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1. Qualitative Analysis

We visualize the distribution of source and target data
in the feature space (output of the contrastive head) with
the t-sne [12] plots in Figure 1. In particular, we focus on
the Ar,Pr,LRw — CI case of the Office-Home dataset: the
red dots represent the source domain, the blue dots are the
known samples of the target domain, and the green dots the
unknown ones. We take three snapshots of the data on the
hyperspherical embedding: at the beginning when the back-
bone network is inherited from SupClr [6] pre-trained on
ImageNet, immediately before the first break-point (i.e. be-
fore the application of self-training), and at the end of the
training process. By observing the intermediate plot we can
state that source balancing and style transfer already favor a
good alignment of most of the known (blue) target classes
with the respective source known clusters (red). The last
plot indicates that self-training further improves the align-
ment while the unknown samples (green) remain in the re-
gions among the clusters.

Randomly zooming on a known sample (the bike) and
on an unknown sample (the speaker) we observe how their
position change during training. The first moves from
an isolated region where its top five neighbors show high
class confusion, towards the correct bike class. The second
starts from a neighborhood populated by several samples
of classes webcam and fan and finally appears in a different
region shared mostly by other instances of the class speaker.

2. Further experiments

Complete results with additional metrics In Table 1 we
present the same results of the main paper including also
additional metrics: the average class accuracy over known
classes OS™, the accuracy on the unknown class U N K and
the average accuracy over all classes OS defined as OS =

‘Cs‘ * 1
[Col+1 x 08 +W x UNK.
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Robustness to temperature variation The temperature 7
in the contrastive loss (main paper Eq. (1)) is kept fixed
to the default value 0.07 as suggested in [11]. We verified
experimentally that the results are stable even when tuning
7 and remain always higher than ROS (65.3) (see Figure 2).

3. Implementation Details

We implemented HyMOS with an architecture com-
posed of the ResNet-50 [4] backbone that corresponds to the
encoder and two fully connected layers of dimension 2048
and 128 which define the contrastive head. The overall net-
work is trained by minimizing the contrastive loss (see the
main paper, Eq. (1)), setting 7 = 0.07 as in [11]. Our
distance-based classifier lives in the hyperspherical space
produced by the model, whose dimension is not constrained
by the number of classes. As a consequence, the architec-
ture remains exactly the same for all our experiments.

We initialize the backbone network with the ImageNet
pre-trained SupClr model [6] and train HyMOS for 40k it-
erations with a balanced data mini-batch which contains one
sample for each class of every source domain. The learning
rate grows from 0 to 0.05 (at iteration 2500) with a linear
warm-up schedule, to then decrease back to 0 at the end of
training (iteration 40k) through a cosine annealing sched-
ule. We use LARS optimizer [13] with momentum 0.9 and
weight decay 1076, For the first 20k iterations we train only
on source data, using target data exclusively for the style
transfer based data augmentation for the supervised con-
trastive learning objective. We then perform an eval step
that we call self-training break-point in order to start includ-
ing confident known target samples in the learning objec-
tive. We perform break-point eval steps every 5K iterations
till the end of the training.

For style transfer data augmentation we use the standard
VGG19-based AdaIN model with default hyperparameters
[5], trained with content data from the available source do-
mains and target samples as style data.

For what concerns the instance transformations, we ap-
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Figure 1. Qualitative analysis on the Ar,Pr,Rw — CI case of the Office-Home dataset. The red dots represent the source domain, the blue
dots are the known samples of the target domain, and the green dots are the unknown ones. HyMOS 20k: source balancing and style transfer
already favor a good alignment of most of the known target classes with the respective source known cluster. HyMOS 40k: self-training
further move the target known samples towards the respective source clusters, while the unknown samples remain in the regions among the
clusters. The zooms show how the neighborhood of a known (bike) and unknown (speaker) target samples change during training.

Office31 DomainNet
DA W WA — D WD— A Avg. LP—S LP—C Avg.

OS 0s* UNK HOS | OS O0s* UNK HOS | OS OS* UNK HOS | OS 0S* UNK HOS | OS 0s* UNK HOS| OS 0S* UNK HOS | OS O0S* UNK HOS

Inheritable [7] 69.0 68.1 876 766 | 747 741 856 795 | 637 629 789 70.0 | 69.1 684 840 754 | 249 245 603 348 [335 331 656 440 |292 288 629 394

Soutce Combine ROS [1] 822 823 815 818 | 953 965 687 80.1 538 522 849 647 | 771 770 784 755 || 317 313 775 445 | 410 407 736 524 |364 360 755 485
g CMU [3] 96.1 987 446 614 [962 987 473 640 |73.1 745 454 564 | 885 90.6 458 60.6 || 48.0 483 263 381 | 49.6 498 27.6 355 [ 488 49.1 270 368
DANCE [10] 959 995 239 385|973 1000 426 597 [ 780 79.6 456 580 |904 930 373 520 || 456 458 223 30.0 | 544 547 287 376 | 500 503 255 338

PGL [8] 94.1 974 278 433 | 922 956 235 377 |77.1 798 229 356 |87.8 909 247 389 || 549 553 IL1 185 | 596 60.1 116 194 | 573 577 114 190

Multi-Source  MOSDANET[O] [ 977994435 60.5 | 970 990 559 715 [809 S8I5 676 739 [919 933 557 686 |[302 299 602 400 318 316 518 393 [310 308 560 396
HyMOS 96.1 96.6 846 902 | 967 973 83.6 89.9 | 496 480 831 60.8 | 80.8 80.6 838 803 || 43.6 432 86.0 575 | 478 474 855 610 | 457 453 858 593

Office-Home
Ar,Pr,Cl - Rw Ar,PrLRw — Cl CLPr,Rw — Ar CLAr,Rw — Pr Avg.

OS O0S* UNK HOS| OS OS* UNK HOS | OS OS* UNK HOS| OS OS* UNK HOS | OS O0S* UNK HOS

Inheritable [7] 586 584 689 632 | 443 437 665 526 | 364 355 776 487 |586 585 633 60.7 [495 49.1 69.1 563

Source Combine ROS [1] 699 698 769 73.0 | 57.1 571 576 573|575 572 667 616 |703 703 680 69.1 | 637 636 673 653

CMU [3] 629 625 815 708 | 358 346 899 500 | 446 437 870 581 |60.6 60.1 817 693 |51.0 502 850 62.1

DANCE [10] 839 856 45 124 | 66.8 68.0 9.2 16.1 | 727 741 107 18.6 | 851 86.7 134 229 |77.1 786 94 17.5

PGL [8] 834 846 262 400 | 620 63.0 210 315|695 706 205 31.8 |826 838 282 422|744 755 240 364

Multi-Source MOSDANET [9] | 784 794 550 650 | 67.5 681 409 51.1 |61.0 613 487 543 |8l.1 822 550 659 |720 728 499 59.1
HyMOS 695 694 727 710 | 525 S51.7 86.0 64.6 | 50.1 494 841 622 | 715 715 706 711 | 609 605 784 @ 67.2

Table 1. Accuracy (%) averaged over three runs for each method on the Office31, DomainNet and Office-Home datasets.

— HyMOS Algorithm 1 HyMOS evaluation procedure
00 Input: 7 trained Enc and Proj
680 —_— Output: Predictions on 7
g %0 procedure FINALEVAL()
T sa0 « + (main paper Eq. (4))
62.0 for each x; in 7 do
%01 004 007 o1 015 o2 z' = Proj(Enc(z'))
h,s + nearest prototype to 2t
t 'fyd ) < a th
Figure 2. Sensitivity analysis for the temperature value 7 on ! hff (_Z s @ then
Office-Home. y =y
else
plied the same data augmentations originally proposed for 7' = unknown
SimClr [2], extending them with style transfer. Specifically, procedure MAIN()
we used random resized crop with scale in {0.08,1} and final Eval()

random horizontal flip. The style transfer is applied with
probability p = 0.5 on the source images, while the re-
maining not-stylized images are transformed via color jit-
tering with probability p = 0.8 and grayscale with proba-

bility p = 0.2. [1] Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tom-
The final evaluation procedure of HyMOS is summa- masi. On the effectiveness of image rotation for open set

rized in Algorithm 1.
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