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1. Derivation of our loss function
In this section we report the derivation of the loss func-

tion presented in Section 3 of the main paper. We target
scenarios where uncertainty may be due to data noise and
varying on different inputs. Considering a typical regres-
sion problem where we want to estimate a function fω from
the input xi to the output yi, we can formalize the setting as

yi = fω(xi) + ε(xi)

where the output can be seen as the sum between a function
fω(xi) and ε(xi) that is the noise that depends on the input
xi [4].

To quantify the uncertainty, the model is trained to learn
a function that estimates both the mean and the variance of a
target distribution using a maximum-likelihood formulation
of a neural network [1, 3, 6]: in order to do that, we need
to assume that the errors are normally distributed ε(xi) ∼
N (0, σ(xi)

2).
The likelihood for each point xi is:

p (yi|xi;ω) = N
(
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2
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where yi is the mean of this distribution and σ(xi)2 is the
variance.

The neural network architecture should be modified to
include an additional term to the output layer, to predict the
variance (or the logarithm of it): this latter quantifies the un-
certainty associated with the prediction based on the noise
in the training samples (the uncertainty is a function of the

input e.g. if the noise is uniform over all the input values,
the uncertainty should be constant).

Applying the logarithm to both sides we obtain:

log p (yi|xi;ω)

= − (yi − fω (xi))
2

2σ (xi)
2 − 1

2
log σ (xi)

2 − 1

2
log(2π)

that is the log likelihood we want to maximize (the last
term is ignored in the following being a constant).

Maximizing the log likelihood is equivalent to minimiz-
ing the negative log likelihood, and therefore we rewrite the
minimization problem as:

min
ω
− 1

N

N∑
i=1

log p (yi|xi;ω)

Finally the objective we want to minimize over all xi
becomes:
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In order to solve possible numerical issues the objective
is modified in this way:

N∑
i=1

1

2
exp (−si) ‖yi − fω (xi)‖2 +

1

2
si

where si = log σ(xi)
2: in this way potential divisions

by zero are avoided [2].
Lastly we extend this objective for a multi-ouput regres-

sion model for training our network obtaining the objective
proposed in Section 3 of the main paper.
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Table 1. Comparison among different losses (see text). All errors
are expressed in degrees (◦): erry= yaw error, errp=pitch error,
errr= roll error, MAE = Mean Absolute Error.

Train Val Loss erry errp errr MAE
BIWI BIWI MSE 2.90 4.80 3.34 3.70
BIWI BIWI COMB 3.15 4.85 3.40 3.80
BIWI BIWI UNC 3.04 4.79 3.21 3.68

300WLP BIWI MSE 4.75 6.65 4.45 5.28
300WLP BIWI COMB 4.67 8.08 4.87 5.88
300WLP BIWI UNC 4.14 7.00 4.40 5.18
300WLP AFLW2000 MSE 5.72 10.41 8.08 8.07
300WLP AFLW2000 COMB 5.55 10.39 8.18 8.04
300WLP AFLW2000 UNC 5.26 10.12 7.73 7.70
AFLW AFLW2000 MSE 7.60 6.43 4.76 6.26
AFLW AFLW2000 COMB 7.31 6.55 4.68 6.18
AFLW AFLW2000 UNC 7.40 6.63 4.47 6.16

2. Removing the uncertainty: an ablation
study

In this section we provide more details about the ablation
study discussed in Sec. 4.3 of the main paper where we
consider two variations of our method:

MSE: we directly regress the three angles adopting a loss
computed as the sum of the Mean Squared Error
(MSE) on each angle:

LMSE =
∑

i∈{y,p,r}

‖qi − fi (x1,x2, c)‖2 . (1)

where q = [y, p, r] (y=way, p=pitch and r=roll).

COMB: we employ an alternative loss function LCOMB

proposed in [5] which has been proved to be very suc-
cessful on the same estimation task. The loss allows to
jointly solve a regression and classification tasks, and
it can be formalized as follows LCOMB :∑
i∈{y,p,r}

∑
j

−qj log (fj) + α ∗ ‖qi − fi (x1,x2, c)‖2

(2)
combining the cross entropy loss, computed between
the binned angles, and the MSE loss, computed be-
tween the scalar angles; α is an hyperparameter that
controls the weight of the regression loss (in the exper-
iment we set α = 1).

In Tab. 1 we extend Table 1 of the main paper and report
the angular errors we obtain with the three different losses.
As it can be observed, learning the angles associated with
the uncertainty provides the best average performance,
showing the benefit of the uncertainty not only in terms of
interpretability of the model but also as a way to improve
its effectiveness.

Figure 1. Performance of our method (top row: mean angular er-
ror, bottom row: uncertainty) with respect to the number of input
points, considering the output of Open Pose (above) and randomly
dropping points from the input (below). We used a model trained
on 300W-LP and tested on the whole BIWI (plots refer to the lat-
ter).

3. On the number of keypoints

In this section we provide an extended version of the as-
sessment we discuss in Sec. 4 of the main paper with the
aim of observing the influence of the quality and quantity
of input semantic features on the final head pose estimate.
For the sake of the discussion, we report here plots and com-
ments already included in the main document.

In Fig. 1, first column, we analyse the performance of
our method in terms of uncertainty values (bottom-left) and
absolute angular error (top-left) as we group the input data
according to the number of keypoints provided by the Open
Pose detector. When only 3 keypoints are available the un-
certainty is rather high on average. Increasing the number
of points it is progressively reduced, with a similar trend
shown by the error. This confirms the intuition that the more
input points the method has, the higher is its confidence in
the prediction, which is more reliable and accurate.
Since the worst case scenario corresponds to having at least

three keypoints, we randomly dropped points from the input
to evaluate the behavior of the method in more challenging
scenarios. The results are shown in the second column of
Fig. 1. When points are randomly dropped, we only con-
sider samples with more than two points.

When all the 5 keypoints are available, the uncertainty
is compactly lower (confirming what already observed in
the previous experiment) as the method can rely on a more
comprehensive representation of the input. In the inter-
mediate cases – where we may have 2, 3, or 4 keypoints
available in input – the uncertainty progressively decreases,
but we also have a higher degree of variability, as some
keypoints configurations are more significant than others



Table 2. Comparison among models with different sizes (Protocol
P1: 300W-LP train, BIWI test). α = neurons reduction factor (see
text), MAE = Mean Absolute Error

α MAE Mult-adds Parameters MB
1 5.18 93000 94000 0.385

0.6 5.43 37000 37000 0.158
0.2 5.54 6000 6000 0.032

and thus the amount of information they provide to the
model may be uneven reflecting the concept that the noise
could be different for each input sample. With respect to
the plots in the first column of Fig. 1, the box plots at right
show a higher standard deviation since randomly dropping
points from the input we simulate a higher variability in
the input configurations with respect to the ones usually
provided by Open Pose and from the datasets we used.

4. Model size and parameters
In this section we show the robustness of our method

with respect to reductions of size, that may be needed
when the available computational resources are very lim-
ited. More specifically, we analyse how the performance
changes as we reduce the size of the model. We choose
300W-LP training and BIWI test (protocol P1) for its larger
training and test sets and decrease the number of neurons
in the fully connected layers so the backbone remains the
same proposed in the paper, while its size decreases. Given
a reduction factor α ∈ (0, 1), we obtain a “reduced” ver-
sion of our architecture by multiplying the original number
of neurons in each layer (250, 200 and 150 in, respectively,
the first, second and third layer) by α.

By varying α in the range (0, 1) we reduce the model
size (the number of parameters) and thus also the number
of sum and multiplication operations. Tab. 2 compares our
baseline (α = 1) with two reduced models (overall size in
MB up to 10× smaller) causing a very limited degradation
in the Mean Absolute Error (below 1 degree). This exper-
iment highlights the possibility of further reducing the size
of the architecture, with a very limited performance loss, if
required by the system.
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