
GraN-GAN: Piecewise Gradient Normalization for Generative
Adversarial Networks

Supplementary Material

Vineeth S. Bhaskara*1 Tristan Aumentado-Armstrong*1,2,3 Allan Jepson1 Alex Levinshtein1

1Samsung AI Centre Toronto 2University of Toronto 3Vector Institute for AI
{s.bhaskara,allan.jepson,alex.lev}@samsung.com, tristan.a@partner.samsung.com

Appendix A: Training Details
We use Mimicry [12] with PyTorch [14] on a single

NVIDIA V100 GPU for training our models. The generator
G and discriminator (or critic) D architectures are identi-
cal across methods for a given dataset except for models
with spectral normalization that replace convolutional and
linear layers with their normalized variants. The number
of learnable parameters are identical across methods for a
fixed dataset size. Number of parameters for (G,D) are ≈
(4.3M, 1M) for 322, (4.9M, 10M) for 482, and (32M, 29M)
for 1282 image sizes, respectively. G andD are both residual
networks with ReLU activation functions, and G employs
batch normalization [6] while D does not. We train our mod-
els on a single NVIDIA V100 GPU with the Adam [11] opti-
mizer at a learning rate (LR) of 2×10−4, β1 = 0.0, β2 = 0.9
and a batch size of 64 for 100K iterations. The number of
discriminator updates per generator update ndis is set to
5 for CIFAR-10/CIFAR-100/STL-10 and 2 for LSUN bed-
rooms/CelebA. All models (GraN or baseline) use a linear
LR decay policy except models on CelebA that use the same
learning rate throughout, following Mimicry [12]. However,
GraNC-GAN on CelebA required a slight alteration: setting
LRs for G and D to be 5× 10−5 and 1× 10−4, respectively,
and using linear LR decay.

Empirically we find it necessary to have a smaller piece-
wise Lipschitz constant K when training GANs on larger
image resolutions with gradient normalization. We suspect
that a smooth discriminator or critic with smaller gradient
norms is essential for stable GAN training on larger image
resolutions. We choose K = 1/τ = 0.0909 for our models
on LSUN bedrooms/CelebA (except for K = 1/τ = 0.2
with GraNC-GAN on CelebA) and K = 1/τ = 0.83 for our
models on CIFAR-10/CIFAR-100/STL-10.

WGAN-GP uses the Wasserstein distance based loss ob-
jectives for D in Eq. (7) and G in Eq. (8). SNGAN uses

*Equal contribution.

hinge loss for D in Eq. (10) and Eq. (8) for G.
For NSGAN-GP†, we adjust the gradient penalty loss

to constrain the Lipschitz constant to K (instead of 1). For
NSGAN-SN†, we scale the output of the network before the
sigmoid by K to obtain an effective K-Lipschitz constraint
using SN. We also retrain the baselines WGAN-GP and
SNGAN with similar modifications so that the Lipschitz
constraint is identical to the piecewise Lipschitz constraint
for our methods and call them WGAN-GP† and SNGAN†,
respectively.

It is also worth highlighting that our method backpropa-
gates through the GraN normalization term as well and does
not simply treat it as a constant.

Evaluation We quantitatively evaluate the methods by
Inception Score (IS) [15], FID [5], and KID [1] with 50K
synthetic images randomly sampled fromG and 50K real im-
ages from the dataset. We report the mean scores computed
across 3 randomly sampled sets of 50K images for a givenG.
We note that across all methods and datasets, the standard
deviations across 3 evaluation samplings for IS, FID, and
KID are less than 0.05, 0.085, and 0.0004, respectively, and
we therefore do not include them in our tables. IS is not used
for LSUN and CelebA, as these comprise a single class, for
which IS performs poorly [12].

Appendix B: Model Architectures
Figure 1 presents the discriminator model architectures

for inputs of dimensions 322, 482 and 1282, respectively.
Figure 2 presents the generator model architectures for out-
puts of dimensions 322, 482 and 1282, respectively.

Note that for GraN-models, the output of the networks
f(x) is normalized to g(x) as described in Equation (19) of
the main paper and does not contain any additional learnable
parameters.

To modify the Lipschitz constant (LC) of baselines in-

(a) x ∈ R322 (b) x ∈ R482 (c) x ∈ R1282

Figure 1: Discriminator architectures for a) 32 × 32, b)
48× 48 and c) 128× 128 image sizes, respectively. The ar-
chitectures for Input DBlock, DBlock and Down2X DBlock
are described in Figure 3. All models use Global Spatial Av-
erage Pooling except SNGAN that uses Global Spatial Sum
Pooling before the last Linear layer. For SNGAN only, the
Linear and convolution Conv2D layers are the spectral
normalized versions with 1 power iteration.

volving spectral normalized linear and convolutional lay-
ers (NSGAN-SN† and SNGAN†), we scale the output f(x)
by K, i.e., f(x) → Kf(x), where K scales LC relative
to the LC of the baseline model since |f |Lip ≤ 1, implies,
|Kf |Lip ≤ K.

For models WGAN-GP† and NSGAN-GP†, we instead
only change the gradient penalty loss term in the objective
for D to

LGP = λ (‖∇xf(x)‖ − K)
2
,

where λ = 10 (following defaults recommended in [4]) and
K = 1 corresponds to the default WGAN-GP model. As
in the main paper, we denote † to represent models with
adjusted LC relative to the original baselines.

See also §D and Fig. 4 for discussion and empirical re-
sults concerning the observed LC when using an SNGAN
discriminator with a resnet-based convolutional architecture.

(a) G(z) ∈ R322 (b) G(z) ∈ R482 (c) G(z) ∈ R1282

Figure 2: Generator architectures for a) 32× 32, b) 48× 48
and c) 128× 128 image sizes, respectively. The architecture
for Up2X GBlock is described in Figure 3. Generator archi-
tectures are identical across all models for a given dataset
resolution.

Appendix C: Wall-clock timings for a single
training update

We summarize wall-clock times for a single training up-
date that consists of one generator update and ndis number
of discriminator updates (including time for loading a batch
of 64 images from the dataset). As can be noticed from
Table 1, our method is roughly similar in wall-clock timings
compared to WGAN-GP on smaller models (322 and 482)
but slower than NSGAN or SNGAN. On 1282 images GraN
is 40% slower than WGAN-GP.

This is because gradient normalized discriminator (or
critic) D requires computing the gradient norms on both the
real and the fake samples when updating the parameters of
D. In contrast, WGAN-GP only computes gradient norms
on half the total number of real+fake samples which are
random interpolates between the reals and fakes. Moreover,
when updating G, computing generator loss LG requires
computing the gradient norm of D for GraN models, unlike
WGAN-GP where gradient penalty affects only the param-

2

(a) Input DBlock (b) Down2X DBlock

(c) DBlock (d) Up2X GBlock

Figure 3: Residual block architectures for a) Input DBlock,
b) Down2X DBlock, c) DBlock and d) Up2X GBlock in
Figures 1 and 2. inc and outc denote the input and
output number of channels, respectively. Note that when
inc 6= outc, the skip connection in DBlock includes
a 1 × 1 Conv2D appropriately. For SNGAN, the lin-
ear and convolution layers in Input DBlock, DBlock and
Down2X DBlock are the spectral normalized versions.

Table 1: Wall-clock timings (in seconds ×10) for a single
training update across different dataset of different resolu-
tions. Note that ndis = 5 for CIFAR-10/100 and STL-10
while ndis = 2 for LSUN/CelebA, following Mimicry [12].

Method CIFAR-10 CIFAR-100 STL-10 LSUN CelebA
sec (×10) sec (×10) sec (×10) sec (×10) sec (×10)

NSGAN 3.80±0.04 3.72±0.03 4.89±0.06 10.93±0.10 10.98±0.10
WGAN-GP 5.86±0.46 6.12±0.13 8.19±0.18 18.78±0.10 18.61±0.10
SNGAN 4.17±0.05 4.17±0.04 5.57±0.11 11.62±0.11 11.56±0.09
GraND-GAN (Ours) 5.66±0.04 5.69±0.04 8.83±0.07 26.34±0.08 26.13±0.10
GraNC-GAN (Ours) 5.69±0.04 5.65±0.04 8.83±0.08 26.11±0.10 26.18±0.18

eter updates for D at a given training iteration. GraN and
WGAN-GP are both slower relative to NSGAN or SNGAN
because they involve computing the gradient norm and back-
propagating through it. We remark that further advances in
the efficiency of back-propagation through network gradients
could ameliorate this issue (e.g., AutoInt [13]).

However, we note that, since the generator G architecture
is identical across methods for a given dataset, at inference
all methods fare equally in wall-clock timings for image
generation.

4 5 6
gradient norm

0.0

0.5

1.0

pr
ob

ab
ilit

y
de

ns
ity

50K iters
real
fake

(a) Gradient norm (SNGAN
with sum pooling)

5e-05 2.0
delta

2

4

6

fin
ite

-d
iff

er
en

ce
 n

or
m

(b) FD gradient norm (SNGAN
with sum pooling)

1 2
gradient norm

0

2

4

pr
ob

ab
ilit

y
de

ns
ity

50K iters
real
fake

(c) Gradient norm (SNGAN
with average pooling)

5e-05 2.0
delta

0.0

0.5

1.0

fin
ite

-d
iff

er
en

ce
 n

or
m

(d) FD gradient norm (SNGAN
with average pooling)

Figure 4: Gradient norms and finite-difference (FD) ap-
proximation to the gradient norms at increasing perturbation
length delta along the gradient for SNGAN with global
sum pooling ((a) and (b)) and global average pooling ((c)
and (d)) at 50K iterations of training on CIFAR-10.

Appendix D: The Looseness of Layerwise Con-
straints

We consider the simple case of the composition of two
linear layers, z = f(g(x)) = B(Ax + a) + b, where both
f and g, have a sharp Lipschitz constant (LC) of one. The
question is under what conditions does f ◦ g also have a
sharp LC of one?

We first introduce some notation. Let M be an m × n
matrix. We denote the singular value decomposition of M
as M = UMΣMV

T
M , where we take UM and VM to be

square matrices (of sizes m ×m and n × n, respectively).
Here ΣM is a diagonal m× n matrix, with the non-negative
singular values sorted in decreasing order down the diagonal
[3]. Define σ1(M) to be the maximal SV of the matrix M .
Moreover, define Γσ(M) to be the projection from Rn to
the subspace spanned by the right singular vectors of M for
SV’s equal to σ. That is,

Γσ(M) = VMDσ(M)V TM , (1)

where Dσ(M) is defined to be a diagonal n × n matrix
where the ith diagonal element is 1 when the correspond-
ing element of ΣM equals σ, and zero otherwise. It then
follows that Γσ(MT) is the projection of Rm to the sub-
space spanned by the left singular vectors of M for the SV

3

σ. Finally, from the form of Γσ(M) in (1) we can conclude

σ1(Γσ(M)) = 1, (2)
Γσ(M)Γσ(M) = Γσ(M), (3)

so long as σ is an SV for M .
We can express the conditions that f , g, and f ◦g all have

sharp LC of one in terms of this notation. Specifically, the
tight Lipschitz bounds for f , g and f ◦ g are σ1(B), σ1(A),
and σ1(BA), respectively. Assuming SN has rescaled A and
B appropriately, then the LC of g and f are both one and we
have σ1(B) = σ1(A) = 1. Moreover, we see f ◦ g will have
a sharp LC of one iff σ1(BA) = 1. We examine this latter
condition.

Theorem 1. For A and B as above (with dimensions such
that their product BA can be formed), with maximal SV’s
equal to one, the maximal SV of BA satisfies σ1(BA) ≤ 1.
Further, equality of this bound holds if and only if

σ1(Γ1(B)Γ1(AT)) = 1. (4)

Proof of Theorem 1. Let m1 = dim(Γ1(A)) and n1 =
dim(Γ1(B)) be the number of singular values equal to one
in A and B, respectively. The assumption that σ1(A) =
σ1(B) = 1 implies m1, n1 > 0.

Recall that the spectral norm of a matrix M , which is
induced by the L2 vector norm, can be defined via the largest
singular value: ||M ||2 := σ1(M), equivalently computed as

||M ||2 = sup
||x||=||y||=1

|yTMx| = sup
x6=0

||Mx||
||x||

. (5)

It follows from (5) that ||BA||2 ≤ ||B||2||A||2 (the submul-
tiplicativity property), and hence

σ1(BA) ≤ σ1(B)σ1(A) = 1. (6)

First we prove σ1(BA) = 1 implies (4). Assume
σ1(BA) = 1. Then it follows from (5) that there exists
a vector x such that ||x|| = 1 and z := BAx satisfies
||z|| = 1. Let y = Ax. There are two cases to consider,
either ||y|| < 1, or ||y|| = 1. However, since z = By and
||B||2 = σ1(B) = 1 we have ||z|| <= ||B||2||y|| = ||y||.
Therefore the assumption ||y|| < 1 leads to the contradiction
||z|| < 1, and instead we must have

||y|| = ||Ax|| = ||x|| = 1, (7)
||z|| = ||By|| = ||y|| = 1. (8)

Equation (7) ensures x ∈ range(Γ1(A)) and therefore
y = Ax ∈ range(Γ1(AT)). Also, equation (8) en-
sures y ∈ range(Γ1(B)). Therefore it follows that y
is a unit vector such that Γ1(B)y = y, and Γ1(AT)y =
y. And thus, Γ1(B)Γ1(AT)y = y. By (5) we then

have σ1(Γ1(B)Γ1(AT)) ≥ 1. But, from (2), it fol-
lows that σ1(Γ1(B)) = σ1(Γ1(AT)) = 1 and therefore
σ1(Γ1(B)Γ1(AT)) ≤ 1. As a result we have shown (4), as
desired.

For the reverse direction, assume σ1(Γ1(B)Γ1(AT)) = 1.
Then (5) implies there exists a y such that ||y|| = 1 and
z = Γ1(B)Γ1(AT)y with ||z|| = 1. But, since Γ1(B) and
Γ1(AT) are projection matrices (see (3)), it can be shown
that we must have Γ1(AT)y = y, Γ1(B)y = y, and z = y.1

Moreover, since y is a right singular vector ofAT for singular
value one, it follows that x := AT y = VAΣAU

T
Ay is a

left singular vector of AT for the SV at one and ||x|| = 1.
Therefore x = Γ1(A)x = VAD1(A)V TA x. That is, x is in
the right singular space of A for the SV at one and it follows
that y = Ax. Taken together, we have BAx = By and
y = Γ1(B)y, so ||By|| = 1. Hence ||BAx|| = ||By|| =
1 = ||x|| . That is, from (5), it follows that σ1(BA) ≥ 1.
Finally, from (6), we conclude σ1(BA) = 1, as desired. �

Relation to Layerwise Spectral Normalization As de-
scribed in the text, (Eq. 4) is a subspace alignment condition
where σ1(Γ1(B)Γ1(AT)) equals the cosine of the first prin-
cipal angle between the two subspaces Γ1(B) and Γ1(AT)
[3, 18]. It is therefore unlikely to be satisfied by chance, al-
though during training the model may reduce this angle and
approach σ1(Γ1(B)Γ1(AT)) = 1. Thus, with training, we
might expect the norm of the gradients of f(x) to increase
towards an upper bound.

However, we note additional features of f(x) for the
architectures described in Figures 1 and 3. Specifically, the
global sum pooling in Fig. 1 and the skip connections in Fig.
3 are both capable of amplifying the gradient norms through
these stages by a factor greater than one. Thus, while the
subspace alignment conditions can be expected to shrink the
gradient magnitudes, these specific components can expand
them. The consequence of these two opposing effects is not
clear a priori.

The empirical results shown in Fig. 4a indicate that, for
the cases tested, the net effect is for f(x) to have a gradient
norm larger than one. Moreover, when average pooling is
used in place of the sum pooling, the norm of the gradient is
predominantly less than one (see Fig. 4c). Similar properties
are seen for the magnitudes of finite differences (FD) of f(x)
over steps of length δ (see Fig. 4b, 4d), as described in the
paper.

Indeed, we can compute the LC for the 32 × 32 resnet-
based convolutional discriminator (used on, e.g., CIFAR-10),
shown in §B and Fig. 1, as follows. First, note that the four
DBlocks have a skip connection, meaning the LC increases
two-fold across each block, resulting in an LC of 24 = 16
before pooling (assuming the SN keeps the convolutional

1The basic idea here is that if z = Py for a projection P and ||z|| =
||y|| then ||y||2 = ||Py||2+||(I−P)y||2 can be used to show (I−P)y =
0. Moreover, from (1), it then follows that Py = y.

4

Table 2: Mean ± standard deviation of IS, FID and KID
across 3 training runs with random restarts on CIFAR-10.
† indicates modified baselines with the Lipschitz constant
K = 0.83 that our methods use.

Model IS ↑ FID ↓ KID(×1000) ↓

NSGAN 7.35±0.25 26.85±5.16 17.81±3.79
WGAN-GP 7.42±0.02 22.44±0.35 20.67±0.31
SNGAN 8.06±0.04 17.22±0.16 12.44±0.25

NSGAN-GP† 8.01±0.04 15.69±0.15 12.95±0.21
NSGAN-SN† 7.72±0.06 21.12±0.59 15.79±0.42
WGAN-GP† 7.37±0.02 22.75±0.05 21.12±0.36
SNGAN† 7.98±0.01 16.86±0.40 12.16±0.38

GraND-GAN 8.00±0.01 15.60±0.47 12.80±0.42
GraNC-GAN 7.96±0.02 16.15±0.21 13.30±0.32

Table 3: Ablation of our method (GraND-GAN) on CIFAR-
10 image generation under different values of the Lipschitz
constant K = 1/τ with ε = 0.1.

1/τ IS ↑ FID ↓ KID(×1000) ↓

0.1 7.709 18.303 15.4
0.5 7.919 15.689 12.8
0.83 8.031 14.965 12.3
1.0 8.011 15.469 12.2
1.33 8.111 14.561 10.9

Table 4: Ablation of our method (GraND-GAN) on CIFAR-
10 image generation under different values of ε with K =
1/τ = 0.83.

ε IS ↑ FID ↓ KID(×1000) ↓

1e-08 8.065 15.076 11.9
0.0001 7.924 16.695 13.7
0.001 8.035 16.322 13.5
0.01 7.900 15.726 13.0
0.1 8.031 14.965 12.3
1.0 7.981 15.194 12.2

layer LCs at one). The first two blocks also have spatial
downsampling, resulting in an 8 × 8 feature map that is
sum-pooled. This pooling, along with the preceding skip
connections, increases the final LC to 8 × 8 × 16 = 1024,
as mentioned in the main paper.

Appendix E: Variance of IS, FID and KID
metrics across random training restarts for
CIFAR-10

We report the mean and the standard deviations of the
metrics reported (IS, FID, KID) across 3 different training

Table 5: Frequency of runs diverging (i.e., FID ≥ 40)
on CIFAR-10 on three random restarts for GraND-GAN,
GraNC-GAN, SNGAN, WGAN-GP, and NSGAN-GP† on
CIFAR-10 for settings B, C and D.

Model Setting α β1 β2 ndis #(FID ≥ 40)

WGAN-GP B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 3/3
D 0.001 0.9 0.999 5 3/3

SNGAN B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

NSGAN-GP† B 0.0002 0.5 0.999 1 3/3
C 0.001 0.5 0.999 5 3/3
D 0.001 0.9 0.999 5 0/3

GraND-GAN B 0.0002 0.5 0.999 1 2/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

GraNC-GAN B 0.0002 0.5 0.999 1 2/3
C 0.001 0.5 0.999 5 0/3
D 0.001 0.9 0.999 5 0/3

runs with random restarts for CIFAR-10 in Table 2.

Appendix F: Ablations on ε and τ

We also run ablations on our methods by varying the
piecewise Lipschitz constant K = 1/τ and ε for GraND-
GAN on CIFAR-10 image generation. Tables 3 and 4 show
that our method is fairly robust to a range of K and ε, re-
spectively, on CIFAR-10. The role of hyperparameter ε is
mainly numerical stability when the gradient norm becomes
vanishingly small. Irrespective of ε used, we empirically find
that the weights of the network scale up sufficiently large
such that the input gradient norm of the GraNed output g(x)
is close to the upper bound K, i.e., ‖∇xg(x)‖ ≈ K. This
is evident in Figure 3 of the main paper where the gradi-
ent norms for our methods have a very narrow distribution
around K despite using ε = 0.1.

Appendix G: Frequency of runs diverging on
CIFAR-10 on three random restarts

We repeat the experiment in Figure 2 of the main paper for
settings B (α = 0.0002, β1 = 0.5, β2 = 0.999, ndis = 1),
C (α = 0.001, β1 = 0.5, β2 = 0.999, ndis = 5) and D
(α = 0.001, β1 = 0.9, β2 = 0.999, ndis = 5) that have
aggressive training settings over 3 random restarts. We call
a run “diverging” when the FID ≥ 40 on CIFAR-10. Table
5 summarizes the number of diverging runs out of 3 random
restarts.

Evidently, GraND-GAN and GraNC-GAN have the least
number of runs that diverged in 3 random restarts across
settings B, C and D. SNGAN comes close but diverges 3/3
times for setting B when ndis = 1. WGAN-GP performs

5

poorly across random restarts for B, C and D. NSGAN-GP†
diverges 3/3 times for settings B and C.

Appendix H: Qualitative Results

Figures 7, 8, 9, 5 and 6 present a sample of images gener-
ated by different methods for CIFAR-10, CIFAR-100, STL-
10, LSUN-Bedrooms and CelebA, respectively. We compare
the results of our methods qualitatively with the baselines
(NSGAN, WGAN-GP, SNGAN) and the best model of the
modified baselines (NSGAN-GP† where † represents an ad-
justed Lipschitz constraint to match the piecewise Lipschitz
constant of our methods).

Appendix I: Soft versus Hard Hinge Perfor-
mance

We tested GraNC-GAN on both soft and hard hinge losses
(recalling that the soft hinge loss is obtained by replacing the
ReLU non-linearity in the standard hard hinge loss with the
softplus activation). On LSUN, GraNC-GAN struggles to
converge with hard hinge, while it outperforms SNGAN with
soft hinge loss. Moreover, if one lowers the LRs on LSUN
(to be those used by GraNC-GAN on CelebA; see §A), the
soft hinge version performs better by ∼6 FID (specifically,
20.2 vs. 26.3). On CelebA, using hard hinge resulted in
an FID of 14, two points higher than that obtained via soft
hinge (12), as displayed in the main paper. Altogether, these
suggest the soft hinge loss is generally more performant
and stable than the standard hard hinge function, at least
for GraN. Previous works, such as SNGAN, also note such
instabilities across different loss functions, and, therefore,
switch from the Wasserstein loss to the (hard) hinge loss in
their work. In our case, soft hinge loss was found to work
the best.

Appendix J: Effect of εAdam in the Adam up-
date on GAN training

To illustrate a qualitative effect of tuning εAdam in the
Adam update on training GANs, we train GraNC-GAN on
CIFAR-10 with Hinge loss for 1000 iterations, fixing the
Lipschitz constant K = 1. We train two models, one with
εAdam = 1 × 10−8 (default value) and another model with
εAdam = 1× 10−7 (i.e., 10× larger than the default). Figure
10 show the qualitative results of a few examples sampled
from the generators.

As noted in the main paper, tuning the Lipschitz constant
K has an effect that is equivalent to changing εAdam. Figure
10 qualitatively demonstrates that tuning εAdam (or K, in
effect) affects GAN training considerably.

Appendix K: Stability of Modern GANs
Recent families of GANs, including those based on Big-

GAN [2] and StyleGAN [9], have achieved unprecedented
synthesis results; yet, they are not immune from instability
issues. BigGAN devotes a significant portion of their paper
to understanding stability (see, e.g., Sections 4.1 and 4.2 on
“characterizing instability”). Furthermore, they note that “it
is possible to enforce stability by strongly constraining D,
but doing so incurs a dramatic cost in performance.” Instabil-
ity persists even within more recent methods that are based
on BigGAN, such as U-net GAN [16], which experiences
∼40% of its runs failing. While StyleGAN does not present
a stability analysis, their network relies heavily on progres-
sive growing [8] for stability, which induces artifacts (and
additional training complexity) addressed in follow-up work
(StyleGANv2 [10]). Similarly, MSG-GAN [7] demonstrates
improved stability of its technique over progressive grow-
ing. In other words, despite steady improvements, GAN
stability remains a significant challenge, even for modern ar-
chitectures. See also [17] for a recent survey of stabilization
techniques.

References
[1] Mikołaj Bińkowski, Dougal J Sutherland, Michael Arbel, and

Arthur Gretton. Demystifying mmd gans. arXiv preprint
arXiv:1801.01401, 2018.

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[3] Gene H Golub and Charles F Van Loan. Matrix computations
(fourth edition). JHU press, 2013.

[4] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron Courville. Improved training of Wasser-
stein gans. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pages
5769–5779, 2017.

[5] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In
Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 6629–6640,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

[7] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-scale
gradients for generative adversarial networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7799–7808, 2020.

[8] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017.

[9] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.

6

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 5: Qualitative results on LSUN-Bedrooms across different models, including baselines (NSGAN, WGAN-GP, SNGAN),
the best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[10] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8110–8119, 2020.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[12] Kwot Sin Lee and Christopher Town. Mimicry: Towards the
reproducibility of gan research. CVPR Workshop on AI for
Content Creation, 2020.

[13] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume ren-
dering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
14556–14565, June 2021.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[15] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. arXiv preprint arXiv:1606.03498, 2016.

[16] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-
net based discriminator for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8207–8216, 2020.

[17] Maciej Wiatrak, Stefano V Albrecht, and Andrew Nystrom.

7

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 6: Qualitative results on CelebA across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the best
performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better viewing.

Stabilizing generative adversarial networks: A survey. arXiv
preprint arXiv:1910.00927, 2019.

[18] Peizhen Zhu and Andrew V Knyazev. Angles between sub-
spaces and their tangents. arXiv preprint arXiv:1209.0523,
2012.

8

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 7: Qualitative results on CIFAR-10 across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the
best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

9

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 8: Qualitative results on CIFAR-100 across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the
best performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better
viewing.

10

(a) NSGAN (b) WGAN-GP (c) SNGAN

(d) NSGAN-GP† (e) GraND-GAN (f) GraNC-GAN

Figure 9: Qualitative results on STL-10 across different models, including baselines (NSGAN, WGAN-GP, SNGAN), the best
performing modified baseline (NSGAN-GP†) and our methods (GraND-GAN and GraNC-GAN). Zoom in for better viewing.

11

(a) εAdam = 1× 10−8 (b) εAdam = 1× 10−7

Figure 10: Qualitative comparison of generated CIFAR-10
samples under two different εAdam hyperparameter settings.
Tuning εAdam affects GAN training. Zoom in for better view-
ing.

12

