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1. Ablation Study

1.1. Active Learning Parameters

Tables 1 and 2 show the results of our experiments with
different combinations of αinit and βQ on UC Merced Land
Use Classification [9] and the DeepGlobe Land Cover Clas-
sification [1] datasets respectively. We vary both the pa-
rameters between 0.1 and 0.9 for both entropy and margin-
based sampling strategies for three different labeled ratios.
We found the best performing αinit and Q values to be 0.1
and 0.5 respectively. Overall we noticed out method to be
sensitive to changes in αinit and βQ as the average differ-
ence in the worst performing and best performing model
across all labeled ratios and sampling techniques is 4 mIoU
points for the UC Merced Land Use Classification Dataset
and 2.4 mIoU points for the DeepGlobe Land Cover Clas-
sification Dataset.

1.2. Network Capacity of Active Learner

Tables 3 and 4 show the results of our experiments with
different backbone networks on UC Merced Land Use Clas-
sification [9] and the DeepGlobe Land Cover Classification
[1] datasets respectively. We experiment with VGG-16 [6],
ResNet-50 [2] and ResNet-101 [2] which have different net-
work capacities. We found the best performing backbone
network to be ResNet-101 for the UC Merced Land Use
Classification dataset and ResNet-50 for the DeepGlobe
Land Cover Classification dataset. As shown by the results,
the image classification network’s capacity for the learner
is crucial in determining the quality of the selected sam-
ples. Any network with low capacity with respect to the
size of the dataset and the number of classes tends to under-
fit, while any network with a higher capacity than required
could overfit and detrimentally affect the downstream task’s
performance. We noticed our method to be sensitive to net-
works with different capacities as the average difference in
the worst performing and best performing model across all
labeled ratios and sampling techniques is 3.3 mIoU points
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Figure 1: Visualization of quantitative results for different
labeled ratios for the a) UC Merced Land Use Classification
Dataset [9] and, b) DeepGlobe Land Cover Classification
Dataset [1]

for the UC Merced Land Use Classification Dataset and 2.9
mIoU points for the DeepGlobe Land Cover Classification
Dataset. Notably, we see that in most cases, VGG-16 per-
formed significantly performed poorly across all labeled ra-
tios in both the datasets as compared to the ResNet-50 and
ResNet-101 models reinforcing the hypothesis that mod-
els with insufficient network capacity underperform at the
downstream task.



Active Learning Parameters 2% 5% 12.5%
αinit βQ Entropy Margin Entropy Margin Entropy Margin
0.1 0.1 0.381 0.358 0.423 0.450 0.484 0.497
0.1 0.5 0.398 0.36 0.456 0.48 0.494 0.546
0.9 0.9 0.352 0.353 0.411 0.421 0.478 0.478

Table 1: Ablation Study for the different Active Learning parameters on the UC Merced Land Use Classification Dataset [9]

Active Learning Parameters 2% 5% 12.5%
αinit βQ Entropy Margin Entropy Margin Entropy Margin
0.1 0.1 0.464 0.497 0.507 0.502 0.549 0.513
0.1 0.5 0.469 0.511 0.513 0.513 0.554 0.529
0.9 0.9 0.449 0.462 0.495 0.498 0.527 0.512

Table 2: Ablation Study for the different Active Learning parameters on the DeepGlobe Land Cover Classification Dataset
[1]

2. Quantitative Evaluation of Diversity
In this paper, we proposed a method which aims to select

the most diverse and representative set of samples to serve
as an initial labeled set of data for the semi-supervised net-
work. We empirically showed the success of the proposed
method on different datasets. In this section, we evaluate
the robustness of our method using statistical indices which
measure the diversity of the selected samples. To achieve
this, we choose two diversity indices which are frequently
used in ecological studies that measure species diversity, but
the same analysis can also be applied to measure diversity
of any set of random samples.

2.1. Shannon’s Diversity Index

The Shannon index [5] was developed from information
theory and is based on measuring uncertainty. Shannon’s
index accounts for both abundance and evenness of the sam-
ples present. Shannon index is defined in Equation 1:

H(x) = −
N∑
i=1

pi log pi (1)

In our case, each sample is a pixel. Hence, pi indicates
the probability that a given pixel belongs to class i. N in-
dicates the total number of classes that a given pixel can
belong to. Thus, we are measuring how diverse are the sam-
ples selected by the active learning method as compared to
samples selected randomly. Therefore, samples with a large
number of pixels from different classes that are evenly dis-
tributed are the most diverse. On the other hand, samples
that are dominated by pixels from one class are the least
diverse. We report the value of Shannon diversity index
for our baseline method averaged across our three experi-
ments with different random seeds and for samples selected
by both the active learning techniques. Intuitively, Shan-
non’s index quantifies the uncertainty in predicting the class

to which a given pixel belongs and hence a higher value of
Shannon diversity index indicates a more diverse set of sam-
ples.

Our results for Shannon’s diversity index are shown in
Tables 5 and 6 for the UC Merced Land Use Classification
[9] and DeepGlobe Land Cover Classification [1] datasets
respectively. We notice a strong correlation between the
mIoU values reported in the paper for the baseline and ac-
tive learning strategies and the values of the Shannon’s di-
versity index obtained for the respective experiments.

2.2. Simpson’s Diversity Index

Traditionally, Simpson’s Diversity Index [7] measures
the probability that two individuals randomly selected from
a sample will belong to the same species (or some category
other than species). We extend it to our use case to mea-
sure the diversity of the selected samples. To make it easier
and intuitive to understand the relevance of this index, we
use the inverse Simpson index. Thus, greater the value, the
greater the sample diversity. In this case, the index repre-
sents the probability that two individuals randomly selected
from a sample will belong to different species. Thus, the
inverse Simpson index is defined in 2:

D = 1−
∑

(n(n− 1))

N(N − 1)
(2)

where,
n = the number of pixels belonging to class i,
N = total number of classes that exist in the dataset.

Similar to Shannon’s index in Section 2.1, we report re-
sults on the UC Merced Land Use Classification [9] and
the DeepGlobe Land Cover Classification [1] datasets in
Tables 7 and 8 We show that both the active learning sam-
pling strategies used in this paper yield more diverse set of



2% 5% 12.5%
Backbone Entropy Margin Entropy Margin Entropy Margin
VGG-16 0.355 0.351 0.421 0.426 0.481 0.498

Resnet-50 0.371 0.354 0.434 0.452 0.489 0.524
Resnet-101 0.398 0.36 0.456 0.48 0.494 0.546

Table 3: Impact of different network architectures for the active learner in UC Merced Land Use Classification Dataset [9]
on mIoU values

2% 5% 12.5%
Backbone Entropy Margin Entropy Margin Entropy Margin
VGG-16 0.421 0.445 0.492 0.499 0.523 0.52

Resnet-50 0.469 0.511 0.513 0.513 0.554 0.529
Resnet-101 0.443 0.482 0.505 0.492 0.534 0.518

Table 4: Impact of different network architectures for the active learner in the DeepGlobe Land Cover Classification Dataset
[1] on mIoU values

Labeled Ratio(R) 2% 5% 12.5%
s4GAN [4] (Baseline) 1.96 ±

0.08
2.16 ±
0.02

2.14 ±
0.03

s4GAN + Entropy
(Ours)

2.10 2.20 2.22

s4GAN + Margin
(Ours)

2.08 2.22 2.25

Table 5: Shannon’s Diversity Index for the UC Merced
Land Use Classification Dataset [9] (Higher the better)

Labeled Ratio(R) 2% 5% 12.5%
s4GAN [4] (Baseline) 1.01 ±

0.04
1.16 ±
0.05

1.19 ±
0.14

s4GAN + Entropy
(Ours)

1.06 1.25 1.38

s4GAN + Margin
(Ours)

1.09 1.24 1.36

Table 6: Shannon’s Diversity Index for the DeepGlobe Land
Cover Classification Dataset [1] (Higher the better)

samples and show strong correlation with the mIoU values
reported on these datasets in the paper.

3. Discussion

3.1. Applicability of Our Method to Land Use Clas-
sification

The average number of semantic categories per scene
in the UC Merced and DeepGlobe Landuse Classification
datasets used in this paper is 3.39 and 2.51 respectively as
depicted by figure 2. This implies that a given scene from
the UCM dataset with a given image-level label will have

Labeled Ratio(R) 2% 5% 12.5%
s4GAN [4] (Baseline) 0.79 ±

0.03
0.83 ±
0.009

0.83 ±
0.008

s4GAN + Entropy
(Ours)

0.85 0.84 0.85

s4GAN + Margin
(Ours)

0.82 0.86 0.87

Table 7: Simpson’s Diversity Index for the UC Merced
Land Use Classification Dataset [9] (Higher the better)

Labeled Ratio(R) 2% 5% 12.5%
s4GAN [4] (Baseline) 0.55 ±

0.04
0.64 ±
0.01

0.65 ±
0.02

s4GAN + Entropy
(Ours)

0.58 0.73 0.71

s4GAN + Margin
(Ours)

0.62 0.71 0.68

Table 8: Simpson’s Diversity Index for the DeepGlobe Land
Cover Classification Dataset [1] (Higher the better)

3 or more different pixel-level labels(semantic categories).
Similarly, for the DeepGlobe dataset, we have about 2 or
more semantic categories per scene on an average. UCM
dataset has a total of 18 semantic categories and DeepGlobe
has 6 semantic categories. Thus, each satellite scene in the
UCM dataset has about 18% of all pixel level labels and
similarly each satellite scene in the DeepGlobe dataset has
about 42% of all pixel-level labels on an average. Figure 2
also shows us that about 90% of scenes in the UCM dataset
have more than 1 semantic category and similarly about
80% of scenes in the DeepGlobe dataset have more than
1 semantic category. This number if quite high when we
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Figure 2: (a) Average number of semantic categories per image-level category for UC Merced Land Use Classification
Dataset. (b) Percentage of images containing vs. number of pixel-level categories per image for UC Merced Land Use
Classification Dataset. (c) Average number of semantic categories per image-level category for DeepGlobe Land Cover
Classification Dataset. (d) Percentage of images containing vs. number of pixel-level categories per image for DeepGlobe
Land Cover Classification Dataset

compare this statistics with that in some generic standard
dataset. For instance, consider the COCO dataset [3]. Less
that 30% of the images in the COCO dataset have more than
1 semantic category. This tells us that the landuse scenes in
the domain of satellite imagery are inherently more diverse
and hence our method is highly applicable specifically for
land use classification in satellite images. We will get a
more diverse set of samples for satellite domain as com-
pared to using our method on generic datasets like COCO.

3.2. Suitability of s4GAN as our baseline

[4] propose to fuse the output of the s4GAN network
with another image classification-based network called
MLMT [8] during inference to reduce false positives. This
MLMT branch uses an image classification network to out-
put a confidence score for every category in the dataset.
This output is combined with the pixel level output of the
s4GAN network to reduce the number of false positives in
the segmentation network. Therefore, one major constraint
for using MLMT is that there should be a one-to-one corre-
spondence between the image-level and the pixel-level la-
bels. This would mean that the number of image-level cate-
gories should equal the number of pixel-level categories in

a dataset. However, this does not always hold in the case
of land use classification. An image-level label for land use
classification in a satellite scene indicates predominant us-
age of land. However, the same scene can have multiple
semantic categories. This prevents us from using MLMT as
done by [4] as our baseline for the task of land use classifi-
cation.

4. More Qualitative Evaluation
In this section, we provide more qualitative results from

our best performing active learning strategies and compare
them to our baseline for the UC Merced Land Use Classifi-
cation Dataset [9].

Figure 3 compares the performance of our method with
the baseline when trained with 2% labeled data. Row 1
shows how our method predicts the row of boats parked
on the harbor better than the baseline method. Rows 2, 3,
and 4 show that the baseline method gets confused between
multiple unrelated classes, whereas our method reasonably
predicts the correct classes.

Similarly, Figure 4 qualitatively compares the perfor-
mance of our method with the baseline when trained with
5% labeled data. Rows 1 and 4 show an example of our



a) Original Image b) Ground Truth c) Baseline d) Our Results

Figure 3: Qualitative Results from the UC Merced Land Use Classification Dataset for 2% labeled data

method predicting the complex shape of airplanes better
than the baseline method. Row 2 shows the baseline method
being confused between cars in a parking lot and boats
parked along a harbor, whereas our method predicts cars
parked close together correctly. Row 3 shows how the base-
line method completely misses the river and gets confused
between multiple classes, while our method predicts the
river reasonably well.

Finally, Figure 5 shows some qualitative examples of
how our method outperforms the baseline when trained
with 12.5% labeled data. Row 1 shows the baseline be-
ing confused between buildings and mobile homes, while
our method predicts buildings in a dense residential setting
more accurately. Rows 2 and 4 show our method predict-
ing the baseball diamond structures accurately without be-
ing confused between other classes. Similarly, as shown
by Row 3, our method predicts the contours of the airplane
better than the baseline.

References
[1] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan

Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia,
and Ramesh Raskar. Deepglobe 2018: A challenge to parse
the earth through satellite images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 172–181, 2018. 1, 2, 3

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 1

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 4

[4] Sudhanshu Mittal, Maxim Tatarchenko, and Thomas Brox.
Semi-supervised semantic segmentation with high-and low-
level consistency. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019. 3, 4

[5] Claude E Shannon. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948. 2

[6] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition, 2015. 1

[7] E Simpson. Medición de la diversidad. Nature, 163(688):1,
1949. 2

[8] Antti Tarvainen and Harri Valpola. Mean teachers are bet-
ter role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in neural
information processing systems, pages 1195–1204, 2017. 4

[9] Yi Yang and Shawn Newsam. Bag-of-visual-words and spa-
tial extensions for land-use classification. In Proceedings of
the 18th SIGSPATIAL international conference on advances
in geographic information systems, pages 270–279, 2010. 1,
2, 3, 4



a) Original Image b) Ground Truth c) Baseline d) Our Results

Figure 4: Qualitative Results from the UC Merced Land Use Classification Dataset for 5% labeled data

a) Original Image b) Ground Truth c) Baseline d) Our Results

Figure 5: Qualitative Results from the UC Merced Land Use Classification Dataset for 12.5% labeled data


