
Supplemental Material :
A Structure-Aware Method for Direct Pose Estimation

Hunter Blanton1 Scott Workman2 Nathan Jacobs1

1University of Kentucky 2DZYNE Technologies

1. Additional Results on Indoor Scenes
We show per-scene histograms of error for the 7Scenes

dataset in Figure 1. We also show the result of training with
or without the validity mask in Lgeom in Figure 2.

We show qualitative results on images from the 12Scenes
dataset in Figure 4 and Figure 5. Compared to the 7Scenes
dataset, it is less common for images to contain large regions
that have no depth information during training. As such, the
weighting CNN produces more varied weights in general be-
cause it can no longer depend on obviously incorrect points.
This can result in seemingly strange results, such as row
5 in Figure 4 and row 12 in Figure 5. Note, however, that
even with these strange correspondence weights, the final
re-projection error is typically low.

2. Results on Outdoor Scenes
We show quantitative results on common outdoor scenes

from the Cambridge Landmarks dataset [8] in Table 3. While
our approach does not work as well in this scenario as it does
for the indoor scenes from the main paper due to the low
quality depth labels, it still performs competitively on all
scenes, and is the best method for the Hospital scene by a
large margin. On average our method is best for position
error, but the ResNet based PoseNet [7] performs best on
orientation error. This is surprising since PoseNet was not
competitive even against other similar methods on 7Scenes.
This shows the difficulty of this dataset for direct pose estima-
tion methods. Note that this is among the most challenging
scenarios for our method because of the poor quality of the
depth labels generated from rendering from sparse structure-
from-motion (SfM) keypoints. Due to the explicit nature of
our method, utilizing a better SfM tool to generate more ac-
curate depth images will directly lead to better performance.
Examples of depth labels found in the dataset are shown
in Figure 6. While there are many areas that have missing
depth (depth=0), this is not an issue for our method as we
can ignore these pixels during training. However, there are
a large number of sky pixels which are incorrectly labeled

with depth, as well as erroneous depth values in general.
These errors are an issue for our method because they result
in incorrect supervision during training. However, as men-
tioned earlier, even with these labels our method performs
well, and there is a clear path to improvement from better
label generation alone.

Due to the poor depth quality and fewer training examples
per scene, we use the masked version of Lgeom and train for
more epochs compared to indoor scenes. For the geometry
optimization phase, we train for 100 epochs with an initial
learning rate of 1e−4 and reduce the learning rate by a factor
of 0.5 every 40 epochs. For the pose optimization phase,
we train for 20 epochs with a learning rate of 1e−3 on the
weighting CNN parameters and 1e−4 on the depth and scene
coordinate CNN parameters. The higher learning rate on
the geometry prediction parameters is similar to the the re-
projection error optimization phase of DSAC++ [2] due to
the error in ground-truth scene coordinate labels.

We show visualizations of network outputs on several
Cambridge Landmarks inputs in Figure 7. Notice that even
in areas where depth and scene coordinate predictions seem
good, the predicted weights tend to focus on a smaller area.
This is apparent mostly in the Kings College scene, examples
of which are shown in rows 2 and 8. Also, in row 6 we can
see a difficult case where most of the image is a tree, leading
to bad predictions. This is reflected in the weights as all
predicted correspondence weights for this example are very
low. Overall, even with the noisy depth labels, the weighting
mechanism is able to capture which points are more reliable
for final pose computation.

3. Depth Accuracy

A key part of our method is the choice of depth estimation
network. While we could have chosen a large network and
trained it for generic depth estimation, we instead chose a
more shallow network and trained on a per-scene basis for
pose estimation. Table 4 shows the average depth error for
each scene. We compare the depth estimation accuracy in
the case of 1) training with a single scene, 2) training with
all scenes, and 3) holding out the scene. This last case tests



Figure 1: Individual cumulative histograms of error for each scene from 7Scenes for several methods, truncated to 1 meter and
25 degrees error.

Training With Mask Training Without Mask
Input Depth SC Depth SC

Figure 2: Qualitative results from training with or without a validity mask: (left) input image, (middle) output depth and
scene coordinates (SC) trained using the validity mask, and (right) outputs trained without this mask. Note that these are not
ground-truth labels. Training without the mask forces the network to recognize unknown areas.

the potential ability of our depth networks to transfer to
other scenes. We report mean absolute error, as well as depth
accuracy values for different error thresholds. As expected,
we typically observe a gradual decline in depth estimation
quality as we move from the single scene case where much
of the scene structure can be memorized, to the held out case,
where no information about the scene was observed during
training. Also, we show that a high percentage of pixels have
a depth error of less than 0.125 meters, so we believe our
simple network is sufficient for this task.

4. Extending to Multiple Scenes

Multi-scene absolute pose regression was first explored
by Blanton et al. [1]. They show that a PoseNet style architec-
ture can be separated into scene-specific and scene-agnostic
components. This method is called MSPN. We show our
method used for the multi-scene pose regression task.

Camera Coordinates

Scene Specific Coordinates

 Rigid 
Alignment

Weights

Scene Agnostic ComponentsInput

Figure 3: Our absolute pose estimation pipeline for absolute
pose regression in multiple scenes. The scene coordinate
regression network is the only component that is dependent
on the scene. All other parts of the network, namely depth
estimation, correspondence weighting, and rigid alignment
are generic and are applied to all scenes.

To do this, we slightly alter the architecture as shown
in Figure 3. The key changes are that the scene coordinate



Sequence

Method Chess Fire Heads Office Pumpkin Kitchen Stairs

PoseNet (all) 0.15/4.85 0.28/13.13 0.30/11.54 0.23/6.34 0.29/5.34 0.29/6.98 0.35/10.63

MSPN 0.09/4.76 0.29/10.50 0.16/13.10 0.16/6.80 0.19/5.50 0.21/6.61 0.31/11.63

Ours 0.07/2.00 0.15/5.19 0.19/12.29 0.12/3.40 0.14/4.00 0.13/3.69 0.39/9.99

Table 1: Results on multi-scene training. Each method was trained on all scene simultaneously.

Chess Fire Heads Office Pumpkin Red Kitchen Stairs

MSPN (finetune) 0.82/23.28 0.76/31.39 0.44/23.15 0.98/ 45.69 0.76/29.86 1.32/33.37 0.69/32.95
EPnP [9] 0.12/2.96 0.28/7.58 1.04/60.68 0.48/9.05 0.21/4.32 0.31/6.88 0.58/10.25
Ours 0.24/6.58 0.32/10.40 0.29/18.97 0.28/6.31 0.35/7.81 0.28/6.51 0.37/8.28

Table 2: Pose error results for held out scenes (median position in meters/median orientation in degrees). In this case, each scene
was evaluated using depth and weighting networks trained without examples from the given scene. Our method significantly
outperforms MSPN, and manages to beat EPnP in many cases.

regression no longer shares parameters with the depth esti-
mation network, and the scene coordinate estimates are fed
into the depth estimation network. For training, we train the
scene coordinate regressor separately, then train the depth
and weighting network on all scenes simultaneously. We use
pretrained ESAC [3] networks to show that this method can
be applied to any scene coordinate estimates.

Results for multi-scene training are given in Table 1. Com-
pared even to single scene methods, our proposed approach
is very good. Finally, we evaluate on scenes held out of train-
ing for the scene-agnostic components (i.e., the depth and
weighting networks). Results are shown in Table 2. Com-
pared to MSPN, our method actually generalized to novel
scenes without requiring retraining of the entire network. It
performs competitively with EPnP [9] without RANSAC
applied directly to the scene coordinates.

5. Architecture Details
We use a standard ResNet-34 [6] as the backbone feature

extractor for our network. We use the implementation from
the Pytorch [11] torchvision library. The ResNet feature
extractor has 5 major components: a single convolution and
max pooling (ConvBlock) followed by 4 residual blocks
(ResBlock). The general ResNet architecture is given in
Table 5. We only use the convolutional and residual layers,
not the final linear layer.

We provide detailed architecture components for the other
components of our network, namely the scene coordinate re-
gression network (Table 6), the depth network (Table 7), and
the weighting network (Table 8). These networks make use
of intermediate outputs from the shared ResNet backbone

which are given in the “Input” column. For convolutions,
we list it as Conv2d(in channels, out channels, kernel size,
stride, padding).



References
[1] Hunter Blanton, Scott Workman, and Nathan Jacobs. Ex-

tending absolute pose regression to multiple scenes. In Pro-
ceedings of the IEEE International Conference on Computer
Vision Workshops, 2020. 2

[2] Eric Brachmann and Carsten Rother. Learning less is more
- 6d camera localization via 3d surface regression. In IEEE
Conference on Computer Vision and Pattern Recognition,
2018. 1

[3] Eric Brachmann and Carsten Rother. Expert sample con-
sensus applied to camera re-localization. In International
Conference on Computer Vision, 2019. 3

[4] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,
and Jan Kautz. Geometry-aware learning of maps for camera
localization. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 7

[5] Ming Cai, Chunhua Shen, and Ian D. Reid. A hybrid proba-
bilistic model for camera relocalization. In British Machine
Vision Conference, 2018. 7

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2016.
3

[7] Alex Kendall and Roberto Cipolla. Geometric loss functions
for camera pose regression with deep learning. IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017. 1,
7

[8] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet:
A convolutional network for real-time 6-dof camera relocal-
ization. 2015. 1, 7

[9] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o (n) solution to the pnp problem. Interna-
tional Journal of Computer Vision, 81(2):155, 2009. 3

[10] Tayyab Naseer and Wolfram Burgard. Deep regression for
monocular camera-based 6-dof global localization in outdoor
environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017. 7

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019. 3

[12] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sat-
tler, Sebastian Hilsenbeck, and Daniel Cremers. Image-based
localization using lstms for structured feature correlation. In
International Conference on Computer Vision, 2017. 7



Network Outputs Computed
Input Depth Scene Coords Weights Endpoint Error

1

2

3

4

5

6

7

8

9

Figure 4: Example network outputs for 12Scenes images. Depth, scene coordinates, and weights are direct outputs of our
network. The endpoint error is computed by applying the regressed pose to the scene coordinates and clamped to 1 for
visualization. For depth, weights, and endpoint error, brighter means a higher value. Row labels are shown on the left for
referencing in text.



Network Outputs Computed
Input Depth Scene Coords Weights Endpoint Error

10

11

12

13

14

15

16

17

18

Figure 5: More example network outputs for 12Scenes images. Depth, scene coordinates, and weights are direct outputs of
our network. The endpoint error is computed by applying the regressed pose to the scene coordinates and clamped to 1 for
visualization. For depth, weights, and endpoint error, brighter means a higher value. Row labels are shown on the left for
referencing in text.



Figure 6: Examples of errors in depth labels for Cambridge Landmarks images. Many areas that should have invalid depth are
assigned depth values. There are many incorrect depth assignments in general. Dark areas are regions with no depth label
(depth=0).

Sequence

Method College Hospital Shop Church Avg

PoseNet [8] 1.92/5.40 2.31/5.38 1.46/8.08 2.65/8.48 2.08/6.83

PoseNet Learned Weights [7] 0.99/1.06 2.17/2.94 1.05/3.97 1.49/3.43 1.43/2.85
Geo PoseNet [7] 0.88/1.04 3.20/3.29 0.88/3.78 1.57/3.32 1.63/2.86

LSTM PoseNet [12] 0.99/3.65 1.51/4.29 1.18/7.44 1.52/6.68 1.30/5.51

GPoseNet [5] 1.61/2.29 2.62/3.89 1.14/5.73 2.93/6.46 2.08/4.59

SVS-Pose [10] 1.06/2.81 1.50/4.03 0.63/5.73 2.11/8.11 1.32/5.17

MapNet [4] 1.07/1.89 1.94/3.91 1.49/4.22 2.00/4.53 1.62/3.64

Ours 1.19/2.16 1.11/1.92 0.95/6.82 1.37/4.45 1.16/3.84

Table 3: Direct pose estimation results on Cambridge Landmarks compared to other methods (median position in meters/median
rotation in degrees).



Network Outputs Computed
Input Depth Scene Coords Weights Endpoint Error

1

2

3

4

5

6

7

8

Figure 7: Example network outputs for Cambridge Landmarks images. Depth, scene coordinates, and weights are direct
outputs of our network. The endpoint error is computed by applying the regressed pose to the scene coordinates and clamped
to 1 for visualization. For depth, weights, and endpoint error, brighter means a higher value. Row labels are shown on the left
for referencing in text.



Sequence

Method Chess Fire Heads Office Pumpkin Kitchen Stairs

Single Scene
Abs Error 0.2318 0.1954 0.1491 0.2367 0.2244 0.2570 0.3515

δ < 0.53 0.4883 0.4743 0.6206 0.3651 0.4164 0.3616 0.3260

δ < 0.52 0.7482 0.7461 0.8371 0.6554 0.7030 0.6349 0.5610

δ < 0.5 0.8968 0.9364 0.9385 0.9011 0.9261 0.8870 0.7959

All Scene
Abs Error 0.2271 0.1842 0.1730 0.2325 0.2591 0.2654 0.4374

δ < 0.53 0.4909 0.4945 0.5817 0.3876 0.3599 0.3580 0.2559

δ < 0.52 0.7499 0.7710 0.7842 0.6694 0.6607 0.6280 0.4535

δ < 0.5 0.8980 0.9493 0.9216 0.9029 0.9044 0.8787 0.7196

Held Out
Abs Error 0.2768 0.2157 0.2425 0.3333 0.3549 0.3386 0.4800

δ < 0.53 0.3759 0.4060 0.3014 0.2212 0.1996 0.2615 0.2316

δ < 0.52 0.6372 0.6893 0.5940 0.4526 0.4479 0.4814 0.4173

δ < 0.5 0.8666 0.9156 0.9119 0.8048 0.8251 0.7910 0.6766

Table 4: Depth error on each scene in three scenarios: training with only one scene, training with all 7 scenes, and holding one
scene out during training. Results are reported in meters.

ConvBlock1

ResBlock1

ResBlock2

ResBlock3

ResBlock4

Linear Layer

Table 5: ResNet

Name Operation Input

conv1 Conv2d(256,256,1,1,0) ResBlock2

act-conv1 ReLU conv1

conv2 Conv2d(256,256,1,1,0) act-conv1

act-conv2 ReLU conv2

scene-coords Conv2d(256,3,1,1,0) act-conv2

Table 6: Scene Coordinate Regression CNN



Name Operation Input

conv1 Conv2d(512, 128, 1,1,0) ResBlock4

bn-conv1 BatchNorm conv1

act-conv1 ReLU bn-conv1

tp-conv2 ConvTranspose2d(128, 128, 3,2,1) act-conv1

bn-tp-conv2 BatchNorm tp-conv2

act-tp-conv2 ReLU bn-tp-conv2

conv3 Conv2d(128, 256, 1,1,0) act-tp-conv2

bn-conv3 BatchNorm conv3

act-conv3 ReLU bn-conv3

conv4 Conv2d(256, 64, 1,1,0) ResBlock3+act-conv3

bn-conv4 BatchNorm conv4

act-conv4 ReLU bn-conv4

tp-conv5 ConvTranspose2d(64, 64, 3,2,1) act-conv4

bn-tp-conv5 BatchNorm tp-conv5

act-tp-conv5 ReLU bn-tp-conv5

conv6 Conv2d(64, 128, 1,1,0) act-tp-conv5

bn-conv6 BatchNorm conv6

act-conv6 ReLU bn-conv6

Half Res Depth Net

half-depth-conv1 Conv2d(256,256,1,1,0) ResBlock3+act-conv3

act-half-depth-conv1 ReLU half-depth-conv1

half-depth-conv2 Conv2d(256,256,1,1,0) act-half-depth-conv1

act-half-depth-conv2 ReLU half-depth-conv2

half-depth-conv3 Conv2d(256,1,1,1,0) act-half-depth-conv2

hald-depth Sigmoid() half-depth-conv3

Depth Net

depth-conv1 Conv2d(128,128,1,1,0) ResBlock2+act-conv6

act-depth-conv1 ReLU depth-conv1

depth-conv2 Conv2d(128,128,1,1,0) act-depth-conv2

act-depth-conv2 ReLU depth-conv2

depth-conv3 Conv2d(128,1,1,1,0) act-depth-conv2

depth Sigmoid() depth-conv3

Table 7: Depth CNN



Name Operation Input

conv1 Conv2d(6,64,3,1,0) cat(Scene Coordinates, Camera Coordinates)

act-conv1 ReLU conv1

conv2 Conv2d(64,128,3,1,0) act-conv1

act-conv2 ReLU conv2

conv3 Conv2d(128,512,3,1,0) act-conv2

act-conv3 ReLU conv3

weights Conv2d(512,1,1,1,0) act-conv3

Table 8: Weighting CNN


