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1. Additional Implementation Details
As stated in Sec. 3.1 of the main paper, we obtain depth

proxy-labels by deploying a self-supervised method for
solving monocular depth estimation from video sequences.
Specifically, we train Monodepth2 [6] following the train-
ing protocol and hyper-parameters used in the original pa-
per. We train it for 20 epochs using mixed mini-batch of
size 6, composed of 3 real and 3 synthetic images. We resize
samples at resolution 1024×512 for training and testing. It
is important to train the network on both domains jointly
because we want depth predictions to be aligned across do-
mains. Self-supervised depth methods typically estimates
depth maps up to a scale-factor. Thus, we train on both
domains simultaneously to force the network to yield pre-
dictions from the two domains that share the same range
and scale. When DS is synthetic, we can collect depth
ground-truth labels with minimum effort. In such case, we
could exploit these labels to provide an additional source
of supervision to Monodepth2. SYNTHIA-SEQ provides
much less images with smaller variability with respect to
GTA5, but provides depth ground-truth labels. Thus, in
the SYNSEQ→CS setting, we could train Monodepth2 by
adding a L1 loss between predictions and ground-truths of
SYNTHIA-SEQ to the set of Monodepth2 losses, so as
to achieve better pseudo-labels results. Nevertheless, the
availability of ground-truth labels is not crucial to improve
the performance of the considered UDA method. Indeed,
in Tab. 1 we can observe that the use of synthetic depth
ground-truth labels provides just a slight performance im-
provement (i.e. 1% mIoU or less).

As regards the training of semantics prediction from
depth features, we follow the protocol explained in [9]. We
train the depth network simultaneously on DS and DT , by
minimizing the mean absolute error (i.e. L1 loss) between
predicted depth maps and depth proxy-labels, previously
generated for both domains. Then, we train the semantic
network only on DS , using a weighted Cross Entropy loss

with weights computed as in [18]. The weights of the two
networks are pre-initialized on ImageNet, and, following a
common protocol [14, 18, 7], all Batch Normalization lay-
ers are frozen both at training and test time to use ImageNet
statistics. Differently from [9], we deploy the more perfor-
mant DeepLabV2 [1] architecture for both networks: as the
framework requires to split the network into an encoder and
a decoder, we consider the backbone as the encoder and the
ASPP module as the decoder. Hence, the transfer function
in D4 is learned by minimizing the mean squared distance
(i.e. L2 loss) between the semantic features extracted by
the semantic network encoder and the ones hallucinated by
the transfer function itself starting from the depth encoder.
Finally, during DBST, the final distilled model is obtained
by minimizing a standard Cross Entropy loss on DT and
exploiting only the pseudo-labels, as explained in Sec. 3.2
of the main paper.

2. Additional Datasets Details
Cityscapes. The Cityscapes dataset [4] provides a large

collection of video sequences of driving scenes from 50 dif-
ferent European cities. The dataset is composed of 150000
video-sequence images, of which 83300 are used for train-
ing. A subset of 5000 images from Cityscapes is com-
monly used as benchmark for semantic segmentation, as
these images are annotated with high-quality pixel-level se-
mantic labels (19 classes). This subset is split into train,
validation and test with 2975, 500 and 1525 images re-
spectively. In our experiments we train Monodepth2 [6] on
the 83300 training sequences. For training D4 and DBST
we use the 2975 train images (without their semantic la-
bels) and, following the protocol adopted in recent works
[14, 2, 8, 18, 17, 16, 7], we evaluate our final model on
the validation split. The augmented dataset obtained dur-
ing DBST starting from the 2975 images accounts for 7500
samples.

GTA5. The GTA5 dataset [10, 11] consists in synthetic



images captured while playing the video-game Grand Theft
Auto V. It consists of 120000 video-sequence images that
we use in the Monodepth2 [6] training procedure. More-
over, the dataset provides 24966 samples with fine semantic
annotations (same 19 classes as Cityscapes). We train the
depth network of D4 on only 3000 randomly sampled im-
ages among the 24966 to keep the training balanced with
the 2975 images of Cityscapes. Finally, we train the seman-
tic and transfer network of D4 on the whole 24966 synthetic
images.

SYNTHIA VIDEO SEQUENCES. The SYNTHIA
dataset [12] is composed of images generated by render-
ing a virtual city created with the Unity development plat-
form. Since our method requires video sequences to train
Monodepth2 [6], we use the split SYNTHIA VIDEO SE-
QUENCES, selecting sub-sequences Spring, Summer, Fall,
Winter, Dawn and Fog. We collect thus a total of 26948 im-
ages, paired with fine-grained semantic labels (12 classes in
common with Cityscapes). In particular, we train on sky,
building, road, sidewalk, fence, vegetation, pole, car, traf-
fic sign, person, bicycle, traffic light. It is worth noticing
that to make the Cityscapes dataset consistent with SYN-
THIA VIDEO SEQUENCES, it is necessary to map the
Cityscapes class rider into bicycle and collapse bus and
truck into car. We use only 3000 randomly sampled im-
ages to train the depth, semantic and transfer network of D4,
as well as for the training of the other considered methods
which were retrained by us (* in Tab. 2 of the main paper)
due to the authors not providing their results on SYNTHIA
VIDEO SEQUENCES.

3. Semantics From Depth
In this section, we evaluate alternative ways to predict

semantics in the target domain by exploiting also the depth
cues available once depth proxy-labels have been computed
as discussed in sec 3.1 (Semantics from depth) of the main
paper. This study motivates our choice to rely on the mech-
anism of transferring features across tasks and domains [9],
with the improvements and modifications discussed in Sec.
4.1 of the main paper and Sec. 1 of this supplementary doc-
ument. As we have semantic labels only for the source do-
main DS , all approaches are trained only on DS , and their
ability to generalize is assessed on the target domain DT .

We investigate two possible alternatives, namely:

• a semantic segmentation network that processes RGB-
D images, where the proxy depth of each image is
stacked as an additional channel

• a semantic segmentation network that processes di-
rectly proxy depths, without using RGB information.

We realize both options by training the popular
DeepLabV2 [1] architecture to perform semantic segmen-

Method mIoU
AdaptSegNet* [14] 49.5
D4-AdaptSegNet + DBST (w/o synthetic GT) 55.9
D4-AdaptSegNet + DBST (w/ synthetic GT) 56.9
MaxSquare* [2] 51.2
D4-MaxSquare + DBST (w/o synthetic GT) 56.5
D4-MaxSquare + DBST (w/ synthetic GT) 57.4
MRNET* [18] 54.5
D4-MRNET + DBST (w/o synthetic GT) 55.9
D4-MRNET + DBST (w/ synthetic GT) 56.3

Table 1. Results on the SYNSEQ→CS benchmark with or without
synthetic ground-truths. * denotes method retrained by us.

tation on DS , initializing the network with ImageNet [5]
pre-trained weights. Moreover, in the first case, we add a
convolutional layer at the beginning of the architecture, to
reduce the input RGBD channels from 4 to 3, while in the
second case we obtain 3-channels input images by stacking
three times the proxy depth map. In the following, we will
call DeepLabV2-RGBD the first network and DeepLabV2-
Depth the second one. We also consider as baseline the
performance of DeepLabV2 trained only on RGB images,
referred to as DeepLabV2-RGB.

In Tab. 2 we report mIoU results obtained on Cityscapes
(i.e. our target domain) by DeepLabV2-RGB, DeepLabV2-
RGBD, DeepLabV2-Depth, and our method. We ob-
serve that the RGBD and the Depth versions yield slightly
better results compared to the RGB baseline. Inter-
estingly, DeepLabV2-Depth provides better results than
DeepLabV2-RGB and DeepLabV2-RGBD, which supports
our intuition about semantic cues extracted from depth
alone being more effectively transferable across different
domains due to their reliance on geometry rather than ap-
pearance. Yet, the ability to overcome the domain shift by
DeepLabV2-RGBD and DeepLabV2-Depth is limited, as
performance is low for both variants. On the contrary, by
tackling the problem with the method proposed in the main
paper, we can improve the baseline by 8.6% in terms of
mIoU.

Moreover, we evaluate DeepLabV2-RGBD and
DeepLabV2-Depth also in combination with an UDA
method, as proposed in Sec. 3.1 (Combine with UDA) of
the main paper. In the last three rows of Tab. 2, we report
mIoU results obtained by such combinations (row 5 and 6),
compared to our proposal (last row), while considering one
of the best performing UDA methods, namely LTIR [7]. As
intuitively expected, we observe that a better depth-based
semantic model leads to a better combination with the
selected UDA method, motivating once again the need
for an approach robust to domain-shift in order to infer
semantics from depth cues in UDA settings.

Rather than relying on self-supervised depth on both do-



Method mIoU
DeepLabV2 RGB 34.5
DeepLabV2-RGBD 35.5
DeepLabV2-Depth 36.5
Semantics from depth (sec 3.1) 43.1
DeepLabV2-RGBD

⊕
LTIR [7] 47.7

DeepLabV2-Depth
⊕

LTIR [7] 49.3
D4-LTIR (i.e. Semantics from depth

⊕
LTIR) 51.1

Table 2. Comparison between alternative methods to infer seman-
tics with the aid of depth cues. DeepLabV2-RGB, DeepLabV2-
RGBD and DeepLabV2-Depth stand for DeepLabV2 [1] trained
on DS , using respectively RGB images, RGBD images or depth
proxy-labels as input, while “Semantics from depth” is the ap-
proach described in the subsection with the same name of sec 3.1
in the main paper. The symbol

⊕
represents the merge operation

described in subsection Combine with UDA of Sec. 3.1 of the main
paper. Results are reported in terms of mIoU on the Cityscapes
dataset.

mains as done for the previous cases, one may try to use
just the depth provided by synthetic source dataset. To the
best of our knowledge, only two works [15, 3] proposed
to exploit depth in a UDA context for outdoor scenes seg-
mentation. We compare here our D4 module with [15],
the only publicly available framework, to show that the ad-
ditional information for the target domain is a key com-
ponent for Domain Adaptation. We retrained [15] with
the same hyper-parameters, and changed only the training
split (i.e. SYNTHIA-SEQ instead of SYTNHIA-RAND-
CITYSCAPES). As Tab 3 shows, D4 surpasses by a large
margin (3.6%) [15], suggesting that self-supervised infor-
mation for the target domain can be used to boost perfor-
mance in Domain Adaptation.

Method mIoU
DADA [15] 42.3
D4 (ours) 45.9

Table 3. Comparison between depth-based frameworks.

4. DBST vs DACS [13]
In Tab. 4 we compare our DBST with the method pre-

sented in DACS [13], as they share some similarities. In
particular, both approaches generate training samples by
copying portions of images onto other images. However,
they differ in three main aspects:

• [13] copies portions of images from DS onto images
from DT , while in our DBST we use exclusively im-
ages from DT .

• In our proposal, we copy only image patches whose se-
mantic predictions belong to a predefined set of classes

Method mIoU
D4-LTIR [7] 51.1
D4-LTIR [7] + DACS [13] 52.7
D4-LTIR [7] + DBST 54.1

Table 4. Comparison between the approach proposed in [13]
(DACS) and our DBST, when applied to our D4 combined with
[7]. Results are reported in terms of mIoU in the GTA5→CS
benchmark.

Method mIoU
AdaptSegNet (w/o video) [14] 42.4
AdaptSegNet (w/ video) 41.9

Table 5. AdaptSegNet [14] trained with or without additional un-
labeled target images

that we deem as more amenable to be moved across
images, like, e.g., person, car and pole; conversely, in
[13] no semantic filter is applied to select the patches
that will be copied across the images.

• Unlike [13], we exploit depth information to plausibly
stack objects in the generated sample.

In addition to these points, in our DBST we further exploit
depth information to guide the selection of the patches to be
copied by excluding areas of the scene that are too far away
from the camera, where semantic predictions are less likely
accurate. In Tab. 4 we report results in the GTA5→CS
benchmark when applying DBST or [13] to D4 combined
with [7]: our DBST outperforms the strategy proposed in
[13], though the latter can also yield a notable performance
improvement.

5. Adding videos to UDA methods

In this section, we empirically demonstrate that using ad-
ditional raw information is not directly useful for the UDA
setting in semantic segmentation. To this purpose, we adopt
[14], which makes use of adversarial training and it can be
considered as the main building block of many UDA meth-
ods proposed in the literature. Moreover, adversarial train-
ing is a plausible strategy to exploit additional unlabeled
images for the target domain. Driven by this reasoning,
we retrained [14] in the GTA5→CS benchmark using the
whole training split available in Cityscapes (i.e. 83300 im-
ages with temporal consistency). The result reported in Tab.
5 suggests that simply collecting more data is not enough
to boost semantic semantic segmentation in a UDA setting,
and more advanced techniques as the one proposed in this
work are necessary to extrapolate useful data.



6. Qualitative Results
In Fig. 1, 2, 3, 4, 5, 6 we report several qualitative re-

sults of our D4 proposal combined with the different UDA
methods reported in Tab. 1 and Tab. 2 of the main paper. In
every case, we observe an overall improvement in the qual-
ity of the predictions. In particular, thanks to the additional
information provided by depth maps, the errors in large ob-
jects with regular shapes are partially removed (see first and
second column of Fig. 1). Moreover, with the proposed
merging algorithm (Sec 3.1) and with the DBST algorithm
detailed in Sec. 3.2, we also preserve the good performance
of the selected UDA method for certain classes. For in-
stance, all the predictions concerning classes such as pole
and traffic sign are always maintained or even improved (see
second row of Fig. 2).

7. DBST - Qualitative Results
In Fig. 7 and 8 we show some training samples obtained

with our DBST algorithm. As explained in Sec. 3.2 of the
main paper, we use multiple images from DT as source,
alongside with the corresponding depth maps and predic-
tions (referred to as pseudo-labels), to synthesize new train-
ing pairs. We can notice how the newly generated sam-
ples contain a lot of patterns that would not be present in
the original images, enabling a more effective Self-Training
procedure. We also point out how, thanks to the use of depth
maps, the generated pairs look realistic. For example, in the
third row of Fig. 7, the rider on the left side of the image
is pasted in front of the pole since it appears closer in the
depth maps of the two images.

8. Depth Proxy-Labels
Fig. 9, 10, 11 report depth proxy-labels obtained in the

first step of our pipeline by the self-supervised approach
proposed in Monodepth2 [6]. We note how the produced
depth maps are smooth and accurate on the static parts of
the scene (such as road and buildings), while they tend to
be noisy on moving objects (like cars and pedestrians). De-
spite these imperfections, depth proxy-labels produced by
[6] provide a solid base of geometric clues for objects with
large and regular shapes, which are extensively exploited in
our proposal.
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ADAPTSEGNET GTA

RGB AdaptSegNet D4-AdaptSegNet + DBST GT

Figure 1. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from Adaptsegnet [14], prediction from
D4-AdaptSegNet + DBST (our proposal), Ground-Truth.

MAXSQUARE GTA

RGB MaxSquare D4-MaxSquare + DBST GT

Figure 2. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from MaxSquare [2], prediction from
D4-MaxSquare + DBST (our proposal), Ground-Truth.



LTIR GTA

RGB LTIR D4-LTIR + DBST GT

Figure 3. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from LTIR [7], prediction from D4-LTIR +
DBST (our proposal), Ground-Truth.

BDL GTA

RGB BDL D4-BDL + DBST GT

Figure 4. Qualitative results in the GTA5→CS benchmark. From left to right: RGB, prediction from BDL [8], prediction from D4-BDL +
DBST (our proposal), Ground-Truth.



ADAPTSEGNET SYNTHIA

RGB AdaptSegNet D4-AdaptSegNet + DBST GT

Figure 5. Qualitative results in the SYNSEQ→CS benchmark. From left to right: RGB, prediction from AdaptSegNet [14], prediction
from D4-AdaptSegNet + DBST (our proposal), Ground-Truth.

MAXSQUARE SYNTHIA

RGB MaxSquare D4-MaxSquare + DBST GT

Figure 6. Qualitative results in the SYNSEQ→CS benchmark. From left to right: RGB, prediction from MaxSquare [2], prediction from
D4-MaxSquare + DBST (our proposal), Ground-Truth.



DBST LTIR GTA

Figure 7. RGB and pseudo-labels generated for our DBST procedure using D4-LTIR in the GTA5→CS benchmark.



DBST MRNET SYNTHIA

Figure 8. RGB and pseudo-labels generated for our DBST procedure using D4-MRNET in the SYNSEQ→CS benchmark.



Top to bottom: rgb, depth gta, depth synthia

Figure 9. Depth proxy-labels for the Cityscapes dataset obtained with Monodepth2 [6]. From top to bottom: RGB, depth obtained by
training Monodepth2 on Cityscapes and GTA5 sequences, depth obtained by training Monodepth2 on Cityscapes and SYNTHIA-SEQ
sequences. Depth maps are shown as inverse depth maps for a better visualization.

Depth gta

Figure 10. Depth proxy-labels for the GTA5 dataset obtained with Monodepth2 [6]. We show RGB images (first row) and corresponding
depth maps (second row), shown as inverse depth maps for a better visualization.

Depth synthia

Figure 11. Depth proxy-labels for the SYNTHIA-SEQ dataset obtained with Monodepth2 [6]. We show RGB images (first row) and
corresponding depth maps (second row), shown as inverse depth maps for a better visualization.


