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A. Detailed Model Architecture

A.1. Neural Radiance Fields

The detailed architecture of our NeRF-based scene rep-
resentation is illustrated in Figure 1. Basically, F base, F geo,
and F app are built upon 5-layer, 2-layer, and 5-layer mul-
tilayer perceptrons (MLPs) respectively, where we use a
ReLU activation function between every adjacent layer ex-
cept for the first two layers of F app.

Figure 1: The detailed architecture of the neural radi-
ance fields model used for our scene representation. As
following [11], both 3D location x and viewing direction
d are firstly transformed into positional embeddings before
being utilized by F base and F app respectively. Note that the
numbers of neurons for all the layers in an MLP are sequen-
tially provided within the corresponding blue bracket shown
in the figure.

A.2. Style Variational Autoencoder (style-VAE)

Instead of merely having our stylization effective for a
limited number of styles which are seen during hypernet-
work learning, we aim to achieve the universal stylization
thus being able to render scene images with arbitrary and
unseen styles in the inference/testing time. To this end,
we propose the style variational autoencoder (style-VAE)
to regularize the distribution of style latent vectors into a
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normal distribution, and expect that the hypernetwork Ψ is
generalizable to the unseen styles.

The architecture of our style-VAE is illustrated in Fig-
ure 2, where we extend from the well-known AdaIN frame-
work [3] of image style transfer to additionally equip a
variational autoencoder (VAE [5]) into the space of style
features fs extracted from style reference images S by an
ImageNet-pretrained VGG-19 encoder E [8]. Basically,
such variation autoencoder is composed of an encoderEvae

and a decoder Dvae (both built upon MLPs), where Evae

encodes {µ(fs),Σ(fs)} (i.e. the mean and standard devia-
tion of style feature fs) into a Gaussian distributionN (ρ, ξ)
and Dvae decodes from ε ∼ N (ρ, ξ) to produce the recon-
structed {µ̂(fs), Σ̂(fs)}. Note that, we use ρ obtained from
Evae({µ(E(S)),Σ(E(S))}) as the style latent vector zS of
the style reference image S. Afterwards, {µ̂(fs), Σ̂(fs)}
are used to perform the adaptive instance normalization on
the content feature fc (extracted from the content image by
E) for realizing the image style transfer on the content im-
age as what the typical AdaIN framework does.

The learning objective of our style-VAE simply in-
cludes the loss functions for training the typical AdaIN
and VAE frameworks, i.e. the content and style losses
from AdaIN [3], as well as the reconstruction loss (between
{µ(fs),Σ(fs)} and {µ̂(fs), Σ̂(fs)}) and the KL-divergence
loss on N (ρ, ξ) from VAE [5]. In particular, the KL-
divergence loss regularizes the distribution of latent style
vectors to follow the normal distribution. While having a
sufficient number of training styles for learning the hyper-
network Ψ, we expect that the latent style vectors of unseen
styles which are projected into the same latent distribution
can be well handled by the hypernetwork thus producing
the plausible W app for driving the scene stylization. Please
note that, as the style-VAE aims for learning to extract the
latent style vectors from the style reference images where
none of its objective functions is related to the stylization
part, it thus can be learnt beforehand and kept fixed during
training our scene stylization model.



For more architecture details of the Evae and Dvae used
in our style-VAE, they are both 3-layer MLPs with having
a ReLU activation function between every adjacent layer.
The numbers of neurons for all the layers in Evae are se-
quentially (1024 → 1024 → 1024). The output of Evae is
a 1024-dimensional vector, in which its first half and the
second half are ρ and ξ respectively (i.e. both are 512-
dimensional vectors). And the numbers of neurons for all
the layers in Dvae are sequentially (512→ 1024→ 1024).
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F app

Figure 2: Illustration of pre-training of the the style vari-
ational autoencoder (style-VAE) model. Built upon the
AdaIN framework [3] of image style transfer, a variational
autoencoder [5] learns to project the style features fs into
the latent style vectors, where the distribution of latent style
vectors is regularized to follow a normal distribution for the
purpose of enabling universal stylization.

A.3. Hypernetwork

As illustrated in Figure 3(b) of the main paper, given a
style latent vector zS extracted from the style reference im-
age S, the hypernetwork Ψ (built upon an MLP in our work)
learns to regress from zS to produce the weights W app for
updating F app, in which the updated F app (denoted as F̃ app)
is then able to predict the color value emitted from 3D loca-
tion x toward view direction d, and the resultant images of
view synthesis after running volume rendering are expected
to have the style as S. Please note that, the idea of hyper-
network (i.e. regressing the network parameters via another
network) was originally proposed in [2] but we innovatively
adopt it here for the task the 3D scene stylization.

For more architecture details of the hypernetwork Ψ, it
maps the style latent vector zS (which is 512-dimensional)
to the weights W app of F app. The weights wapp

l of each
layer l of F app is the output of a separate sub-hypernetwork
Ψl, where each sub-hypernetwork Ψl is a 3-layer MLP. The
numbers of neurons for all the layers in Ψl are sequentially
(512→ 64→ |wapp

l |), where |wapp
l | is the size of wapp

l .

B. Consistency Metric
As described in Section 4.2 of the main paper, to eval-

uate the consistency of two stylized images Ĩu and Ĩv at
novel views u and v, we use their corresponding ground-
truth non-stylized images Iu and Iv to compute the optical
flow, as well as the occlusion mask O. Specifically, we use
the pre-trained FlowNet 2.0 [4] to obtain the optical flow.
According to the computed optical flow, we warp the styl-
ized image Ĩv at the view v to get the corresponding image
Ĭu at the view u. Finally, the consistency metric is com-
puted as

Econsistency(Ĩu, Ĩv) =
1

|O|
∥∥∥Ĩu − Ĭu∥∥∥2

2
(1)

where |O| denotes the number of non-occluded pixels inO.

C. Ablation Study
Numbers of Training Style Images. For all experiments
in the main paper, we use 81330 style images to train the
hypernetwork for universal stylization. In this experiment,
we demonstrate the generalization ability of the proposed
framework by lowering the number of training style images.
As shown in Figure 3, the proposed hypernetwork trained
with 200 or 2000 style images is still able to produce ap-
pealing stylization results.

Joint Training v.s. Proposed Two-Stage Training Strat-
egy. As described in Section 3.3 of the main paper, we
design a two-stage training strategy to train the proposed
model for stylizing a particular 3D scene. In this experi-
ment, we validate the importance of the two-stage training
strategy by comparing with the geometry branch of the neu-
ral radiance fields model (i.e., F base and F geo) and hyper-
network Ψ jointly trained with Lsecond (see Eq. (4) of the
main paper). We present the results in Figure 4. The joint
training strategy is a more complicated learning task since
it involves the construction of the target 3D scene, and the
learning of the stylization. As a result, the proposed model
trained with the joint training strategy fails to render the
desired style as well as the correct geometry. In contrast,
we develop the two-stage training strategy to simplify the
training task that the geometry branch is first optimized to
model the target 3D scene, the hypernetwork is trained for
the universal stylization.

D. More Stylization Results
As shown in Figure 5, we provide more stylization re-

sults of our proposed method. In addition, we provide
qualitative comparisons against different baselines (i.e.,
AdaIN [3], WCT [7], LST [6], TPFR [9], ReReVST [10]
and MCCNet [1]) in Figure 6 and our project page1 .
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Figure 3: Study on number of style images used for the
stylization training stage. We present the example styliza-
tion results based on the unseen style (shown on the top-left
corner of each example) by using the hypernetwork trained
on 81330, 2000, and 200 style images. Note that we use the
same training hyper-parameters (e.g., learning rate) except
the number of training images in this experiment.

Style and content image Joint training

Geometric Training Stage Stylization Training Stage

Figure 4: Importance of the two-stage optimization
strategy. To understand the importance of our two-stage
training strategy (as described in Section 3.3 of the main
paper), we present the results of optimizing the proposed
model in a single-stage, i.e., joint training the neural radi-
ance field model and hypernetwork with using Lsecond (see
Eq. (4) of the main paper) to learn the geometry and styl-
ization at the same time. The joint training approach fails
to capture the geometry of the target scene and render the
images with desired style while not adopting the proposed
two-stage optimization strategy.
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Figure 5: Qualitative results of our proposed framework of 3D scene stylization. For each row, the leftmost column
presents one of the training images of the target scene together with the input reference (style) image on the top-left corner,
while the remaining columns demonstrate the stylization results at various novel views.
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Figure 6: Qualitative comparisons. The bottom row presents one of the training images of the target scene with the
input reference (style) image and the stylization results of our proposed approach. The red boxes highlight the inconsistent
stylization across different views, while our proposed method is consistent across different view angles with desired style.


