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In this supplementary material accompanying the paper
"LwPosr: Lightweight Efficient Fine Grained Head Pose
Estimation", details of following topics are given:

• Results for BIWI Dataset [3] using protocol P1

• Results for BIWI Dataset using protocol P2

• Sine Embedding

• Transformer Encoder Layer

• Orthogonality Loss

1. Qualitative Results on Protocol P1 with
BIWI dataset

Figure 1 illustrate the qualitative head poses on the test
set of BIWI dataset using protocol P1. In this protocol P1,
LwPosr is both trained with artificial images from 300W-
LP dataset and tested using BIWI dataset. Visualization
of comparison of ground truth head poses and predicted
head poses in the Figure 1 shows that LwPosr can efficiently
recognize the head poses on real head pose images even
when trained with artificially generated images. The results
with FSA-Net [7] are also compared which shows that the
LwPosr performs to the same level as FSA-Net but LwPosr
takes less parameters than FSA-Net.

2. Qualitative Results on Protocol P2 with
BIWI dataset

Figure 2 illustrate the qualitative head poses on the test
set of BIWI dataset using protocol P2. In this protocol P2,
LwPosr is both trained and tested using BIWI dataset. Vi-
sualization of comparison of ground truth head poses and
predicted head poses in the Figure 2 shows that LwPosr per-
forms efficiently as all three line vectors almost match with
the ground truth line vectors.

3. Sine Embedding

If position embedding is not present in the Transformer
Encoder, then it behaves like a permutation equivariant struc-
ture as shown in Eq. 1. The ρ is the sequence order or it is
any permutation for the pixel locations.

Encoder(ρ(input)) = ρ(Encoder(input)) (1)

The sine positional embeddings P are used to include the
order of sequence and spatial structure of the pixels in the
image. It is hypothesized that the horizontal and vertical
position information in an image is independent [2, 4, 6].

P(2i,py,:) = sin
(

2π ∗ py/(H ∗100002s/C
2 )
)
,

P(2i+1,py,:) = cos
(

2π ∗ py/(H ∗100002s/C
2 )
)
,

P(2i,:,px) = sin
(

2π ∗ px/(W ∗100002s/C
2 )
)
,

P(2i+1,:,px) = cos
(

2π ∗ px/(W ∗100002s/C
2 )
)
,

(2)

The original 2D-structure is retained for x and y-direction
with C/2 channels. In the Eq. 2, s = 0,1, ...,C/2− 1. px
and py are the position indexes for the x and y direction,
respectively. W , H are the width and height of the input.
They are further stacked and flattened to have a shape RA×C.
The input sequence is injected with the position embedding
before the self-attention is computed.

4. Transformer Encoder Layer

The Transformer Encoder layer [5, 6] used in the paper
can be defined as:

X′ =LayerNorm(MultiheadSelfAttention(X)+X) ,

X∗ =LayerNorm
(
FFN

(
X′
)
+X′

)
,

(3)

where X is the input sequence without the position embed-
ding. The querys and keys are computed when position
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Figure 1: LwPosr results for Protocol P1 when trained with 300W-LP and tested on BIWI dataset.

embedding is added to X. The output of the Transformer
Encoder layer is given by X∗. This X∗ is used as an in-
put sequence for the next encoder layer. The definitions of
Multihead Self-Attention and FFN are given in [5].

5. Orthogonality Loss

The orthogonality loss for head pose estimation is adapted
from [1]. They represent the head poses as described below.
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Figure 2: LwPosr results for Protocol P2 when trained and tested on BIWI dataset.

5.1. Representation of Rotation

As described in [1], 3D Rotation can be represented in
several ways such as Euler angle, axis-angle, quaternion, and

Lie algebra. The rotation is described using 4 dimensions.
In [8], it is shown that atleast 5 dimensions are needed for
continuous description of 3D rotation which means that the
above representations will have ambiguity problem. So, ro-



tation matrix becomes good option. It has nine elements and
can have orthogonality (determinant +1). Continuous spe-
cial orthogonal group SO(3) is formed by the set of rotation
matrices. It does not have problems related to ambiguity
and discontinuity. The next step is to choose metric which
can quantify the closeness between the two rotation matrices.
The Frobenius norm of rotation matrices can be used as mea-
sure. It is a square root of sum of squares of differences of the
elements of the rotation matrices. As used and shown in [1],
the three vectors of head pose can be considered equivalent
and corresponding to the three columns of rotation matrices.
For instance, at the starting reference point, the left, down
and front vectors are given as vl =

[
1,0,0

]T , vd =
[
0,1,0

]T

and v f =
[
0,0,1

]T respectively. So, the rotation matrix is ap-
plied to these vectors, the resulting vectors are v′l = Rvl = r1,
v′d = Rvd = r2 and v′f = Rv f = r3. There are two options that
can be used as a metric: (1) Frobenius norm- has a drawback
that it is not intiuitve and percievable to see the difference of
rotation angles by using the distance measure between the
endpoints of corresponding vectors; (2) the mean absolute
error of vectors (MAEV) [1], it is absolute error between the
ground truth vector and predicted vector and then mean of
the three error gives the final error.

Unlike [1], we used the combination of mean absolute er-
ror of angles (MAE) instead of using MAEV. But, we adapt
their orthogonality loss between vectors. Loss of orthogo-
nality between vectors is defined as:

Lortho = ∑
i6= j

mse(v̂iv̂ j,0) where i, j = 1,2,3 (4)

where v̂i is the predicted vector from the proposed net-
work. Total loss is given as by the Eq. 5

L = MAE +αLortho(v̂i, v̂ j) (5)

As in [1], we use α = 0.5. We also found out the α > 0.1
did not converge as smoothly as when α is small. From
ablations, it is clear that orthogonality loss did not improve
the performance of the network. Hence, it increased the com-
plexity of the optimization technique for the proposed ap-
proach. So, to keep the algorithm and optimization technique
simple, we use only MAE loss for our other experiments.

References

[1] Zhiwen Cao, Zongcheng Chu, Dongfang Liu, and Yingjie
Chen. A vector-based representation to enhance head pose es-
timation. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1188–1197, 2021.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.

[3] Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea Fos-
sati, and Luc Van Gool. Random forests for real time 3d face
analysis. International journal of computer vision, 101(3):437–
458, 2013.

[4] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Noam Shazeer, Alexander Ku, and Dustin Tran. Image trans-
former. In International Conference on Machine Learning,
pages 4055–4064. PMLR, 2018.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[6] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Transpose:
Towards explainable human pose estimation by transformer.
arXiv preprint arXiv:2012.14214, 2020.

[7] Tsun-Yi Yang, Yi-Ting Chen, Yen-Yu Lin, and Yung-Yu
Chuang. Fsa-net: Learning fine-grained structure aggregation
for head pose estimation from a single image. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1087–1096, 2019.

[8] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5745–5753, 2019.


