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In this supplementary material, we provide details about
the text-detection module, additional qualitative compar-
ison for the state-of-the-art methods with our approach,
qualitative results for the ablation study of our network and
an analysis on the computational cost of our network com-
ponents. The document is structured as follows:

* Section 1: Text-detection Module
* Section 2: Qualitative Comparison- Depth Results
 Section 3: Qualitative Results- Ablation Study

 Section 4: Computational Cost Analysis

1. Text-detection Module

The generated real-images from the DUNIT [2] model
have speech-balloons or text present in them, which are
not recognised by the depth estimators trained on real-
domain images. Therefore, the predicted depths contain
text-based artefacts. In order to remove these artefacts, we
use the text-detection module shown in Figure 1. Our text-
detection module is a U-Net [9], trained in a supervised
manner, on the text/ speech-balloon annotations from the
eBDtheque [3] dataset. The trained U-Net [9] is then, used
on the DCM [7] training images to detect the text/ speech-
balloon areas in them, in the form of text masks. These
text masks are then used to generate the text adder ’ground-
truth’ given by (1 — M)A+ M B, where M is the text mask,
(1 — M) is its complement, A is the comics—real trans-
lated image (but without the text area) and B is the origi-
nal comics image (containing the text area). Once the text
adder ’ground-truth’ is created, we train a text-adder gener-
ator with A, B and M as input. This generator takes the po-
sition of the mask, M, in the original comics image, B, and
applies this positional information onto the comics—real
translated image, A, to create a well-defined text area on
the translated image. This generated output is trained using
an L1 loss with the text adder ’ground-truth’. The reason
to create a translated image with a well-defined text area
is shown in Figure 1, top row, where we can see that a
translated image when generated without the text area in-
formation contains text-based artefacts, which in turn, gives

incorrect depth values after being fed into the depth estima-
tor. However, the text-adder generator output produces no
such text-based artefacts and gives a better depth prediction.

After the translated image with a well-defined text area is
created, its fed into our depth estimator to predict the depth
of the translated image with the text. Concurrently, the real
image is passed to the other depth estimator to predict the
depth of the real image. Both these estimators are trained
in an end-to-end manner. Furthermore, to predict the depth
of the translated image without the depth values from the
text masks, we multiply the complement of the text mask
with the prediction. This results in a clean depth predic-
tion without any text-based artefacts. During inference, our
approach can be directly applied on the original comics im-
age with text. However, for fair comparison with the base-
line approaches, we translate the comics image with text to
a real image using a pretrained DUNIT (without the text-
detection module) and then apply the different methods to
predict their depth. As our approach has been trained with
text information, it learns to separate the text-based arte-
facts and thus, produces a superior depth map. In Figure 3,
last column, we observe the effect of our text module on the
depth predictions for an input comics image from the DCM
validation set of our benchmark (Please zoom in to observe
the differences in the depth predictions).

Note that for our final approach (consisting 121, depth,
feature GAN, Laplacian and the text module), we use
comics images without text areas to train our 121 module.
This is done to facilitate the generation of real images with-
out text artefacts (referred to as A’ in Figure 1). To this
end, we discuss the method to generate the original comics
images without the text areas, in what follows.

Generating the comics-without-text dataset. Toremove
the text areas from the original comics, we randomly crop
the original images along with their respective text mask
prediction obtained by the trained U-Net [9], to a 384 x 384
size. We then, decrease the crop size by 1 unit per dimen-
sion, i.e., the image is cropped to 383 x 383, followed by
382 x 382, and so on. We repeat this process until the max-
imum area of the text in the image is 3% of the total im-



age. After cropping, these images were checked manually
for any remaining text areas and we found that none of the
images contained significant text in them.

2. Qualitative Comparison- Depth Results

We show the depth predictions on the translated comics
images as reported in Figure 5 of the main paper. Further,
we show that the state-of-the-art methods like MIDAS [8]
and CDE [5], which are trained on real-world images, fail
to predict depth accurately when applied to comics images
directly. Specifically, as seen in Figure 2, MIDAS is unable
to predict the depth of the sample DCM [7] validation im-
age from our benchmark, though it is trained on a large col-
lection of real-world images from five different real-world
datasets. This raises the need for applying these methods
on a comics—>real translated image. As seen in Figure 2,
the baseline methods of MIDAS and CDE (trained on real
images), benefit from the 121 translations. During inference,
we first, translate the original comics image to the real do-
main by using a pretrained DUNIT [2] model and then, we
apply the baseline depth estimators on these translated im-
ages. Nevertheless, our approach can predict the depth on
both the translated image and the original comics image,
while outperforming all the baselines in both the scenar-
ios. This is because our approach is trained in an end-to-end
manner along with the 12I module. Note that, we could also
train all the baseline models (including T2Net [11], Song
et.al [10] and MIDAS [8]), from scratch, in an end-to-end
manner with our I2I model, but this was not addressed. This
is because we observed that training the baseline method of
CDE [5] from scratch, in an end-to-end manner, results in
poorer results than our approach, as shown in Table 4 (first
row) in our main paper. Note that though CDE was the best
performing baseline method, it fails in comparison to our
approach.

3. Qualitative Results- Ablation Study

We validate the results observed in Table 4 of the main
paper with additional qualitative results. In Figure 3, we ob-
serve the effect of each of our network components on the
depth predictions when applied to a translated comics im-
age from the DCM validation set of our benchmark. Note
that each network component was added one-by-one. We
see, qualitatively, that the DUNIT (I2I)+ CDE (D) method,
when trained in an end-to-end manner, outperforms the
baseline CDE [5] method (cross-referring to Figure 2- first
row and third column). We also see that the addition of the
feature-based GAN (FG) greatly benefits the depth predic-
tions as it encourages the similarity in distribution between
the comics and the real domain. Moreover, the Laplacian
(L) when added to our depth estimator, refines the edge con-
trasts and gives a better depth prediction. However, some

Method w/ DUNIT [2] w/DRIT [6]
121 66% 60%

Depth (D) 17% 17%
Feature GAN (FG) 4% 10.33%
Laplacian (L) 1% 1.33%

Text Module (TM) 12% 11.34%
Total 36h 27h

Table 1: Computational cost of training the different net-
work components. We compare the cost of the different
network components, namely, the 121, depth, feature GAN,
Laplacian and text module in our method. We report the
percentage of the total computational time taken by each of
these components. We report that the I2I module dominates
the training time. Note that the above methods were trained
using 4 GPUs following consistent resolution for all the in-
put images and constant batch size.

text-based artefacts still remain in the depth prediction, re-
sulting in vague depth values. To remedy this, we add the
text module (TM) to finally, have superior depth predictions
as seen in Figure 3 here and Table 4 in our main paper.

4. Computational Cost Analysis

We have seen, thus far, that training our approach in an
end-to-end manner improves the predicted depth maps and
thereby benefits our method. However, this leads to a com-
putational overhead. We report the computational cost in-
curred by the different components of our network, when
trained in an end-to-end manner in Table 1. We see that
the training of the I2I module dominates the computational
time, regardless of the I2] method employed. This was fol-
lowed by the training of the depth estimators. Note that the
training in both the scenarios (i.e. using DUNIT and DRIT
as the 121 module) was done using 4 V100, 7 Tflops GPUs
with 32 GB memory. The total time taken by our approach
with DUNIT [2] is 36 hours, while that with DRIT [6] is
27 hours. The extra computational time for DUNIT comes
from the instance-level translations. Nevertheless, the infer-
ence time for both the methods are comparable and is equal
to 217 milliseconds for the method employing DUNIT and
203 milliseconds for the one with DRIT, processed on a sin-
gle V100 GPU.
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Motivation for our text module

Overview of our approach with the text module

Figure 1: Our depth estimation approach with the text-detection module. We show, (Top): the motivation for our text
module and (Bottom): the overall architecture of our approach incorporating the text module. In our text module, the masks
are generated using a U-Net [9] trained on the text annotations form eBDtheque [3] dataset. The generated masks by the
trained U-Net is used to train the text adder generator and the text adder ’ground-truth’ as discussed above. The generated
real image with text is then fed into the depth estimator. This predicts the depth with text. To remove the text based artifacts
in the depth prediction, the complement of the text mask is multiplied with the predicted depth with text to, finally, predict
the depth without the text.



Comics input MIDAS [8] CDE [5] Our

Figure 2: Qualitative comparison of depth estimation on
the DCM validation images [7] from our benchmark. (Top
Row): Depth predictions on the translated comics images
as seen in the main paper. (Bottom Row): Depth predic-
tions on the actual comics images (not translated). We show,
from left to right, the input image in the comics domain,
the result using the MIDAS [8] model, the result using the
CDE [5] model, and Our model (comprising 121, depth, fea-
ture GAN, Laplacian and the text module), respectively. We
show that all the methods benefit from the 121 module. Fur-
ther, we show that our approach can predict depth when ap-
plied both to the translated image, as well as the original
comics image; while outperforming the baselines in both
the scenarios. Cooler colors are farther and warmer colors
are nearer (Best viewed in color).

121+D 12I+D+FG 12I+D+FG+L

I2I+D+FG+L+TM

(Ours)
Figure 3: Qualitative comparison for the ablation study
showing the effect of the different network components.
We show the depth predictions on the translated DCM vali-
dation images [7] from our benchmark. We report, from left
to right, the depth predictions obtained by the model com-
prising 12 (DUNIT [2]) and Depth (CDE [5]) trained in
an end-to-end manner; the result using the model compris-
ing 121, CDE and feature GAN; the result using the model
comprising 121, CDE, feature GAN and Laplacian; and Our
model (comprising 121, CDE, feature GAN, Laplacian and
the text module), respectively. Cooler colors are farther and
warmer colors are nearer (Best viewed in color).
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