
PhotoWCT2: Compact Autoencoder for Photorealistic Style Transfer Resulting
from Blockwise Training and Skip Connections of High-Frequency Residuals

Tai-Yin Chiu
The University of Texas at Austin

Danna Gurari
University of Colorado Boulder

Supplementary Materials

This document supplements Sections 3.1, 3.2, and 4.2 of
the main paper. It includes the following:

• Details of ZCA transformation (supplements Section
3.1).

• Description of the bug in the post-processing code of Pho-
toWCT, our modification, and why fixing the bug greatly
improves the speed of the post-processing used in Pho-
toWCT (supplements Sections 3.1).

• Additional details about our blockwise model architecture
and our training strategy (supplements Section 3.2).

• Results of blockwise training in the reversed order (sup-
plements Section 3.2.2).

• PhotoWCT with three cascaded autoencoders and its re-
design (supplements Section 3.2.2).

• Additional details about our regularized style loss (sup-
plements Section 4.2).

• Qualitative stylization results (supplements Section 4.2).

Details of ZCA transformation

ZCA transformation [5] is the key to the realization of
style transfer in WCT2, PhotoWCT, PhotoNAS, and our
PhotoWCT2 by making the gram matrix of a content fea-
ture match that of a style feature. It takes as input a con-
tent feature of shape Hc × Wc × C and a style feature
of shape Hs × Ws × C extracted from, say, the reluN 1
layer of VGGNet, where Hc (Hs) and Wc (Ws) are the
height and width of the content (style) feature, while C is
the channel length. We first reshape the content and style
features to the shapes C × HcWc and C × HsWs and de-
note the reshaped features Fc and Fs, respectively. Then we
apply eigen-decomposition to the covariances 1

HcWc
F̄cF̄

T
c

and 1
HsWs

F̄sF̄
T
s :

1

HcWc
F̄cF̄

T
c = EcΛcE

T
c

1

HsWs
F̄sF̄

T
s = EsΛsE

T
s ,

(1)

where F̄c and F̄s are the centralized content and style fea-
tures:

F̄c = Fc −mean(Fc) = Fc −
HcWc∑
i=1

[Fc]:,i

F̄s = Fs −mean(Fs) = Fs −
HsWs∑
i=1

[Fs]:,i.

(2)

By transforming the content feature Fc as in Equation 3, the
gram matrix of the transformed feature Fcs will match that
of the style feature.

Fcs = (EsΛ
1
2
s E

T
s)(EcΛ

− 1
2

c ET
c)F̄c +mean(Fs) (3)

It can be shown that 1
HcWc

FcsF
T
cs is equal to

1
HsWs

FsF
T
s [2].

Modification of PhotoWCT’s post-processing code

The post-processing in the PhotoWCT code includes two
parts: guided filtering and image smoothing, with the for-
mer code running much faster than the latter. Since smooth-
ing is also one effect of guided filtering, the second post-
processing step of image smoothing is not necessary. We
suspect the image smoothing function was invoked to over-
come a misuse of the guidedFilter function provided
in the OpenCV package, as described below.

The guidedFilter function takes four arguments: a
guide image, an image to filter, a filtering window radius,
and an ϵ parameter to prevent overfitting. The PhotoWCT
code follows the guided filter paper [4] to use 0.12 as the
value of ϵ1. However, while the paper assumes image pixel

1In practice, values between 0.012 to 0.12 work well.

Figure 1: Two examples showing the improvement after fixing the bug in the PhotoWCT code. In (a), we observe that
the result from the wrong invocation of the guidedFilter function results in a grid artifact that needs to be fixed with
additional smoothing. (b) shows a worse case where wrongly invoking the function results in a failure.

Figure 2: Detailed structure of our model’s architecture that gets used during blockwise training. The number in each
convolution layer is the number of channels at its output.

values are in the range of 0 and 1, guidedFilter takes
images with pixel values ranged from 0 to 255 and so the
value of ϵ should be scaled accordingly. In our modifica-
tion, we set ϵ to be (0.02 × 255)2. As expected, with this
value, the second post-processing step of image smoothing
becomes unnecessary, and the removal of the second post-
processing greatly improves the speed reported in previous
works.

Figure 1 exemplifies the importance of fixing the code.
Before fixing the bug, a filtering result might suffer from a
grid artifact, where a region that is supposed to be smooth
contains groups of pixels that are not well blended. This ar-
tifact is exemplified in Figure 1(a). To remove this artifact,
the second post-processing step of smoothing is needed.
Even still, this extra filtering step can fail to conceal the

issues introduced by the bug, as exemplified in Figure 1(b).
We set the filtering window radius to be 100 for the speed

test in Section 4.1. We set it to 50 for evaluation of the
image quality and stylization strength in Section 4.2, since
the test images used in the speed test are (much) larger than
the images from the DPST dataset used in Section 4.2.

Model-to-train and training details

A detailed diagram showing the structure of our model
that gets used during blockwise training is shown in Fig-
ure 2, expanding upon its illustration in Figure 1b:4 and
Figure 3a of the main paper. For training, we use the MS-
COCO dataset [7]. Each image in the dataset is resized to
512×512 and randomly cropped to 256×256. We use a

Figure 3: Outward blockwise training

batch size of eight images. We use the Adam optimizer
with learning rate 1 × 10−4 and without weight decay. In
blockwise training, each decbtblkN block is trained for 20
epoch.

Results of blockwise training in the reversed order

The blockwise training in the paper trains the decoder
blocks decbtblkN ’s in the order fromN = 1 toN = 4. That
is, the training is inward from the outermost block decbtblk1
to the innermost decbtblk4. Here we show the results of
outward training from the innermost to the outermost block
as exemplified in Figure 3.

In outward blockwise training, the decoder blocks
decbtblkN ’s are trained in the order from N = 4 to N = 1
by minimizing the function inversion loss Lout

N :

Lout
N (I) = ||ϕN−1(I)− ψout

N (ϕ4(I))||22 (4)

where ϕN and ψout
N are the functions of the series

{enc4blk1, . . . , enc4blkN} and {decbtblk4, . . . , decbtblkN},
respectively. When training a decoder block, the previously
trained blocks and the encoder are fixed. Note that when
N = 1, Lout

1 minimizes the reconstruction loss. In this
document, we denote our models trained outwardly and in-
wardly as AECout

bt and AECin
bt (PhotoWCT2 (BT)), respec-

tively.
Next we compare the inward and the outward blockwise

trainings using the same metrics in the main paper. Ta-
ble 1(c) shows the mean metric scores for image quality
and stylization strength across 100 stylized images resulting
from each method. Note that the values of L̄s,m reported in
Table 1 here are different from those reported in the Ta-
ble 1 in the main paper, since here style losses of AECout

bt ,
PhotoWCT3, and AECin

bt,3 (see next section) are included in
the normalization for the computation of L̄s,m. We observe
both AECin

bt (i.e., PhotoWCT2 (BT)) and AECout
bt result in

image quality comparable to that from the baselines and as
strong stylization strength as PhotoWCT. Table 2 shows the
loss values averaged across 500 images for feature and im-
age reconstruction in the decoders trained by inward and
outward blockwise trainings. We observe the inward train-
ing has a slightly better image and feature reconstruction
ability than the outward training.

Redesign of PhotoWCT to use three autoencoders

As discussed in the main paper, our method can general-
ize for use with different numbers of autoencoders. We il-
lustrate this here by removing the fourth autoencoder AEC4

in the PhotoWCT cascade. We denote the resulting 3-
autoencoder PhotoWCT as PhotoWCT3.

Quantitative results comparing PhotoWCT and Pho-
toWCT3 are shown in Table 1. As expected, we observe
a slight drop in stylization strength from PhotoWCT (-0.57)
to PhotoWCT3 (-0.47), while PhotoWCT3 uses fewer pa-
rameters and runs at faster speeds.

We next apply our inward blockwise training method
to redesign PhotoWCT3 into a single autoencoder, which
is denoted AECin

bt,3 here. Results are shown in Table 1.
Reinforcing our findings in the main paper, we observe
that AECin

bt,3 achieves comparable stylization strength while
yielding faster speeds than PhotoWCT3. For example, it
takes 0.2 fewer seconds for QHD rendering for AECin

bt,3

than PhotoWCT3. When comparing AECin
bt,3 to Pho-

toWCT, while there is a more noticeable drop in stylization
strength from the original PhotoWCT method (i.e., four au-
toencoders) to AECin

bt,3, AECin
bt,3 runs much faster than Pho-

toWCT. Take QHD rendering for instance. AECin
bt,3 spends

only half the rendering time of PhotoWCT (0.64s vs. 1.24s).
Note that when redesigning PhotoWCT3 into a single

autoencoder, we use inward rather than outward block-
wise training. The reason is that inward blockwise train-
ing not only results in better image and feature reconstruc-
tion ability, but while we redesign PhotoWCT using inward
blockwise training as in the main paper, we already accom-
plish the redesign of PhotoWCT3. That is, inward block-
wise training trains the decoder blocks decbtblk1, decbtblk2,
and decbtblk3 in AECin

bt,3 first and then trains the final
block decbtblk4 used in AECin

bt . In contrast, due to the
reversed training order, redesigning PhotoWCT3 with out-
ward blockwise training requires re-training from scratch.

Regularized style loss

We use the regularized style loss Ls in equation 5, which
was introduced in DPST [8], for the evaluation of styliza-
tion strength. Intuitively, style can be thought of as a com-
position of ingredients such as color, lightness, and artis-
tic effects, including image pattern and painting styles (oil

Model
(a) Size (b) Speed performance (c) Image quality & Stylization strength

par # layer 1024×512
HD FHD QHD 4K BRIS NIQE NIMA-q NIMA-a L̄s,m1280×720 1920×1080 2560×1440 3840×2160 (27.4) (3.19) (5.11) (5.27)

PhNAS 40.24M 35 0.23 OOM OOM OOM OOM 33.0 3.24 4.75 4.92 1.42
WCT2 10.12M 24 0.30 0.43 0.80 OOM OOM 30.8 3.07 4.91 5.01 1.15
PhWCT 8.35M 48 0.21+0.03 0.32+0.06 0.61+0.14 1.01+0.23 OOM 31.8 2.90 4.88 5.06 -0.57
AECe2e 7.05M 24 0.18+0.03 0.24+0.06 0.39+0.14 0.59+0.23 1.22+0.54 31.7 2.91 4.90 5.10 -0.52
AECin

bt 7.05M 24 0.18+0.03 0.24+0.06 0.39+0.14 0.59+0.23 1.22+0.54 31.6 2.90 4.90 5.10 -0.55
AECout

bt 7.05M 24 0.18+0.03 0.24+0.06 0.39+0.14 0.59+0.23 1.22+0.54 31.8 2.92 4.88 5.06 -0.54

PhWCT3 1.34M 24 0.13+0.03 0.19+0.06 0.36+0.14 0.60+0.23 OOM 32.1 2.98 4.88 5.04 -0.47
AECin

bt,3 1.15M 14 0.09+0.03 0.13+0.06 0.24+0.14 0.40+0.23 0.77+0.54 31.6 2.92 4.88 5.06 -0.42

Table 1: Extended Table 1 from the main paper. (Top 6 rows) Performance comparison between three previous methods
PhotoNAS, WCT2, and PhotoWCT and our models AECe2e, AECin

bt and AECout
bt (PhotoWCT2 resulting from end-to-end

training, inward and outward blockwise trainings). (Last 2 rows) Comparison of PhotoWCT3 (PhotoWCT reduced to three
cascaded autoencoders) and AECin

bt,3 (redesign of PhotoWCT3 using inward blockwise training).

Strategy relu3 1 relu2 1 relu1 1 image

Outward 0.037 0.028 0.009 0.0010
Inward 0.035 0.021 0.008 0.0006

Table 2: Loss values for feature and image reconstruction in
the decoders resulting from inward and outward blockwise
trainings. The inward training has a slightly better image
and feature reconstruction ability than the outward training.

paintings, watercolor paintings, etc.). These ingredients
are captured in Gatys et al.’s [3] formulation of style loss
(
∑
βlLs,l). However, since artistic effects result in arti-

facts, they are undesired ingredients in photorealistic styl-
ization. To avoid these artifacts, a regularization term Lreg

is introduced to Gatys’s formulation to remove the artistic
effects. Mathematically, with Io, Ic, Is being the stylized,
content, and style images, the regularized loss is defined as
follows:

Ls(Io; Ic, Is) =
5∑

l=1

βlLs,l(Io, Is) + λLreg(Io, Ic), (5)

Ls,l(Io, Is) = || 1

Ho,lWo,l
Fo,lF

T
o,l −

1

Hs,lWs,l
Fs,lF

T
s,l||22,

(6)

Lreg(Io, Ic) =
∑

ch∈{R,G,B}

vec(Io,ch)
TM(Ic,ch)vec(Io,ch).

(7)
In equation 6, Fo,l and Fs,l are the relu’l’ 1 features
of Io and Is extracted from VGGNet. (Ho,l,Wo,l) and
(Hs,l,Ws,l) are the (height, width) of Fo,l and Fs,l. In
equation 7, vec(Io,ch) is the pixels of Io in the ch channel

vectorized into a column vector. M(Ic,ch) is the Matting
Laplacian matrix of the ch channel of Ic. Following the
official implementation of DPST, the weights βl’s are 1/5,
while λ is 102.

To account for regularized style loss values falling in
different ranges for different content-style pairs, we nor-
malize the loss value Ls,m,p resulting from the photoreal-
istic style transfer method m and the content-style pair p
as follows (m ∈ {PhotoNAS, WCT2, PhotoWCT, AECe2e,
AECin

bt } in the main paper, while m ∈ {PhotoNAS, WCT2,
PhotoWCT, AECe2e, AECin

bt , AECout
bt , PhotoWCT3,

AECin
bt,3} in this document):

L̄s,m,p =
Ls,m,p − µp

σp
=

Ls,m,p − 1
|m|

∑
m Ls,m,p√

1
|m−1|

∑
m(Ls,m,p − µp)2

,

(8)
where |m| is the number of considered methods (i.e., m is
five and eight in the main paper and this document, respec-
tively.) As such, L̄s,m,p is distributed around 0. Moreover,
given a content-style pair p, the relative order of L̄s,m,p’s
is preserved to match that of Ls,m,p’s. Note that the re-
ported loss value L̄s,m for the method m is the mean across
100 normalized style losses {L̄s,m,1, . . . , L̄s,m,100} for 100
stylized images resulting from m.

Stylization results

We show the stylization results for the DPST dataset in
Figures 4 to 14. Each row in the figures contains the re-
sults of photorealistic style transfer methods from a pair
of content and style images and the associated segmenta-
tion. In particular, a segment in a content image is rendered
with the style of the corresponding segment denoted in the
same color in the style image. Note that the results from
PhotoNAS [1] do not use the segmentation labels, since the

PhotoNAS paper clearly states “the proposed algorithm al-
lows transferring photo styles without any assist of region
masks acquired by segmenting content and style inputs” and
the official code does not support this feature, either.

Figure 4: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 1/11)

Figure 5: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 2/11)

Figure 6: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 3/11)

Figure 7: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 4/11)

Figure 8: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 5/11)

Figure 9: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 6/11)

Figure 10: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 7/11)

Figure 11: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 8/11)

Figure 12: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 9/11)

Figure 13: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 10/11)

Figure 14: Results of stylization with segmentation for images in the DPST dataset. Three baselines are two state-of-the-arts
PhotoWCT [6] and WCT2 [9] and a more recent method PhotoNAS [1], while AECin

bt (i.e., PhotoWCT2) and AECout
bt are

the autoencoder in Figure 2 trained inward blockwisely and outward blockwisely, respectively, and AECin
bt,3 is AECin

bt with
enc4blk4 and decbtblk4 removed. The results exemplify that our models achieve comparable stylization performance to the
state-of-the-arts in a fraction of the time required by the existing methods. (Part 11/11)

References
[1] Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast

photorealistic style transfer via neural architecture search. In
AAAI, pages 10443–10450, 2020.

[2] Tai-Yin Chiu. Understanding generalized whitening and col-
oring transform for universal style transfer. In Proceedings of
the IEEE International Conference on Computer Vision, pages
4452–4460, 2019.

[3] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 2414–2423, 2016.

[4] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filter-
ing. In European conference on computer vision, pages 1–14.
Springer, 2010.

[5] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In Advances in neural information processing sys-
tems, pages 386–396, 2017.

[6] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and
Jan Kautz. A closed-form solution to photorealistic image
stylization. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 453–468, 2018.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014.

[8] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4990–4998, 2017.

[9] Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu
Kang, and Jung-Woo Ha. Photorealistic style transfer via
wavelet transforms. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9036–9045, 2019.

