on
the CelebA-D subset, and Tables 6 and 8 for the attribute-
wise disentanglement quality on the 3D-Shapes and SynAc-
tion datasets respectively.

8.4. Examples of images from generated datasets

For illustrations of generated datasets (CelebA, 3D-
Shapes and SynAction) described in details in Section 8.1
see Figures 6-8.

8.5. More translation examples

For more illustrations of the UMMI2I translation on
CelebA, 3D-Shapes and SynAction, please see Figures 9-
13. Our findings are summarized in the Section 6 of the
main paper and are backed by metrics introduced and re-
ported in this paper.

8.6. Pose estimation examples

Please see the illustration of pose estimation results on
Figures 15 and 16. The pose estimation network succeeded
in estimating poses even with severe generation artifacts.

8.7. User study

Also Table 9 reports results of the human study illus-
trated and described in Figure 17. Subjects were explicitly
asked to label the images as having the specific attribute
matching attribute values other images. These responses
were used to compute human evaluation metrics reported
in Table 9 and show same trends as automatic evaluation
reported in Table 2.



Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
DRIT 42 40 52 61 49 54 44 61 59 82 37 69 38 48 46 55 46 81

MUNIT 50 50 51 58 51 68 48 54 53 89 55 66 45 46 64 51 51 65
MUNITX 54 53 55 49 55 55 50 54 54 54 35 55 44 49 53 55 43 57

FUNIT 52 35 51 51 41 52 41 53 55 52 34 51 38 49 39 52 44 54
AugCycleGAN 50 38 53 46 47 46 49 52 53 40 21 43 47 49 38 47 32 46

StarGANv2 36 40 54 50 44 54 44 55 57 78 43 71 36 35 49 41 21 51

Table 4. CelebA content attribute results. The attribute indices correspond to the attributes as follows: 1.“5 o Clock Shadow”, 2.
“Arched Eyebrows”, 3. “Bags Under Eyes”, 4. “Big Lips”, 5. “Big Nose”, 6. “Blurry”, 7. “Bushy Eyebrows”, 8. “Chubby”, 9.
“Double Chin”, 10. “Eyeglasses”, 11. “High Cheekbones”, 12. “Narrow Eyes”, 13. “Oval Face”, 14. “Pale Skin”, 15. “Pointy Nose”,
16. “Straight Hair”, 17. “Wavy Hair”, 18. “Wearing Hat”.

Method Blond Brown Black Young Smile Beard Sideburns Mustache Goatee
DRIT 31 36 80 20 33 23 4 1 2

MUNIT 31 13 86 20 35 6 < 1 < 1 < 1
MUNITX 76 35 87 26 34 16 2 4 9

FUNIT 28 7 59 22 62 28 1 2 7
AugCycleGAN 23 16 76 32 92 51 4 6 6

StarGANv2 83 68 90 17 22 28 2 2 4

Table 5. Per-attribute domain-specific manipulation results on CelebA. Left part: male2female domain-specific attributes (hair color); right
part: female2male domain-specific attributes.

Content A-specific B-specific
Method Obj. hue Obj. shape Floor hue Wall hue Size Orientation

DRIT 10 95 13 17 14 7
MUNIT < 1 96 100 100 88 65

MUNITX 9 95 11 10 29 8
FUNIT 10 25 0 11 29 7

AugCycleGAN 11 30 10 10 22 8
StarGANv2 5 12 89 89 14 7

Table 6. Per-attribute results on 3D-Shapes subset.



Model Y ↓ P ↓ R ↓ Dp ↓ PM ↑
DRIT++ 3.49 4.73 1.57 3.26 0.76
MUNIT 3.17 3.09 1.19 2.51 0.79

MUNITX 3.27 3.09 1.19 2.52 0.79
FUNIT 5.47 6.16 1.82 4.48 0.66

AugCycleGAN 16.95 8.55 3.53 9.68 0.29
StarGANv2 4.27 4.72 1.69 3.56 0.71

Random Pairs 20.6 9.14 3.52 11.09 0.50

Table 7. Pose preservation metrics for CelebA-D transla-
tion with DRIT++[23], MUNIT[14], FUNIT[26], Augmented
CycleGAN[2] and StarGANv2 [4]. The results include mean yaw,
pitch and roll distance of the translated image to the content im-
age, overall mean pose distance Dp and pose match score PM .
Distances of random pairs of images are included for comparison.
All pose estimation results are estimated by HopeNet [30] model.

Content A-specific B-specific
Method Pose Background Identity

DRIT 92 13 27
MUNIT 98 19 52

MUNITX 98 24 58
FUNIT 52 0 7

AugCycleGAN 50 36 14
StarGANv2 50 9 18

Table 8. Per-attribute results on the SynAction subset.

Method Qtr ↑ D ↑ Ds ↑ Dc ↑ B ↓
DRIT++ 90.17 34.95 17.41 52.49 34.18
MUNIT 89.86 69.16 88.44 49.88 2.12

MUNITX 89.19 41.36 28.11 54.62 39.09
FUNIT 49.26 13.08 12.36 13.79 54.46

AugCycleGAN 72.81 32.33 20.97 43.69 36.73
StarGANv2 97.18 39.07 67.67 10.46 31.37

Table 9. Human evaluation of disentanglement on 3D-Shapes. It
shows same trends as Table 2 with automatic evaluation results in
the main paper.



Figure 6. Random examples images from the proposed CelebA split: human faces with variable orientation of 1) males with black hair and
variable amount of facial hair, amount of smile and age (top), and 2) smiling young females with variable hair color (bottom). We discuss
the motivation behind this specific split in Section 5 of the main paper.



Figure 7. Random examples images from the proposed Shapes-3D split: 3D renders of one of four shapes in one of ten colors in both
dataset, with floor and wall color variations in one domain, and size and view angle variation in the other domain



Figure 8. Random examples images from the proposed SynAction split: 3D renders of humans in different poses with background texture
variations in one domain (top) and clothing and identity variations in the other (bottom).



Figure 9. Illustration of many-to-many image translation results on Celeba-D subset. A correct translation should have domain-specific
attributes of the guidance image (hair color in the top four lines; facial hair, smile and age in the bottom four lines), and the rest of attributes
(facial features, orientation, etc.) from the input image.



Figure 10. Illustration of many-to-many image translation results on Celeba-D subset. A correct translation should have domain-specific
attributes of the guidance image (hair color in the top four lines; facial hair, smile and age in the bottom four lines), and the rest of attributes
(facial features, orientation, etc.) from the input image.



Figure 11. Illustration of many-to-many image translation results on Celeba-D subset. A correct translation should have domain-specific
attributes of the guidance image (hair color in the top four lines; facial hair, smile and age in the bottom four lines), and the rest of attributes
(facial features, orientation, etc.) from the input image.



Figure 12. Illustration of many-to-many image translation results on 3D-Shapes subset. A correct translation should have domain-specific
attributes of the guidance image (orientation and size in top four lines; wall and floor color in the bottom four lines), and the rest of
attributes (shape type and shape color) from the input content image.



Figure 13. Illustration of many-to-many image translation results on SynAction subset. A correct translation should have domain-specific
attributes of the guidance image (background texture in top four lines; clothing and identity in the bottom four lines), and the pose from
the input content image.



Figure 14. Per-attribute accuracy histogram achieve by our attribute prediction model on CelebA validation split.



Figure 15. Head pose estimation results on random examples from the original CelebA dataset (top) and random translation results
(bottom). Best viewed in color.

Figure 16. Pose estimation results on random examples from the original SynAction dataset (top) and random translation results (bottom).
The pose estimation network succeeded in estimating poses even with severe generation artifacts. Best viewed in color.



Figure 17. User study screen example. Subjects are explicitly asked to label the center images as having the specific attribute (e.g. shape
color or view angle) as coming from either left, right, both images (if both have the same matching attribute value) or neither (if both
images have attribute value not matching the center image). These responses were used to compute human evaluation metrics reported in
Table 9 and show same trends as automatic evaluation reported in Table 2.


