
APPENDIX
In this appendix, we discuss the following details, which
could not be included in the main paper owing to space con-
straints.

A. ImageCFGenAlgorithm
As described in Section 3.1, our method involves two

components: learning the Attribute-SCM (Ma) that mod-
els relationships between attributes, and learning the gen-
erator (Mx) that produces counterfactual images given the
attributes.

A.1. Learning the Attribute-SCM
We assume that the causal graph structure is provided by

the user, but the causal functions relating the attributes are
not available. For each attribute ai, the graph entails a set
of attributes Pai that cause the attribute (its parents in the
graph structure) that should be included while estimating
the value of the attribute. It leads to the following generat-
ing equation for each attribute,

ai = gi(Pai
, εi) (8)

where Pai are the parents of attribute ai and εi is indepen-
dent noise. The goal is to learn the unknown function gi for
each attribute. Thus, given n attributes, we obtain a set of
n equations, each of which can be independently estimated
using Maximum Likelihood Estimation from Bayesian net-
works [8].

A.2. Generating Counterfactuals
Algorithm 1 below shows how ImageCFGen is imple-

mented, in extension to the discussion in Sec 3.2 of the main
paper. Here we assume that the Attribute-SCM, the Encoder
E, and Generator G are pre-learnt and provided as input to
the algorithm. (x∗,a∗) denotes the input value of the image
and the attributes. Note that the Attribute SCM operations
(Steps 1-3) are based on the formal procedure to generate
counterfactuals from [33].

In Step 1 (Abduction), the encoder uses the input data
(x∗,a∗) to create the latent vector z.

In Step 2 (Action), given the indices K of sensitive at-
tributes, the goal is to remove the dependence of these sen-
sitive attributes on any other attribute and then change their
value to the desired value. To do so, the causal graph of
Attribute-SCM is modified to remove all incoming arrows
to aK . That is, the structural equations for each ai ∈ aK
changes from ai = gi(Pai

, εi) to ai = ε′i, yielding a mod-
ified Attribute-SCM M′a. Then each ai ∈ aK is set to
the desired modified value a∗∗i (Line 5; we do this without
changing its parents or other variables, hence it is called an
intervention).

In Step 3 (Prediction), we propagate the change in sen-
sitive attributes to all attributes caused by them. That is,

Algorithm 1: ImageCFGen
Input: Input data-attribute pair (x∗, a∗); Indices of

sensitive attributes to modify K; Modified
attribute values a∗∗K , Attribute SCM
Ma = {gi(Pa∗i

, ε̂i)}∀a∗i ∈ a∗, Pa∗i
⊆ a∗ where

Pa∗i
denotes parents of a∗i and ε̂i is estimated from

data, Encoder E, Generator G
Output: xc

1 Step 1: Abduction
2 z = E(x∗,a∗)
3 Step 2: Action
4 Remove all incoming arrows to aK inMa to yieldM′a
5 ai → a∗∗i ∀i ∈ K, a∗∗i ∈ a∗∗K /* Intervene on

sensitive attributes and set to
modified attribute values */

6 Step 3: Prediction
7 D = desc(aK) /* descendants of aK */
8 currset = children(aK)
9 changed[a∗] = False

10 while currset is not empty do
11 cs = ∅;
12 foreach aj ∈ currset do

/* Proceed only if the values of
all parents of aj are already
changed */

13 if not anyl(P
(l)
aj ∈ D &

changed[P
(l)
aj ] == False)) then

14 a∗∗j → gj(Pa∗∗j
, ε̂j)

15 cs.append(children(aj))
16 changed[aj ] = True

17 end
18 end
19 currset = cs /* If there exist children

of the current nodes, repeat
while loop */

20 end
21 ac = a∗∗K ∪ a∗∗−K /* a∗∗−K denotes the final

values for all non-sensitive
attributes */

22 xc = G(z,ac)

values of all descendants of sensitive attributes aK in the
causal graph of Attribute-SCMM′a are changed, based on
the modified value of the sensitive attributes from Step 2.
We do so level-by-level: first changing the values of chil-
dren of aK based on the modified value of aK , then the val-
ues of children of children of aK , and so on. Note that line
13 ensures that an attribute’s value is changed only when all
its parents’ values have been modified. The corresponding
equation for each descendant aj is given in Line 14,

a∗∗j → gj(Pa∗∗j
, ε̂j) (9)

where Pa∗∗j
refers to the modified values of the parents of

aj , gj is the pre-learnt Attribute-SCM function, and ε̂j is



the estimated error term from the original attribute data (i.e.,
it is the same error value that satisfies a∗j → gj(Pa∗j

, ε̂j)).
Finally, the updated values of all attributes are used to create
ac, the counterfactual attribute vector. This counterfactual
attribute vector is then combined with latent z from Step
1 and provided as input to the generator G, to obtain the
counterfactual image xc (Line 22).

B. Counterfactual Generation Proof
Proposition 1. Assume that the true SCMM belongs to a
class of SCMs where the structural equations can be identi-
fied uniquely given the causal graph. Further, assume that
the Encoder E, Generator G and Attribute SCM are opti-
mal and thus correspond to the true structural equations of
the SCM M. Then Equation 1 generates a valid counter-
factual image for any given input (x,a) and the requested
modified attributes a′k.

Proof. LetM = {Mx,Ma} be the true SCM that gener-
ates the data (x,a). Let ak ⊂ a be the attributes you want to
intervene on. Let a−k = a \ ak be the remaining attributes.
The corresponding equations forM are:

ai := gi(pai
, εi), ∀i = 1..n

x := g(ak,a−k, ε)
(10)

where ε and εi refer to independent noise, g and gi refer to
structural assignments of the SCMs Mx and Ma respec-
tively while pai

refers to parent attributes of ai. Given an
input (x, ak, a−k), we generate a counterfactual using M
and show that it is equivalent to Equation 1.
Abduction: Infer ε for x and εi for all ai from Equation 10
using the following equations:

ε̂i := g−1i (ai, pai
), ∀i = 1..n

ε̂ := g−1(x,ak,a−k)
(11)

Action: Intervene on all attributes ak by setting them to the
requested modified attributes a′k.

ai → a′i ∀ai ∈ ak and ∀a′i ∈ a′k (12)

Prediction: The following equation then changes the val-
ues of all descendants of ak.

desc(ai)→ gi(pdesc(ai), ε̂i) ∀ai ∈ ak (13)

where desc(ai) are descendants of ai and pdesc(ai) are par-
ents of the descendants of ai, ∀ai ∈ ak. Let ac = a′k ∪ a′−k
where a′−k are (possibly) modified values of the other at-
tributes according to Equation 13. Therefore, the counter-
factual of x, xc can be generated as:

xc := g(ac, ε̂) (14)

We now show that Equation 1 produces the same xc.
By the assumption in the theorem statement, the Attribute-
SCM corresponds to the structural assignments {gi, g−1i },
∀i = 1..n of SCM Ma while the Generator G learns the
structural assignment g and the Encoder E learns g−1 of
the SCM Mx. Hence, the Attribute-SCM, Generator and
Encoder learn the combined SCMM.

When the SCM assignments learned by the Attribute-
SCM are optimal, i.e. Attribute-SCM =Ma then:

âc = ac

Similarly, under optimal Generator, G = g and E = g−1:

xc = g(ac, g
−1(x,ak,a−k))

= G(ac, E(x,a)) (as a = ak ∪ a−k)
(15)

which is the same as Equation 1.

C. Counterfactual Fairness Proof
Definition 1. Counterfactual Fairness from [24]. LetA be
the set of attributes, comprising of sensitive attributesAS ⊆
A and other non-sensitive attributesAN . The classifier f̂ is
counterfactually fair if under any context X = x and A =
a, changing the value of the sensitive features to AS ←
a′s counterfactually does not change the classifier’s output
distribution Y .

P (YAS←as = y|X = x,AS = as,AN = aN )

= P (YAS←a′s
= y|X = x,AS = as,AN = aN )

(16)

for all y and for any value a′s attainable by AS .

Proposition 2. Under the assumptions of Proposition 1 for
the encoder E, generator G, and Attribute SCM Ma, a
classifier f̂(X) : X → Y that satisfies zero bias according
to Equation 4 is counterfactually fair with respect toM.

Proof. To evaluate fairness, we need to reason about the
output Y = y of the classifier f̂ . Therefore, we add a func-
tional equation to the SCMM from Equation 10.

ai := gi(pai , εi), ∀i = 1..n

x := g(ak,a−k, ε)

y ← f̂(x)

(17)

where ε and εi are independent errors as defined in Equa-
tion 10, and Pai

refers to the parent attributes of an attribute
ai as per the Attribute-SCM. The SCM equation for y does
not include an noise term since the ML classifier f̂ is a
deterministic function of X. In the above equations, the
attributes a are separated into two subsets: ak are the at-
tributes specified to be changed in a counterfactual and a−k
refers to all other attributes.



Based on this SCM, we now generate a counterfactual
yak←a′k

for an arbitrary new value a′k. Using the Prediction
step, the counterfactual output label yc for an input (x,a) is
given by: yc = f̂(X = xc). From Theorem 1, under opti-
mality of the encoder E, generator G and learned functions
gi, we know that xc generated by the following equation is
a valid counterfactual for an input (x,a),

xc = G(E(x,a),ac)

= XAk←a′
k
|(X = x,Ak = ak,A−k = a−k)

(18)

where ac represents the modified values of the attributes
under the action Ak ← a′k. Therefore, yak←a′k

|(X =

x,Ak = ak,A−k = a−k) is given by yc = f̂(xc).
Using the above result, we now show that the bias term

from Equation 4 and 5 reduces to the counterfactual fairness
definition from Definition 1,

P (yr = 0, yc = 1)− P (yr = 1, yc = 0)

= [P (yr = 0, yc = 1) + P (yr = 1, yc = 1)]−
[P (yr = 1, yc = 0) + (P (yr = 1, yc = 1)]

= P (yc = 1)− P (yr = 1)

= [P (YAk←a′
k
= 1|X = x,Ak = ak,A−k = a−k)−

P (YAk←ak
= 1|X = x,Ak = ak,A−k = a−k)]

= [P (YAS←a′s
= 1|X = x,AS = as,AN = an)−

P (YAS←as = 1|X = x,AS = as,AN = an)]

(19)

where the second equality is since yr, yc ∈ {0, 1}, the third
equality is since the reconstructed yr is the output prediction
when A = a, and the last equality is Ak being replaced
by the sensitive attributes AS and A−k being replaced by
AN . We can prove a similar result for yc = 0. Hence, when
bias term is zero, the ML model f̂ satisfies counterfactual
fairness (Definition 1).

D. Architecture Details
Here we provide the architecture details for the base

Adversarially Learned Inference (ALI) model trained on
Morpho-MNIST and CelebA datasets. For Cyclic Style
ALI, we replace the ALI generator with the style-based gen-
erator architecture in [20]. We however do not use progres-
sive growing or other regularization strategies suggested in
[20, 21] while training our model. For details on the style-
based generation architecture, please refer [20].

Overall, the architectures and hyperparameters are simi-
lar to the ones used by [11], with minor variations. Instead
of using the Embedding network from the original paper,
the attributes are directly passed on to the Encoder, Gener-
ator and Discriminator. We found that this enabled better
conditional generation in our experiments. All experiments
were implemented using Keras 2.3.0 [5] with Tensorflow
1.14.0 [1]. All models were trained using a Nvidia Tesla
P100 GPU.

D.1. Morpho-MNIST
Tables 4, 5 and 6 show the Generator, Encoder

and Discriminator architectures respectively for generating
Morpho-MNIST counterfactuals. Conv2D refers to Con-
volution 2D layers, Conv2DT refers to Transpose Con-
voloution layers, F refers to number of filters, K refers to
kernel width and height, S refers to strides, BN refers to
Batch Normalization, D refers to dropout probability and A
refers to the activation function. LReLU denotes the Leaky
ReLU activation function. We use the Adam optimizer [22]
with a learning rate of 10−4, β1 = 0.5 and a batch size of
100 for training the model. For the LeakyReLU activations,
α = 0.1. The model converges in approximately 30k itera-
tions. All weights are initialized using the Keras truncated
normal initializer with mean = 0.0 and stddev = 0.01.
All biases are initialized with zeros.

Layer F K S BN D A

Conv2DT 256 (4,4) (1,1) Y 0.0 LReLU
Conv2DT 128 (4,4) (2,2) Y 0.0 LReLU
Conv2DT 64 (4,4) (1,1) Y 0.0 LReLU
Conv2DT 32 (4,4) (2,2) Y 0.0 LReLU
Conv2DT 32 (1,1) (1,1) Y 0.0 LReLU
Conv2D 1 (1,1) (1,1) Y 0.0 Sigmoid

Table 4: Architecture for Morpho-MNIST Generator

Layer F K S BN D A
Conv2D 32 (5,5) (1,1) Y 0.0 LReLU
Conv2D 64 (4,4) (2,2) Y 0.0 LReLU
Conv2D 128 (4,4) (1,1) Y 0.0 LReLU
Conv2D 256 (4,4) (2,2) Y 0.0 LReLU
Conv2D 512 (3,3) (1,1) Y 0.0 LReLU
Conv2D 512 (1,1) (1,1) Y 0.0 Linear

Table 5: Architecture for Morpho-MNIST Encoder

Layer F K S BN D A
Dz

Conv2D 512 (1,1) (1,1) N 0.2 LReLU
Conv2D 512 (1,1) (1,1) N 0.5 LReLU
Dx

Conv2D 32 (5,5) (1,1) N 0.2 LReLU
Conv2D 64 (4,4) (2,2) Y 0.2 LReLU
Conv2D 128 (4,4) (1,1) Y 0.5 LReLU
Conv2D 256 (4,4) (2,2) Y 0.5 LReLU
Conv2D 512 (3,3) (1,1) Y 0.5 LReLU
Dx z

Conv2D 1024 (1,1) (1,1) N 0.2 LReLU
Conv2D 1024 (1,1) (1,1) N 0.2 LReLU
Conv2D 1 (1,1) (1,1) N 0.5 Sigmoid

Table 6: Architecture for Morpho-MNIST Discrimina-
tor. Dx, Dz and Dxz are the discriminator components to
process the image x, the latent variable z and the output of
Dx and Dz concatenated, respectively.



D.2. CelebA
Tables 7, 8 and 9 show the Generator, Encoder and Dis-

criminator architectures respectively for generating CelebA
counterfactuals.

Layer F K S BN D A

Conv2DT 512 (4,4) (1,1) Y 0.0 LReLU
Conv2DT 256 (7,7) (2,2) Y 0.0 LReLU
Conv2DT 256 (5,5) (2,2) Y 0.0 LReLU
Conv2DT 128 (7,7) (2,2) Y 0.0 LReLU
Conv2DT 64 (2,2) (1,1) Y 0.0 LReLU
Conv2D 3 (1,1) (1,1) Y 0.0 Sigmoid

Table 7: Architecture for CelebA Generator

Layer F K S BN D A
Conv2D 64 (2,2) (1,1) Y 0.0 LReLU
Conv2D 128 (7,7) (2,2) Y 0.0 LReLU
Conv2D 256 (5,5) (2,2) Y 0.0 LReLU
Conv2D 256 (7,7) (2,2) Y 0.0 LReLU
Conv2D 512 (4,4) (1,1) Y 0.0 LReLU
Conv2D 512 (1,1) (1,1) Y 0.0 Linear

Table 8: Architecture for CelebA Encoder

Layer F K S BN D A
Dz

Conv2D 1024 (1,1) (1,1) N 0.2 LReLU
Conv2D 1024 (1,1) (1,1) N 0.2 LReLU
Dx

Conv2D 64 (2,2) (1,1) N 0.2 LReLU
Conv2D 128 (7,7) (2,2) Y 0.2 LReLU
Conv2D 256 (5,5) (2,2) Y 0.2 LReLU
Conv2D 256 (7,7) (2,2) Y 0.2 LReLU
Conv2D 512 (4,4) (1,1) Y 0.2 LReLU
Dx z

Conv2D 2048 (1,1) (1,1) N 0.2 LReLU
Conv2D 2048 (1,1) (1,1) N 0.2 LReLU
Conv2D 1 (1,1) (1,1) N 0.2 Sigmoid

Table 9: Architecture for CelebA Discriminator. Dx, Dz

and Dxz are the discriminator components to process the
image x, the latent variable z and the output of Dx and Dz

concatenated, respectively.

E. Morpho-MNIST Latent Space Interpola-
tions

We also plot latent space interpolations between pairs of
images sampled from the test set. Figure 8 shows that the
model has learned meaningful latent space representations
and the transitional images look realistic as well.

F. Morpho-MNIST Reconstructions
We qualitatively evaluate the inference model (Encoder)

by sampling images along with their attributes from the test

Figure 8: Morpho-MNIST Interpolations. The columns
on the extreme left and right denote real samples from the
test set and the columns in between denote generated im-
ages for the linearly interpolated latent space representation
z.

set and passing them through the encoder to obtain their la-
tent space representations. These representations are passed
to the generator which outputs reconstructions of the orig-
inal image. The reconstructions are showed in Figure 9.
Overall, reconstructions for Morpho-MNIST are faithful re-
productions of the real images.

Figure 9: Morpho-MNIST Reconstructions. Odd
columns denote real images sampled from the test set, and
even columns denote reconstructions for those real images.

G. Morpho-MNIST: Evaluating Label CFs
As shown in Figure 3, we empirically evaluated the

counterfactual generation on Morpho-MNIST by generat-
ing CFs that change the digit label for an image. To check
whether the generated counterfactual image corresponds to
the desired digit label, we use the output of a digit classi-
fier trained on Morpho-MNIST images. Here we provide
details of this pre-trained digit classifier. The classifier ar-
chitecture is shown in Table 10. The classifier converges
in approximately 1k iterations with a validation accuracy
of 98.30%. We then use the classifier to predict the labels
of the counterfactual images and compare them to the la-
bels that they were supposed to be changed to (target label).
Overall, 97.30% of the predicted labels match the target la-
bel. Since the classifier is not perfect, the difference be-



Layer F K S BN D A

Conv2D 32 (3,3) (1,1) N 0.0 ReLU
Conv2D 64 (3,3) (1,1) N 0.0 ReLU
MaxPool2D - (2,2) - N 0.0 -
Dense 256 - - N 0.5 ReLU
Dense 128 - - N 0.5 ReLU
Dense 10 - - N 0.5 Softmax

Table 10: Morpho-MNIST Label Classifier

tween the CF image’s (predicted) label and the target label
may be due to an error in the classifier’s prediction or due
to an error in CF generation, but this is minimal. We show
some images for which predicted labels do not match the
target labels in Figure 10. Most of these images are digits
that can be confused as another digit; for instance, the first
image in row 2 is a counterfactual image with a target label
of 9, but was predicted by the digit classifier as a 1.

Figure 10: Misclassified Counterfactuals. Counterfactual
images for Morpho-MNIST on which target label does not
match predicted label.

H. DeepSCM Implementation on CelebA
Since DeepSCM was not implemented on CelebA, we

reproduce their method based on their available code and
choose an appropriate VAE architecture for CelebA data.
Tables 11 and 12 show the Decoder and Encoder archi-
tectures respectively for generating CelebA counterfactuals.
Specifically, we use Equation A.4 from the DeepSCM paper
[32] to model the image x. We use a conditional VAE with
a fixed variance Gaussian decoder to output a bias to fur-
ther reparametrize a Gaussian distribution using a location-
scale transform (as stated in [32]). In our implementation of
DeepSCM, we do not need to model the attributes a using
Normalizing Flows, since the attributes independently influ-
ence the images in the underlying SCM in case of CelebA
(as explained in Section 5). We set the latent dimension
to 256, use the Adam optimizer [22] with a learning rate

of 0.0005 to train the conditional VAE with a batch size
of 128. Similar to Pawloski et al. [32], we adopt a con-
stant variance assumption and set log σ2 = −5. We also
preprocess the images by scaling them between [0,1); the
preprocessing flow in Equation A.4 in [32] is hence altered
by normalizing its outputs between [0,1).

Layer F K S BN D A

Dense 4096 - - N 0.0 Linear
Conv2DT 256 (3,3) (2,2) Y 0.25 LReLU
Conv2DT 128 (3,3) (2,2) Y 0.25 LReLU
Conv2DT 64 (3,3) (2,2) Y 0.25 LReLU
Conv2DT 32 (3,3) (2,2) Y 0.25 LReLU
Conv2D 3 (3,3) (1,1) Y 0.0 Sigmoid

Table 11: Architecture for CelebA DeepSCM Decoder

Layer F K S BN D A
Conv2D 32 (3,3) (2,2) Y 0.25 LReLU
Conv2D 64 (3,3) (2,2) Y 0.25 LReLU
Conv2D 128 (3,3) (2,2) Y 0.25 LReLU
Conv2D 256 (3,3) (2,2) Y 0.25 LReLU
Conv2D 256 (1,1) (1,1) N 0.0 LReLU

Table 12: Architecture for CelebA DeepSCM Encoder

I. Additional DeepSCM vs ImageCFGen
CelebA Counterfactuals

In addition to Figure 5 of the main paper, we provide ad-
ditional counterfactual images obtained using ImageCFGen
and DeepSCM in Figure 11. As observed in Section 5.2, the
counterfactuals generated using ImageCFGen are more true
to the corresponding intervention than DeepSCM.

J. Additional ImageCFGen CelebA Counter-
factuals

Figure 12 shows more CF examples obtained using Im-
ageCFGen. Note how the CF image is different w.r.t. the
base (reconstructed) image only in terms of the intervened
attribute. Consequently, if the attribute in the base image
is already present, the CF image is exactly the same as the
original image. For instance, (Ib) and (Ig) in Fig 12 are
exactly the same since (Ia) already has brown hair, hence
intervening on brown hair has no effect on the hair color.

K. Ablation Study of Style-Based Generator
and Cyclic Cost Minimization

We plot the reconstructed images of real images, pro-
duced by ALI, StyleALI (ALI with style based generator)
and Cyclic Style ALI (Style ALI with Cyclic Cost Mini-
mization) in Figure 13. We observe that using a style-based
generator significantly improves the quality of the generated



Figure 11: ImageCFGen and DeepSCM Counterfactu-
als. (a) denotes do (black hair = 1) and (b) denotes do (black
hair = 1, pale =1). Similarly (c) denotes do (blond hair = 1);
(d) denotes do (blond hair = 1, pale = 1); (e) denotes do
(brown hair = 1); (hf denotes do (brown hair = 1, pale = 1);
and (g) denotes do (bangs = 1).

Figure 12: CelebA Counterfactuals. Column (a) across all
rows I, II, III, IV represent the real image and (b) represents
the reconstructed image. (c) denotes do (black hair = 1)
and (d) denotes do (black hair = 1, pale =1). Similarly (e)
denotes do (blond hair = 1); (f) denotes do (blond hair = 1,
pale = 1); (g) denotes do (brown hair = 1); (h) denotes do
(brown hair = 1, pale = 1); and (i) denotes do (bangs = 1).

images and applying the cyclic cost minimization algorithm
on top of it improves reconstruction of the real image.

L. Human Evaluation of Counterfactuals
To quantitatively evaluate the counterfactuals, we asked

human evaluators to pick the “edited” (counterfactual) im-
age from 10 randomly sampled pairs of reconstructed and

Figure 13: Ablation Study. Row (I) consists of real images,
(II) consists of reconstructions generated by Cyclic Style
ALI (CSALI), (III) Style ALI reconstructions and (IV) has
ALI reconstructions

counterfactual images to human evaluators and asked them
to pick the edited (counterfactual) image. Overall, we got
66 responses resulting in an average score of 5.15 correct
answers out of 10 with a standard deviation of 1.64, indicat-
ing that the generated counterfactual distribution is percep-
tually indistinguishable from the reconstructed one. Figure
14 shows sample questions on the form circulated for our
human evaluation studies. For each question, the user chose
one of two images that seems edited to the human eye. If
the counterfactual can fool human perception, it indicates
better performance of counterfactual generation.‘

Figure 14: Edited or Not? Sample questions on the form
circulated for human evaluation studies



M. Attractive Classifier Architecture
We describe the architecture and training details for the

attractiveness classifier whose fairness was evaluated in
Figure 6. The same classifier’s output was explained in Fig-
ure 7. Attractive is a binary attribute associated with every
image in CelebA dataset. The architecture for the binary
classifier is shown in Table 13. We use the Adam optimizer

Layer F K S BN D A
Conv2D 64 (2,2) (1,1) Y 0.2 LReLU
Conv2D 128 (7,7) (2,2) Y 0.2 LReLU
Conv2D 256 (5,5) (2,2) Y 0.2 LReLU
Conv2D 256 (7,7) (2,2) Y 0.2 LReLU
Conv2D 512 (4,4) (1,1) Y 0.5 LReLU
Conv2D 512 (1,1) (1,1) Y 0.5 Linear
Dense 128 - - N 0.5 ReLU
Dense 128 - - N 0.5 ReLU
Dense 1 - - N 0.5 Sigmoid

Table 13: Architecture for the Attractiveness Classifier

with a learning rate of 10−4, β1 = 0.5 and a batch size of
128 for training the model. For the LeakyReLU activations,
α = 0.02. The model converges in approximately 20k iter-
ations. All weights are initialized using the Keras truncated
normal initializer with mean = 0.0 and stddev = 0.01.
All biases are initialized with zeros.

N. Bias Mitigation Details
We now present more details of our bias mitigation re-

sults in continuation to the discussion in Sec 5.4 of the main
paper. To pick the optimal model while finetuning the clas-
sifier with the proposed bias mitigation regularizer, we set
an accuracy threshold of 80% and pick the model with the
lowest bias. We use λ = 1.0 and use an Adam optimizer
with a learning rate of 10−4, β1 = 0.5 and a batch size of
128 for training the model.

Fair Classifier Biased Classifier

black h, pale 0.032 0.159
blond h, pale -0.041 0.077
brown h, pale 0.012 0.154

Table 14: Bias Values after Bias Mitigation. Lower bias is
better. Absolute bias values less than 5% are not considered
significant.

O. Complex Attribute SCM
Our method can also be utilized in the setting where the

attributes are connected in a complex causal graph structure,
unlike [7, 17]. We now conduct a fairness analysis w.r.t
age for the Attractive classifier, assuming that Young affects
other visible attributes like Gray hair.
Defining the Causal Graph. Fig 15 shows a potential causal
graph for the attribute Young. While we ignored the at-

Figure 15: Young Attribute-SCM. SCM that describes the
relationship between the attribute Young and the generated
image.

tribute Young in the previous experiments, we now propose
a SCM that describes the relationship between Young and
a given image, mediated by a few facial attributes. Among
the two demographic attributes, we choose Young over Male
since Young has some descendants that can be agreed upon
in general, whereas using Male would have forced us to ex-
plicitly model varying societal conventions surrounding this
attribute. For e.g., the SCM proposed by [23] describes a
causal relationship from gender to smiling and narrow eyes,
which is a problematic construct. For the attribute Young,
we specifically choose Gray Hair, Eyeglasses and Reced-
ing Hairline since it is reasonable to assume that older peo-
ple are more likely to have these attributes, as compared to
younger ones.

Learning the Attribute SCM. To learn the model parameters
for the SCM shown in Figure 15, we estimate conditional
probabilities for each edge between Young and the other at-
tributes using maximum likelihood over the training data, as
done in Bayesian networks containing only binary-valued
nodes [34]. This SCM in Figure 15, combined with the
SCM from Fig 2b that connects other facial attributes to the
image, provides us the augmented Attribute SCM that we
use for the downstream task of CF generation. Once the At-
tribute SCM is learned, the rest of the steps in Algorithm 1
remain the same as before. That is, based on this augmented
Attribute SCM, the counterfactuals are generated according
to the Eqn 1. For example, to generate a CF changing Young
from 1 to 0, the Prediction step involves changing the values
of gray hair, receding hairline and eyeglasses based on the
modified value of Young, according to the learned parame-
ters (conditional probabilities) of the SCM.

Fairness Analysis. We conduct a fairness analysis similar as
above, using the above attractiveness classifier. We generate
counterfactuals for Young = 1 and Young = 0 according to
the causal graph in Fig 15. The analysis is showed in Fig
16; we observe that the classifier is evidently biased against
Young = 0 and biased towards Young = 1, when predicting
attractive=1. We quantify this bias using Eqn 5. Using
counterfactuals that change Young from 1 to 0, we get a
negative bias of -0.136 and for changing Young from 0 to 1,



Figure 16: Fairness Analysis for Complex SCM. Coun-
terfactual images that change Young from 1 to 0 (left), have
a lower prediction score from the attractiveness classsifier,
while counterfactual images that change Young from 0 to 1
(right), have a slightly higher prediction score.

we get a positive bias of 0.087 which are both substantial
biases assuming a threshold of 5%. Therefore, given the
causal graph from Figure 15, our method is able to generate
counterfactuals for complex high-level features such as age,
and use them to detect any potential biases in a machine
learning classifier.

we acknowledge that there are many challenges in gen-
erating meaningful and realistic counterfactuals


