
Supplementary Material for the Paper:
Seeing Neural Implicit Functions as Fourier Series

1. Images used in image regression task

Figure 1 shows the images used for the image regression
task in the main paper.

2. Proof of equation (7)

We will prove the validity of equation (7) in the general
case of dimension d ∈ N. We use the concept of mathe-
matical induction for this task. Therefore we show, that the
equation is true for d = 1 and additionally prove, that if the
equation holds for dimension d−1 it is also valid for dimen-
sion d.
d = 1:

f(x) = ∑
n∈Z1

cne
2πin⋅x

= ∑
n∈N

cne
2πin⋅x

+ ∑
n∈N

c−ne−2πin⋅x + c0

c∗n=c−n
== ∑

n∈N
(Re(cn) + iIm(cn))( cos(2πnx) + i sin(2πnx))

+ ∑
n∈N
(Re(cn) − iIm(cn))( cos(2πnx) − i sin(2πnx))

+ c0

= ∑
n∈N

2Re(cn) cos(2πnx) − 2Im(cn) sin(2πnx)

+ c0

= ∑
n∈N0

an cos(2πnx) + bn sin(2πnx),

(1)

where

a0 = c0, an = 2Re(cn), bn = −2Im(cn). (2)

Assumption of the induction:
We will assume that the equation holds for d − 1, where
d ≥ 2.
s
Induction step: d − 1→ d:
As the fourier series of any periodic and continous function
is absolutely convergent, we are allowed to rearrange the

sum in (∗) and receive

= ∑
n=(n1,...,nd)∈Zd

cne
2πin⋅x

(∗)
= ∑

n1∈N
∑

(n2,...,nd)∈Zd−1

cne
2πin⋅x

+ ∑
n1∈N

∑
(n2,...,nd)∈Zd−1

c−ne
−2πin⋅x

+
0

∑
n1=0

∑
(n2,...,nd)∈Zd−1

cne
2πin⋅x

c∗n=c−n
== ∑

n∈N×Zd−1

2Re(cn) cos(2πn ⋅ x) − 2Im(cn) sin(2πn ⋅ x)

+ ∑
n∈{0}×Zd−1

cne
2πin⋅x

Ind. asm.
== ∑

n∈N×Zd−1

2Re(cn) cos(2πn ⋅ x) − 2Im(cn) sin(2πn ⋅ x)

+ ∑
n∈{0}×N0×Zd−2

a′n cos(2πn ⋅ x) + b′n sin(2πn ⋅ x),

(3)

where

a′0 = c0,

a′n =
⎧⎪⎪
⎨
⎪⎪⎩

0 ∃j ∈ {3, . . . , d} ∶ n2 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0

2Re(cn) otherwise,

b′n =
⎧⎪⎪
⎨
⎪⎪⎩

0 ∃j ∈ {3, . . . , d} ∶ n2 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0

−2Im(cn) otherwise.
(4)

Combining these two summands we get

∑
n∈N0×Zd−1

an cos(2πn ⋅ x) + bn sin(2πn ⋅ x), (5)
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Figure 1: The images used in the image regression experiments.

where

a0 = c0,

an =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∃j ∈ {2, . . . , d} ∶ n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0

2Re(cn) otherwise,

bn =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∃j ∈ {2, . . . , d} ∶ n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0

−2Im(cn) otherwise.
(6)

3. Proof of equation (11)

In the following we use ∣ ⋅ ∣ to talk about the number of
elements in a set. Furthermore, we use the notation ⟦n⟧ ∶=
{0, . . . , n} for n ∈ N and ⟦m, l⟧ ∶= {m, . . . , l} for m, l ∈ Z
and m < l. We have

B = {0, . . . ,N} × {−N, . . . ,N}d−1 ∖ {n ∈ N0 ×Zd−1 ∶
∃j ∈ {2, . . . , d} ∶ n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}.

It is immediately clear, that

∣{0, . . . ,N} × {−N, . . . ,N}d−1∣ = (N + 1)(2N + 1)d−1,

therefore the only thing we need to show is, that

∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d−1 ∶ ∃j ∈ {2, . . . , d} ∶
n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣

=
d−2
∑
l=0

N(2N + 1)l.

We will do this proof with mathematical induction. We start
with d = 2:

∣{n ∈ ⟦N⟧ × ⟦−N,N⟧ ∶ ∃j ∈ {2} ∶ n1 = 0 ∧ nj < 0}∣

= ∣{n ∈ {0} × ⟦−N,−1⟧}∣

= N

Assumption of the induction:
We will assume that the equation holds for some d, where
d ≥ 2.
s
Induction step: d→ d + 1:

∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d ∶ ∃j ∈ ⟦2, d + 1⟧ ∶

=n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣

= ∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d ∶ ∃j ∈ ⟦3, d + 1⟧ ∶

=n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣ +

=∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d ∶ ∃j ∈ {2} ∶

=n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣

= ∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d ∶ ∃j ∈ ⟦3, d + 1⟧ ∶

=n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣ +

=∣{n ∈ {0} × ⟦−N,−1⟧ × ⟦−N,N⟧d−1}∣

= ∣{n ∈ ⟦N⟧ × ⟦−N,N⟧d−1 ∶ ∃j ∈ ⟦2, d⟧ ∶
=n1 = ⋅ ⋅ ⋅ = nj−1 = 0 ∧ nj < 0}∣ +

=N(2N + 1)d−1

Ind. asm.
==

d−2
∑
l=0

N(2N + 1)l +N(2N + 1)d−1 =
d−1
∑
l=0

N(2N + 1)l.



4. Proof of equation (12)
Combining equation (2) and (3) we get

y(x,W) = W ⋅ (
cos(2πB ⋅ x)
sin(2πB ⋅ x) ) + b.

If we set B = (B1, . . . ,Bm)T , with Bi ∈ R1×d, then the first
summand is equal to

⎛
⎜
⎝

∑
m
k=1W1,kc(2πBkx) +∑mk=1W1,m+ks(2πBkx)

⋮

∑
m
k=1Wdo,kc(2πBkx) +∑mk=1Wdo,m+ks(2πBkx)

⎞
⎟
⎠

T

=
⎛
⎜
⎝

∑
m
k=1W1,ks(2πBkx − π/2) +∑mk=1W1,m+ks(2πBkx)

⋮

∑
m
k=1Wdo,ks(2πBkx − π/2) +∑mk=1Wdo,m+ks(2πBkx),

⎞
⎟
⎠

T

where s and c are short forms of sine and cosine. And if
we define φ = (−π/2, . . . ,−π/2,0, . . . ,0)T ∈ R2m and C ∶=

(B,B)T , we result in

y(x,W) = W ⋅ sin(2πC ⋅ x + φ)T + b.

5. Periodicity in MLP
We claim that when an integer mapping is applied to

the input, the network output is forced to be periodic. this
comes from the fact that the frequencies introduced by the
activations are integers and a periodic signal has only inte-
ger frequencies. To prove this claim, we will first analyze
the frequencies in the 1D case and later demonstrate those
findings in 2D experiments. As an initial Fourier mapping
involves the usage of a sinus function on the mapped input,
we discuss now the effect of applying an activation function
on top of a sinus representation. Applying a ReLU or Sine
on a mapped input, will produce frequencies that are mul-
tiples of its input frequencies. For example, if we apply a
ReLU to a Sine function we get

ReLU(sin(x)) =
1

π
+
sin(x)

2
+ ∑
n=2k
k∈N

2

π(1 − n2)
cos(nx),

(7)

and if we apply a Sine to a Sine we get

sin(A ⋅ sin(x)) = 2
∞
∑
n=0

J2n+1(A) sin((2n + 1)x), (8)

where Ji are Bessel functions. In these cases we can imme-
diately see that, the output frequencies are multiples of the
input frequencies. Motivated by these findings we explore
the question, whether it does generalize to higher dimen-
sional signals.

To do so, we define B in two different ways. First we
generate BN limited by N = 2, responsible for the integer

Figure 2: The effect of the common activation functions
on the spectrums of functions with integer and non-integer
frequencies.

mapping and for the Gauss mapping we sample B from a
Gaussian distribution with mean, variance and dimension
according to the previous BN , to achieve maximal compa-
rability. We then compare the spectrum of f1 ∶= γ(x) ⋅ 1,
f2 ∶= ReLu(γ(x) ⋅ 1) and f3 ∶= sin(γ(x) ⋅ 1), where 1 rep-
resents the weight matrix, in this example defined to only
contain 1’s. We visualize the spectrum of our results in Fig.
2 in the range of (0,10)2.

We see that when a non-linearity is applied to the func-
tion with integer frequencies, the output spectrum has only
integer frequencies, and this means that it is periodic. Also
mentionable is the beautiful alignment of the high frequen-
cies, which is in contrast to the Gauss mapping, where no



clear pattern is present. Moreover, we see that the sine acti-
vation produces more high frequency components than Re-
LUs, and this could explain why sine activations are more
effective at shallow networks.


