
Multi-domain semantic segmentation with overlapping labels
Supplementary material

Petra Bevandić*, Marin Oršić†, Ivan Grubišić, Josip Šarić, Siniša Šegvić
University of Zagreb, Faculty of Electrical Engineering and Computing

name.surname@fer.hr, marin.orsic@gmail.com

This supplement presents additional validation experi-
ments and offers further qualitative analysis of our submis-
sion to RVC 2020. Additionally, it provides visualizations
of our training and evaluation mappings for the two base-
lines and our universal taxonomy.

We use Adam and attenuate the learning rate from 5 ·
10−4 to 6 · 10−6 by cosine annealing. We use the largest
batch size that fits into the GPU memory, and train our mod-
els for 100 epochs. All these experiments use single-scale
evaluation.

1. Evaluation of the two baselines in multi-
domain experiments

The main paper evaluates our universal taxonomy with
a custom unified taxonomy called MSeg [3] in a multi-
domain setup. We repeat that experiment with our two base-
lines, naive concatenation and partial merge, which in this
setup have 469 and 307 classes. In order to have a con-
sistent training setup, we train all four models on a single
Tesla V100 32GB GPU. We use batch size 12, since that is

*Equal contribution.

the maximum for naive concatenation. We keep the rest of
the training protocol the same as in the main paper.

The top section of Table 1 presents evaluation accord-
ing to the original protocol. Our universal model prevails
on most datasets. Partial merge performs comparably, since
only 13 out of 307 classes overlap with some other class
(our universal taxonomy has 294 classes). The bottom sec-
tion of the table shows a similar outcome when we evaluate
only on the 194 MSeg classes. We note that even naive
union outperforms manual relabeling when original evalu-
ation protocols are used since manual relabeling drops too
many classes.

2. Validation experiments

We validate several hyper-parameters on the Vistas
dataset. In all tables the columns correspond to training
resolution (MPx), total batch size (BS), number of com-
putational nodes used for training (nPU), and segmentation
accuracy on Vistas val (mIoU).

Evaluation protocol Taxonomy Ade20k BDD Cityscapes COCO IDD SUN RGBD Vistas

Original

naive concatenation 29.3 55.5 68.7 30.8 52.1 41.1 35.3
partial merge 30 58.4 70.6 32.2 54.4 41.7 37.6
MSeg 23.2 58.1 71.4 29 42.2 41.9 25.7
Universal (ours) 31.3 56.5 71.2 33.7 53.1 42.5 37.9

MSeg

naive concatenation 32.3 55.5 68.7 31.5 53.9 41.1 41.4
partial merge 33.3 58.4 70.6 32.9 51.8 41.7 43.9
MSeg 34.3 58.1 71.4 33.5 53.9 41.9 43.0
Universal (ours) 34.7 56.5 71.2 34.6 51.9 42.5 43.8

Table 1: Multi-domain experiments with SNp-RN18 on the seven MSeg datasets [3]. We train the baselines and our universal
model on original labels, and compare with a NLL model trained on manually relabeled images according to the MSeg
taxonomy [3]. Both models are evaluated on validation subsets of Ade20k, BDD, Cityscapes, Coco, IDD, SUN RGB-D and
Vistas. We consider all unmapped logits as class void.



2.1. Validation of segmentation architectures

Table 2 shows performance of various semantic seg-
mentation architectures on the validation subset of Vistas.
We present best approaches from the literature and com-
pare them with pyramidal SwiftNets with different back-
bones. All our models use checkpointed backbones and
were trained on 1 Tesla V100 32GB GPU.

Model MPx BS nPU mIoU
Seamless [4] 8 8 8 50.4
HN-OCR-W48 [5] 0.5 16 2 50.8
PDL-X71 [1] 1 64 32 55.4
SNpyr-RN18 0.6 24 1 46.3
SNpyr-RN34 0.6 22 1 49.4
SNpyr-RN152 0.6 8 1 50.1
SNpyr-DN121 0.6 22 1 49.5
SNpyr-DN161 0.6 17 1 52.2

Table 2: Validation of semantic segmentation architectures.
All methods use single-scale evaluation, and train on Tesla
V100 32GB GPUs except PDL which trains on TPUs. Pyra-
midal Swiftnets achieve competitive performance with re-
spect to the state of the art, while requiring much less com-
putational resources.

The table shows that pyramidal SwiftNets offer com-
petitive generalization performance under modest compu-
tational requirements. This makes them a good choice for
large-scale experiments such as RVC 2020. Furthermore,
larger models require significantly more time to complete
the training, which may make a difference in large-scale
multi-domain settings.

We observe that increasing the model capacity results
in diminishing returns (cf. SNPyr-RN18 vs SNPyr-RN34
vs SNPyr-RN152). SNpyr-DN161 outperforms SNPyr-
RN152 in spite a slightly weaker backbone. We speculate
that this may be due to larger batches.

2.2. Validation of multi-scale input

Table 3 compares a pyramidal model (SNPyr-DN161s3)
to its single-scale counterpart (SN-DN161s3). Both models
are based on DenseNet-161 with 64× subsampled repre-
sentation at the far end which we achieve by splitting the
3rd dense block [2]. The single scale model (SN-DN161s3)
uses an SPP module at the end of the downsampling path at
64× subsampled resolution.

2.3. Validation of upsampling width

Table 4 shows the influence of the upsampling width on
the segmentation performance. Wider upsampling improves
the accuracy, although not significantly.

Model MPx BS nPU mIoU
SNpyr-DN161s3 0.6 18 1 50.6
SN-DN161s3 0.6 25 1 48.1

Table 3: Validation of pyramidal fusion. The multi-
resolution model (SNpyr-DN161s3) outperforms its single-
scale counterpart (SN-DN161s3).

Model MPx BS nPU mIoU
SNpyr-DN161s3 0.6 18 1 50.6
SNPyr-DN161s3-fat 0.6 18 1 50.9

Table 4: Validation of the width of the upsampling path.
Wider upsampling path achieves a slightly better accuracy.

2.4. Validation of block splitting

Table 5 examines the influence of dense-block splitting
to the generalization performance. We observe that splitting
the 3rd block deteriorates the segmentation performance
when pyramidal organization is used. We speculate that this
is due to too much subsampling within the feature extractor.

Model MPx BS nPU mIoU
SNpyr-DN161 0.6 17 1 52.2
SNpyr-DN161s3 0.6 18 1 50.6

Table 5: Validation of the extent of subsampling within a
multi-scale feature extractor. Splitting the third block re-
duces segmentation accuracy.

3. Qualitative universal performance
Figure 1 extends Figure 2 from the main paper by includ-

ing qualitative universal performance of our SNp-DN161
model. The color map for the universal label space com-
bines the color maps from Vistas and ADE20k. We ob-
serve that the model is able to recognize refinements of
concepts from particular datasets. For instance the model
locates road markings and sidewalk curbs in images from
Cityscapes, VIPER, KITTI and ADE20k. It also succeeds
to discriminate bushes and trees in KITTI and WildDash 2
although this distinction exists only in the ADE20k taxon-
omy.

Figure 2 shows predictions of universal classes which
correspond to the class road in Cityscapes test. Formally,
the set of all such classes corresponds to mSCS

(CS− road).



Figure 1: Qualitative performance of our universal SNp-DN161 model on test images from the seven RVC datasets. Rows
1 and 4 show input images, rows 2 and 5 show predictions in the universal label space, while rows 3 and 6 show dataset-
specific predictions. Images belong to (top to bottom, left to right) ADE20k, Viper, KITTI, Cityscapes, WildDash, ScanNet
and Vistas. Universal predictions find classes which are not labeled in the corresponding dataset, eg. crosswalk, curb and
road-marking in the image from KITTI. All road driving datasets represent vegetation with a single class, but the universal
model is able to classify those pixels more precisely as trees, palms and plants.

These universal classes are: road, bike lane, crosswalk, ze-
bra, road marking, pothole, manhole and service lane. No
instance of pothole was found in the entire Cityscapes test.
The best performing classes are road and road marking. We
observe recognition of zebras only at close range, while oth-
erwise they often get classified as road marking. The re-

maining classes are usually detected as small clusters in the
correct region. For example, manholes are often only par-
tially segmented.

Figure 3 shows the performance of our model on nega-
tive images from WildDash. These images were taken in
non-road driving contexts (rows 1-4) or from an unusual



Figure 2: Qualitative performance of our universal SNp-DN161 model on Cityscapes test. We overlay predictions over the
input images. We show predictions of following universal classes: road (purple, all images), bike lane (yellow, top-left),
crosswalk (red, top-left), zebra (green, top-right), road marking (white, all images), manhole (magenta, bottom-left) and
service lane (lemon yellow, bottom-right).

perspective (row 5). These images may contain classes
found in traffic scenes such as people (row 2). Note that
the benchmark accepts either the best-case ground truth or
the void class (denoted with black).

Figure 4 shows an interesting failure of our model to dis-
tinguish between different types of animals. Our universal
model classifies the horse from an ADE20k image as class
bird. This occurs since ADE20k taxonomy contains only
the class animal which we map to universal classes bird
and ground-animal. The training signal for distinguishing
between birds and ground animals should have come from
Vistas, but this signal was very weak since these two Vistas
classes are extremely rare.

4. Mapping visualizations
Figures 5 and 6 visualize training and evaluation map-

pings used in our City-Vistas experiments. We show these
mappings for the two baselines and our universal taxonomy.
Please refer to Section 3 of the main paper for a detailed de-
scription of the procedure for recovering these mappings.

References
[1] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,

Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12475–12485, 2020. 2

[2] Ivan Krešo, Josip Krapac, and Siniša Šegvić. Efficient
ladder-style densenets for semantic segmentation of large im-
ages. IEEE Transactions on Intelligent Transportation Sys-
tems, 2020. 2

[3] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and
Vladlen Koltun. Mseg: A composite dataset for multi-domain
semantic segmentation. In CVPR, 2020. 1

[4] Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, and
Peter Kontschieder. Seamless scene segmentation. In CVPR,
pages 8277–8286, 2019. 2

[5] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
ECCV, 2020. 2



Figure 3: Performance of our universal model on four WildDash 2 negative test images. The columns show the input image,
universal segmentation, and the segmentation in the WildDash label space where class void is shown in black. Our model
successfully recognizes some non-traffic classes, e.g. table, chair, book, and cabinet (row 2), or boat and water (row 5). The
model is robust to perspective changes (row 5) and exhibits fair performance in presence of large domain-shift (row 3).



Figure 4: A failure case on ADE20k test. The columns show the input image, universal segmentation, and ADE20k seg-
mentation. The model recognizes most of the horse as class bird. This occurs since birds and ground animals are annotated
only in Vistas as extremely rare classes. Note that two patches are incorrectly classified as grass (green) and pedestrian (red).
These patches finaly get correctly classified into ADE20k-animal, since the sum of probabilities of classes bird and ground
animal prevails after evaluation mapping.



(a)

(b)

(c)

Figure 5: Visualizations of training mappings in City-Vistas experiments. Naive concatenation (a) maps each dataset-specific
class to the corresponding training logit. Partial merge (b) maps dataset-specific classes to the common logit only if they
match exactly. If this is not the case, the classes remain separate. Our universal taxonomy (c) maps each dataset-specific
class to one or more universal classes.



(a)

(b)

(c)

Figure 6: Visualizations of evaluation mappings in City-Vistas experiments for naive concatenation (a), partial merge (b)
and universal taxonomy (c). In each of these cases, dataset-specific classes are mapped to training classes with which they
overlap. We extend dataset-specific taxonomies with a void class that maps to all training classes which do not overlap with
any of dataset-specific classes.


