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1. Qualitative Analysis

We visualize the distribution of source and target data
in the feature space (output of the contrastive head) with
the t-sne [12] plots in Figure 1. In particular, we focus on
the Ar,Pr,Rw → Cl case of the Office-Home dataset: the
red dots represent the source domain, the blue dots are the
known samples of the target domain, and the green dots the
unknown ones. We take three snapshots of the data on the
hyperspherical embedding: at the beginning when the back-
bone network is inherited from SupClr [6] pre-trained on
ImageNet, immediately before the first break-point (i.e. be-
fore the application of self-training), and at the end of the
training process. By observing the intermediate plot we can
state that source balancing and style transfer already favor a
good alignment of most of the known (blue) target classes
with the respective source known clusters (red). The last
plot indicates that self-training further improves the align-
ment while the unknown samples (green) remain in the re-
gions among the clusters.

Randomly zooming on a known sample (the bike) and
on an unknown sample (the speaker) we observe how their
position change during training. The first moves from
an isolated region where its top five neighbors show high
class confusion, towards the correct bike class. The second
starts from a neighborhood populated by several samples
of classes webcam and fan and finally appears in a different
region shared mostly by other instances of the class speaker.

2. Further experiments

Complete results with additional metrics In Table 1 we
present the same results of the main paper including also
additional metrics: the average class accuracy over known
classes OS∗, the accuracy on the unknown class UNK and
the average accuracy over all classes OS defined as OS =
|Cs|

|Cs|+1 ×OS∗ + 1
|Cs|+1 × UNK.

*The authors equally contributed to this work.

Robustness to temperature variation The temperature τ
in the contrastive loss (main paper Eq. (1)) is kept fixed
to the default value 0.07 as suggested in [11]. We verified
experimentally that the results are stable even when tuning
τ and remain always higher than ROS (65.3) (see Figure 2).

3. Implementation Details
We implemented HyMOS with an architecture com-

posed of the ResNet-50 [4] backbone that corresponds to the
encoder and two fully connected layers of dimension 2048
and 128 which define the contrastive head. The overall net-
work is trained by minimizing the contrastive loss (see the
main paper, Eq. (1)), setting τ = 0.07 as in [11]. Our
distance-based classifier lives in the hyperspherical space
produced by the model, whose dimension is not constrained
by the number of classes. As a consequence, the architec-
ture remains exactly the same for all our experiments.

We initialize the backbone network with the ImageNet
pre-trained SupClr model [6] and train HyMOS for 40k it-
erations with a balanced data mini-batch which contains one
sample for each class of every source domain. The learning
rate grows from 0 to 0.05 (at iteration 2500) with a linear
warm-up schedule, to then decrease back to 0 at the end of
training (iteration 40k) through a cosine annealing sched-
ule. We use LARS optimizer [13] with momentum 0.9 and
weight decay 10−6. For the first 20k iterations we train only
on source data, using target data exclusively for the style
transfer based data augmentation for the supervised con-
trastive learning objective. We then perform an eval step
that we call self-training break-point in order to start includ-
ing confident known target samples in the learning objec-
tive. We perform break-point eval steps every 5K iterations
till the end of the training.

For style transfer data augmentation we use the standard
VGG19-based AdaIN model with default hyperparameters
[5], trained with content data from the available source do-
mains and target samples as style data.

For what concerns the instance transformations, we ap-
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Figure 1. Qualitative analysis on the Ar,Pr,Rw → Cl case of the Office-Home dataset. The red dots represent the source domain, the blue
dots are the known samples of the target domain, and the green dots are the unknown ones. HyMOS 20k: source balancing and style transfer
already favor a good alignment of most of the known target classes with the respective source known cluster. HyMOS 40k: self-training
further move the target known samples towards the respective source clusters, while the unknown samples remain in the regions among the
clusters. The zooms show how the neighborhood of a known (bike) and unknown (speaker) target samples change during training.

Office31
D,A→W W,A→ D W,D→ A Avg.

OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

Source Combine

Inheritable [7] 69.0 68.1 87.6 76.6 74.7 74.1 85.6 79.5 63.7 62.9 78.9 70.0 69.1 68.4 84.0 75.4
ROS [1] 82.2 82.3 81.5 81.8 95.3 96.5 68.7 80.1 53.8 52.2 84.9 64.7 77.1 77.0 78.4 75.5
CMU [3] 96.1 98.7 44.6 61.4 96.2 98.7 47.3 64.0 73.1 74.5 45.4 56.4 88.5 90.6 45.8 60.6

DANCE [10] 95.9 99.5 23.9 38.5 97.3 100.0 42.6 59.7 78.0 79.6 45.6 58.0 90.4 93.0 37.3 52.0
PGL [8] 94.1 97.4 27.8 43.3 92.2 95.6 23.5 37.7 77.1 79.8 22.9 35.6 87.8 90.9 24.7 38.9

Multi-Source MOSDANET [9] 97.7 99.4 43.5 60.5 97.0 99.0 55.9 71.5 80.9 81.5 67.6 73.9 91.9 93.3 55.7 68.6
HyMOS 96.1 96.6 84.6 90.2 96.7 97.3 83.6 89.9 49.6 48.0 83.1 60.8 80.8 80.6 83.8 80.3

DomainNet
I,P→ S I,P→ C Avg.

OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS
24.9 24.5 60.3 34.8 33.5 33.1 65.6 44.0 29.2 28.8 62.9 39.4
31.7 31.3 77.5 44.5 41.0 40.7 73.6 52.4 36.4 36.0 75.5 48.5
48.0 48.3 26.3 38.1 49.6 49.8 27.6 35.5 48.8 49.1 27.0 36.8
45.6 45.8 22.3 30.0 54.4 54.7 28.7 37.6 50.0 50.3 25.5 33.8
54.9 55.3 11.1 18.5 59.6 60.1 11.6 19.4 57.3 57.7 11.4 19.0
30.2 29.9 60.2 40.0 31.8 31.6 51.8 39.3 31.0 30.8 56.0 39.6
43.6 43.2 86.0 57.5 47.8 47.4 85.5 61.0 45.7 45.3 85.8 59.3

Office-Home
Ar,Pr,Cl→ Rw Ar,Pr,Rw→ Cl Cl,Pr,Rw→ Ar Cl,Ar,Rw→ Pr Avg.

OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS OS OS* UNK HOS

Source Combine

Inheritable [7] 58.6 58.4 68.9 63.2 44.3 43.7 66.5 52.6 36.4 35.5 77.6 48.7 58.6 58.5 63.3 60.7 49.5 49.1 69.1 56.3
ROS [1] 69.9 69.8 76.9 73.0 57.1 57.1 57.6 57.3 57.5 57.2 66.7 61.6 70.3 70.3 68.0 69.1 63.7 63.6 67.3 65.3
CMU [3] 62.9 62.5 81.5 70.8 35.8 34.6 89.9 50.0 44.6 43.7 87.0 58.1 60.6 60.1 81.7 69.3 51.0 50.2 85.0 62.1

DANCE [10] 83.9 85.6 4.5 12.4 66.8 68.0 9.2 16.1 72.7 74.1 10.7 18.6 85.1 86.7 13.4 22.9 77.1 78.6 9.4 17.5
PGL [8] 83.4 84.6 26.2 40.0 62.0 63.0 21.0 31.5 69.5 70.6 20.5 31.8 82.6 83.8 28.2 42.2 74.4 75.5 24.0 36.4

Multi-Source MOSDANET [9] 78.4 79.4 55.0 65.0 67.5 68.1 40.9 51.1 61.0 61.3 48.7 54.3 81.1 82.2 55.0 65.9 72.0 72.8 49.9 59.1
HyMOS 69.5 69.4 72.7 71.0 52.5 51.7 86.0 64.6 50.1 49.4 84.1 62.2 71.5 71.5 70.6 71.1 60.9 60.5 78.4 67.2

Table 1. Accuracy (%) averaged over three runs for each method on the Office31, DomainNet and Office-Home datasets.

Figure 2. Sensitivity analysis for the temperature value τ on
Office-Home.

plied the same data augmentations originally proposed for
SimClr [2], extending them with style transfer. Specifically,
we used random resized crop with scale in {0.08, 1} and
random horizontal flip. The style transfer is applied with
probability p = 0.5 on the source images, while the re-
maining not-stylized images are transformed via color jit-
tering with probability p = 0.8 and grayscale with proba-
bility p = 0.2.

The final evaluation procedure of HyMOS is summa-

Algorithm 1 HyMOS evaluation procedure
Input: T ; trained Enc and Proj
Output: Predictions on T

procedure FINALEVAL()
α← (main paper Eq. (4))
for each xt in T do

zt = Proj(Enc(xt))
hys ← nearest prototype to zt

if dhys (zt) < α then
ŷt = ys

else
ŷt = unknown

procedure MAIN()
finalEval()

rized in Algorithm 1.
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