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A. How to generate the pseudo-labels
We basically follow the process of generating pseudo-

labels proposed by [1]. We assume a segmentation net-
work G is already trained. As mentioned in the main pa-
per, a segmentation network generates a prediction output
G(xt) = P t ∈ RH×W×C . By following the equation be-
low, we generate a pseudo-label ŷt that corresponds to an
input image xt.
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(1)

We argmax along class dimension and filter only pixels
whose prediction confidence exceed a class-specific confi-
dence threshold τ c. τ c is the confidence threshold of class
c. τ c is set by the confidence score of top 50% of each class.
We infer all the images in the training set into the network to
obtain the prediction output for each image. Then, for each
class, we collect all the prediction pixels that are classified
as the class and add the confidence score of each pixel to a
list. We sort the list in a descending order and choose the
median value of the list as the τ c for the class. If the median
value is higher than 0.9, we set τ c as 0.9. Therefore, each
class has its own τ c and it can be different by classes.

B. Figure of process A and B
Fig. B.1 illustrates our process A and B. The illustration

of process B corresponds to the case when the pseudo-label
is available. ProcessA first selects features that are correctly
classified using ĉsmax. ĉsmax is the correctly classified pre-
diction output classes of csmax via the ground truth label ỹs.
The grey shaded parts of ĉsmax and fs are incorrectly clas-
sified prediction outputs and source features respectively.
Then, we split the source features fs into classes accord-
ing to ĉsmax. The split source features are enqueued to the
dictionary class by class.

*This work is conducted when the author was in research internship at
NAVER WEBTOON Corp.

Process B first augments the pseudo-label ỹt with the
target prediction output. As it can be seen in the figure, a
pseudo-label ỹt has ignore symbols where the confidence
score of the separate trained network is lower than the con-
fidence threshold τ c. We augment ỹt by replacing those ig-
nore symbols with the prediction output classes of the cur-
rent training network, ctmax. ẏt is the augmented pseudo-
label and it is basically a copy of ỹt but has the values of
ctmax where ỹt has ignore symbols. Then, we split the tar-
get feature map f t class-wise according to ẏt.

C. Formulation of Adversarial Adaptation
Along with the segmentation loss, usually an adversar-

ial adaptation loss is adopted to make the distribution of Pt
closer to Ps by fooling a discriminator network D. It tries
to maximize the probability of target predictions being con-
sidered as source predictions by D.

Ladv(xt) = −
∑
h,w

log(D(P t)(h,w)) (2)

On the other hand, D is trained to correctly distinguish the
originating domain of the segmentation output.

LD(xs, xt) = −
∑
h,w

(log(1−D(P t)(h,w))

+ log(D(P s)(h,w)))

(3)

The discriminator network is a fully convolutional network
which consists of 5 convolutional layers with 4 × 4 ker-
nels and a stride of 2, the channel sizes are set as {64, 128,
256, 512, 1} for each layer respectively. The first four lay-
ers are followed by leaky ReLU parameterized by 0.2. We
use ADAM optimizer with learning a rate of 1 × 10−4 for
DeepLabV2 based on ResNet101 and 1× 10−6 for FCN-8s
based on VGG16. The momentums are set as 0.9 and 0.99.
The loss balance parameter λadv is set as 0.001 and 0.0001
for DeepLabV2 and FCN-8s respectively. However, in our
method, we do not employ any adversarial loss since we
find it ineffective for self-supervised learning and moreover



Figure B.1. Grey shaded parts in process A are incorrectly classified source prediction outputs and features, while in B, they are ignore
symbols of the pseudo-label. Note that ỹt

j is augmented by replacing the ignore symbols with the predicted classes of the target output,
ctmax, generating ẏt.

it disrupts the training when combined with our proposed
cosine similarity loss.

D. Tweaked method for FCN
FCN-8s has a different architecture from DeepLabV2.

The main difference is that it does not use the bilinear inter-
polation but instead uses skip combining to fuse the out-
puts from shallow layers and a transposed convolutional
layer for upsampling. It combines the outputs from three
different layers which are fc7, pool4 and pool3. Therefore,
our cosine similarity loss is applied to these three different
layers. We name the three different feature maps from the
three layers as {fsl }3l=1. Since FCN-8s does not use the bi-
linear interpolation but rather directly produces the predic-
tion output, we have to downsample the prediction output
P s = G(xs) ∈ RH×W×C into three different spatial sizes
of the feature maps {fsl }3l=1. We first argmax P s along the
class dimension and obtain predicted class information.

Csmax = argmax
c∈[C]

P s(c) ∈ RH×W (4)

Then we resize Csmax into the three spatial sizes of {fsl }3l=1

via nearest interpolation. csmax = Inearest(C
s
max) The

three resized class outputs are {csmaxl}3l=1 which have the
same spatial sizes as {fsl }3l=1 respectively. We also re-
size the ground-truth label ys to the spatial size of each
{csmaxl}3l=1 thus generate three resized ground truth labels
{ỹsl }3l=1. We use {csmaxl}3l=1 and {ỹsl }3l=1 to split the source
feature maps analogous to (6) of the main paper.

ĉsmaxl = 1[csmaxl=ỹsl ]
� csmaxl

Scl = 1[ĉsmaxl=c] ⊗ f
s
l .

(5)

Scl refers to the split source features from layer l that is cor-
rectly classified as class c. There are three different dictio-

naries each corresponding to each layer, {Dl}3l=1. Each Scl
is enqueued to Dc

l .
This process is analogously applied to the target feature

map as well. We resize the target prediction output P t to the
spatial size of the three target feature maps {f tl }3l=1, gener-
ating {ctmaxl}3l=1. The pseudo-label ŷt is also resized to the
spatial size of each {ctmaxl}3l=1 as {ỹtl}3l=1.

ẏtl = augment(ỹtl , c
t
maxl)

T cl = 1[ẏtl=c]
⊗ f tl .

(6)

T cl refers to split target features from layer l that is classified
as class c.
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(7)

The cosine matrix is computed for each class of each layer.
Mc

l is the cosine matrix of class c between source features
stored in Dc

l and split target features from layer l classified
as class c. We only select elements ofMc

l that exceed Tcosl.
Tcos is defined differently for each layer l. A higher thresh-
old is defined for a shallower layer since the shallow layer
possesses more global information without the detailed in-
formation while features from a higher layer posses high-
level abstraction that is more detailed. Therefore, we want
to set a higher threshold for a shallow layer in order to max-
imize the similarity of the target features with more mean-
ingful and similar source features. We simply add 0.1 to
the baseline threshold as the layer goes shallower, for ex-
ample, if we set 0.5 as the baseline threshold, the Tcosl for
fc7, pool4 and pool3 layers are set as 0.5, 0.6, 0.7. The final



cosine similarity loss is averaged over the three layers.
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1
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E. More qualitative results
Fig. E.1 shows more qualitative comparison results be-

tween “with Adversarial” and “Ours”. As already men-
tioned in the main paper, ours shows much clear and less
noisy outputs.



Figure E.1. More qualitative results.
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