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The supplementary material is divided into two sections.
In section 1 we provide an in depth discussion on the em-
bedding spaces generated by the ensemble models, as well
as on several additional theoretical aspects of the proposed
diversification approaches. In section 2, we present addi-
tional experimental results and discuss implementation de-
tails, which include hard negative mining, structure of the
training batches, and the full details on hyper-parameters
used for training. These details, together with those men-
tioned in the main paper, allow full reproducibility of our
results.

1. Extended Discussion
1.1. Exploring Diversity via Embedding Space

To better understand the impact of the proposed diversifi-
cation methods on ensembles, we examine the internal rep-
resentation (embedding e(x) in the main paper) learned by
ensemble models. Throughout this section we analyze two-
model ensembles trained on CIFAR-10 [4] using OSCRL
and FDL methods with varying diversification parameter α.

1.1.1 OSCRL - in-distribution data embedding:

Three ensembles (two models) were trained by OSCRL
with a varying α ∈ {0, 0.1, 0.2}. Sup. Fig. 1 visualizes
the learned embedding spaces for the three pairs of mod-
els. The embeddings of in-distribution data samples are pro-
jected by the PCA [9] onto 2D and color-coded according
to their class (10 classes of CIFAR-10).

Qualitatively, one can see the changing degree of
similarity between the embedding spaces of ensemble
models as α grows. For α = 0, the embedding spaces of
the two models are practically a mirror of each other. For
α = 0.1, the spaces are of a similar topology, with some
color swaps. For α = 0.2, models produce embeddings
with different topology, with many color swaps.

∗This work was conducted under Amazon.

For quantitative analysis, we use the following
Mahalanobis-like metric to measure the distance between
two classes in the embedding space of the training data:
given two classes a, b, we calculate the mean embedding
(centroids) for each class x̄a, x̄b, and intra-class co-variance
matrices Sa and Sb, the distance between the two classes is
computed as

d(x̄a, x̄b) =
√
(x̄a − x̄b)(Sa + Sb)−1(x̄a − x̄b)

We compute the distances between the centroids of all
K=10 classes, yielding a pair-wise distance matrices D1

and D2 for the two ensemble models. Considering S =
|D1 −D2| we evaluate the change in centroid relations be-
tween models, and by extension the similarity between the
two embeddings, by measuring the mean of the matrix S.
Sup. Fig. 2 presents the similarity matrices S over vari-
ous α. As expected, the changes are more pronounced as α
grows: the mean value of the matrix S changes from 0.17
to 0.67 and 0.82, for α = 0, 0.1, 0.2, respectively.

1.1.2 FDL - distilled data embedding:

In this section we visualize the embedding space of ensem-
ble models trained using the Feature-Based Diversification
Loss (FDL). In FDL, we start with an existing model f1.
For each image x, we distil its features and encode them as
a corresponding xf1 image. Then, we train a model f2 in a
way that encourages it to disregard features learned by f1.
The f2 model is trained to correctly classify x’s by mapping
them into a separable, discriminative embedding space. At
the same time, f2 is being encouraged to map xf1 ’s into an
inseparable/indiscriminative subspace of the embedding.

Sup. Fig. 3 provides a visualization of the f1 and f2 em-
bedding spaces. The visualization is done by UMAP [5]
transform (as implemented by [6]) with 20 neighbors, us-
ing the Euclidean metric. We used this clustering method
here as it emphasizes the separation between classes and
the compactness of each class.



Figure 1. Higher α leads to shifts in closed-set embedding: Embedding spaces of three ensembles trained by OSCRL with α ∈
{0, 0.1, 0.2} (two models per ensemble). Points are color-coded according to their class. Centroids of each class are marked with a
circle. Compare the class (color) neighbourhood relations for the two models of each ensemble. For α = 0, the neighbourhood graph is
identical for the two models. As α grows, the neighbours are not preserved between the two models.

Figure 2. Higher α leads to greater difference between ensemble models embeddings: S = |D1−D2| matrices (where Di is the matrix
of pair-wise distances between centroids of K = 10 classes for model i = 1, 2) for α ∈ {0, 0.1, 0.2} (left to right). All color-values are
set on the same linear scale spanning over the extremal values in the figure [0, 2.1].



Figure 3. FDL embedding: A UMAP transform of the f1 (left) and f2 (right) embeddings. All f1-distilled images (circles with black
boundary) of all classes are clustered in a compact, inseparable subspace by f2.

The training set points are presented by circles with no
boundary, color-coded by their ground-truth class. In ad-
dition, points corresponding to embeddings of distilled im-
ages are shown as colored circles with a black edge. The
distilled images have been confirmed to be classified to the
same class as their source by f1, and are color-coded ac-
cordingly. The left image shows the embedding space of
f1. As UMAP reduces the dimensionality, while preserving
global distances, the distilled image points are indeed close
to their matching class in the f1 embedding. The right im-
age depicts the embedding of the same samples by f2. Re-
markably, the embeddings of distilled images of all classes
are now clustered in an inseparable, compact subspace.

We further substantiate our claim quantitatively. Let x
be a sample of class q(x) and xf1 be its distilled image.
Let us denote by c(q(x),f) the centroid of the class q(x)
in the emebdding space induced by model f . We mea-
sure the Mahalanobis distance between a distilled image to
its class centroid for the two ensemble models f1 and f2:
d(f1(xf1), c(q(x),f1)), d(f2(xf1), c(q(x),f2)). We then aver-
age these distances over all distilled images in the training
set to yield d̂f 1 and d̂f 2. We repeat this experiment twice
for ensembles trained with α = 0 (independently trained
models) and α = 0.1. For α = 0, d̂f 1 and d̂f 2 are ap-
proximately the same (around 4.82). For α = 0.1, we get
d̂f 1 = 4.82. This time, d̂f 2 = 8.03, almost 2 times higher
than d̂f 1.

1.1.3 OSCRL - out-of-distribution (OOD) samples em-
bedding:

We claim in the paper that the open set diversification loss
encourages ensemble models to disagree on inputs belong-
ing to unknown classes, resulting in accuracy increase on
open sets. In this section we provide some visual insights
to substantiate this claim. In Sup. Fig. 4, we depict the em-
beddings obtained by two ensembles, trained with α = 0
(top row) and α = 0.2 (bottom row). Each ensemble in-
cludes two models- f1 (left column in the figure) and f2
(middle column). We use UMAP here as well [5]. In-
distribution samples from the 10 classes are presented for
both f1 and f2 as color-coded filled circles with no bound-
ary. In addition, for f1, we depict the embeddings of out-
of-distribution samples (marked by dark blue circles with
black boundary) that f1 classifies as belonging to class 0
(dark blue). In the middle column, we visualize the embed-
dings of the same samples as encoded by f2. For each such
sample x, we color the embedding of f2(x) according to the
color of the class predicted by f2, and mark it with black
edge to differentiate it from the in-distribution embeddings.
Finally, in the right column, we present a histogram show-
ing the distribution of the classes predicted by f2 for these
samples. We can clearly see the reduction of the dark blue
bar when using α = 0.2 as opposed to α = 0, demonstrat-
ing that the open set diversification loss indeed managed to
decrease the agreement rate of the ensemble models on the
outliers mapped to class 0 via f1 (from 37.8% with α = 0
to 25.1% with α = 0.2).



Figure 4. Out-of-distribution (OOD) samples in the embedding space: Embedding spaces of two ensembles (each ensemble consists of
two models f1 and f2) trained by OSCRL with α = 0 (top row) and α = 0.2 (bottom row). Out-of-distribution (OOD) samples mapped
to the blue class by f1 are marked by circles with black boundary. The histogram on the right shows the distribution of classes predicted
by f2 for those OOD samples. One can see that f2 of the α = 0 ensemble agrees with f1 on the blue class on almost 40% of the samples.
For α = 0.2, on the other hand, the agreement rate of f2 and f1 is much lower (about 30%), and in about 20% of the cases f2 classified
OOD samples as ”brown”

.

1.2. Diversification via explainability

In this section we show how the diversity induced by the
OSCRL method encourages ensemble models to concen-
trate on different aspects/regions of the recognized object.
As in the previous section, we use the CIFAR-10 dataset for
demonstration and an ensemble of three models.

To figure out which image regions are more important for
a given model to perform a specific task, we use the popular
Grad-CAM selvaraju2017grad technique. Grad-CAM uses
the class-specific gradient information flowing into the final
convolutional layer of a CNN to produce a coarse localiza-
tion map of the important regions in the image.

Sup. Fig. 5 presents the importance maps for three en-
semble models (the three rows) trained using the OSCRL
with three different α values (the three columns). The im-
portance maps are with regard to the task of classification
of a car image as a car (correct classification was achieved
in all presented cases). See how the focus of attention of the
three ensemble models diverges to different car parts with
higher α.

We further experiment with Counterfactual Explana-
tions, as described in the Grad-CAM paper [10]. In
Sup. Fig. 6, we present the importance map for the clas-
sification of a horse image as a horse, along with the coun-
terfactual information encouraging it not to be classified as
a deer. The image was correctly classified as a horse by
all models. We can see the completely identical attention
maps for the horse classification over all models. However,
counterfactual maps are getting more and more diverse with
higher α. This visualization further confirms that OSCRL
loss encourages ensemble models to disagree on inputs be-
longing to unknown classes.

1.3. Open-set diversification loss term reduction

In the paper we defined the model similarity metric as the
”average pair-wise correlation between model predictions
on the wrong classes” (see Eq. 1). In OSCRL, this metric is
an explicit term in the loss function. Naturally, this leads to
a reduction in the value of this similarity metric along the



Figure 5. Higher α yields diverse car recognition ensembles: The activation of the final CNN layer is presented for each model of the
ensemble (the three rows). Highly important areas are marked in magenta. Ensembles of the same α are grouped by column. Visibly,
lower α produces consistent mappings, while higher α produces different explanations for the classification of the image.

OSCRL-based training process.

LCorr(x) =
1(
n
2

) ∑
1≤i<j≤n

Corr(fi \ q(x), fj \ q(x)) (1)

Surprisingly, even when this metric does not appear explic-
itly in the loss function, such as for Joint-based training or
for the baseline (two models trained independently), we ob-
served that it’s value, when measured after the training is
finalized, is lower than it’s value at the beginning of the
training process (see Sup. Fig. 7). The fact that we see this
phenomenon even in the baseline training may indicate that
the randomness in the training process results in models that
utilize different features, hence leading to a reduction in the
similarity metric. With Joint training, this phenomenon is
even stronger, indicating that ensemble of models trained
via Joint training benefits from diversification (as was also
discussed in the context of equation 4 in the paper).

1.4. Accuracy as a function of γ (percentage of out-
liers)

Fig. 3 in the main paper shows the graphs of ensemble
accuracy (acc) for open-set classification as a function of γ.
Peculiarly, for CIFAR-10 the acc(γ) functions are decreas-
ing, while for CIFAR-100 they are increasing. In order to
gain a more in-depth understanding of the asymptotic be-
haviour of ensemble models as a function of γ, we would
like to derive a formula for the slope of these graphs. For
an open-set classification problem with K classes, the accu-
racy acc depends on the accuracy of the system on each one
of the K + 1 classes (K ”in-distribution” classes and one
outlier class), and on γ. Let accin and accout be the overall

system accuracy on the first K (in-distribution) classes, and
the OOD class respectively. These quantities represent the
proportion of correctly classified classes (out of the entire
set of relevant classes). Finally, denote by Xin the amount
of in-distribution samples. Then the amount of OOD sam-
ples is γ ×Xin. Thus:

acc =
accin ×Xin + accout × γ ×Xin

Xin + γ ×Xin
(2)

We can now measure the impact of change in γ on the open-
set accuracy, while keeping Xin, accin and accout constant:

∂acc

∂γ
=

accout − accin
(1 + γ)2

(3)

Eq. 3 can explain the above-mentioned acc(γ) slope differ-
ences. Indeed, accin is expected to be lower for CIFAR-
100 (100-class problem is harder than 10-class). On the
other hand, accout is expected to be higher for CIFAR-100,
as it is less likely that ensemble models agree on the same
class (out of 100) for an outlier. Hence, for CIFAR-100 it is
more likely getting accout > accin, and, thus, an increasing
acc(γ). This also demonstrates the advantage of open-set
tailored diversification methods, that excel even more when
the proportion of OOD data is larger (due to relatively high
accout compared to other methods).

2. Implementation details and analysis
2.1. Implementation details - OSCRL and FDL

2.1.1 OSCRL Implementation details

As mentioned in the paper, the open-set ensemble diver-
sification methods we propose are motivated by the ques-



Figure 6. Higher α yields diverse counterfactual recognition ensembles: See caption of Supplementary Figure 5 for technical explana-
tion. In the upper part of the figure we show the Grad-CAM selvaraju2017grad generated importance map for the classification of a horse
sample as the horse class, which in this case is very consistent for all models. In the lower part of the figure, the counterfactual information
for classification as a deer is presented. Specifically, for α = 0 two of the models focus on the lack of antlers, the other on jaw shape. The
α = 0.2 ensemble models partition the image into distinctive and complementary areas.

tion ”how to train an ensemble to disagree on unknown
data/outliers if this data is unavailable during training?”

In OSCRL-based training, we use the ”wrong class”
probabilities generated by the models on valid input as a
proxy for model output on outliers. That is, we train on
known-class data, but request the inter-model disagreement
on wrong class probabilities only. To reiterate, the open-set
correlation reduction loss (OSCRL) is defined as:

OSCRL(x) =
1− α

n

n∑
i=1

LCE(q(x), fi(x)) +αLCorr(x),

with LCorr(x) as defined in Eq. 1 and

fi\q(x) = (f1
i (x), . . . , f

q(x)−1
i (x), f

q(x)+1
i (x), . . . , fn

i (x)).

In the above formulas, q(x) represents the ground-truth
class to which x belongs. As we have shown in the main
paper, OSCRL outperforms the competing methods on the
vast majority of the classification tasks. On recognition
tasks, it is usually ranked 2nd after FDL. In this section,
we would like to expand on OSCRL training process. As
can be seen in Eq. 1, the loss function contains terms of the
form

Corr(fi \ q(x), fj \ q(x)).



Figure 7. Similarity metric (Eq. 1) during the training process for
the baseline, Joint, and OSCRL-based training. The subscript near
labels is the value of α used for training.

If f
q(x)
i (x) is very large compared to the second largest

component in fi(x) (and same for fj), the elements of
fi \ q(x) and fj \ q(x) are small, making the task of mini-
mizing the correlation Corr(fi \ q(x), fj \ q(x)) very easy.
Thus when training with OSCRL, we employ hard negative
mining procedure, including the terms on the RHS of Eq. 1
only when

max
t ̸=q(x)

(f
q(x)
i (x)− f t

i (x))

is below a predefined threshold for at least one of the ensem-
ble models fi. We used the threshold 0.9 for experiments
with datasets that include small number of classes (MNIST,
SVHN, CIFAR-10), and a threshold of 0.2 for experiments
that included datasets with large number of classes (CIFAR-
100 and the recognition datasets). The rationale for choos-
ing the threshold was to eliminate cases in which the correct
class got a significantly higher probability compared to the
wrong classes. In practice, we have seen that the models
are not too sensitive to the thresholds, and the importance
of the mining process was in removing loss terms that are
very easy to minimize, hence not forcing the model to im-
prove on harder cases.

2.1.2 FDL Implementation details

The feature-based diversification training process is de-
scribed in the main paper and formally defined by Equations
(8) and (9). To reproduce our results it is important to treat
batch normalization carefully. Note that the loss function in
Equation (9) is based both on regular and distilled images.
These images are taken from two different distributions and
therefore they differ in their statistics. Since batch normal-

ization uses running statistics, it is important to make sure
the training batches consist of even mixture of regular and
distilled images.

2.2. Extended experimental results

This section provides complete results and implementa-
tion details for the experiments discussed in the main paper.

2.2.1 Classification

Table 1 presents extended experimental results on CIFAR-
10 and CIFAR-100 classification tasks (see Table 1 in the
main paper). The hyperparameters used for training are
taken from [11]. We also used their GitHub repository 1,
replacing only the loss functions with those we present in
the paper. For each one of the models and datasets, we use
SGD with batch size of 64. The initial learning rate of 0.1
is decreased by a factor of 10 at epochs 150 and 225, with
momentum 0.9. Results are averaged over 3 training trials
of random parameters initialization. The experiments were
performed on p3.2xlarge AWS instances.

As can be seen from Table 1, on CIFAR-10, OSCRL out-
performs the rest of the methods on a wide range of α’s. For
CIFAR-100, OSCRL and FDL dominate for the smaller net-
work (DN-64-6), while for mid-size network OSCRL is the
best, followed by FDL and Joint, with NCL being the last.
For the large network (DN-100-12), NCL outperforms the
rest. Note that for NCL, using α = 0.1 (and above) dete-
riorates the performance significantly. We believe that this
is due to the nature of cross-entropy, which is sensitive and
tends to ”explode” when all probability vector components
are small (hence, a low value for α is required).

2.2.2 Adversarial Attacks

An OOD input can be contextually interpreted as an ad-
versarial attack. Prior research shows that ensemble di-
versification translates well to general adversarial robust-
ness [7, 1]. Following [7], we conducted an evaluation of
OSCRL under the Fast Gradient Signed Method (FGSM),
Basic Iterative Method, and Projected Gradient Descent
attacks. We trained ensembles of DenseNets 82-8-8 on
CIFAR-10 using the OSCRL loss, with α ∈ [0, 0.7]. OS-
CRL consistently outperforms the baseline (α = 0) for all
tested attacks with significant accuracy increase, while the
accuracy degradation for the no-attack scenario is minimal
(see Table 2).

We use ensembles of 3 DenseNets 82-8-8 models,
trained on CIFAR-10, using OSCRL, in the same way as for
the classification task. The adversarial attacks were imple-
mented with a Pytorch version of CleverHans [8], using the

1https://github.com/grey-area/modular-loss-experiments



Table 1. Results on CIFAR Accuracy of ensembles trained using 5 different diversification approaches: independently trained models -
baseline, Joint training, NCL, OSCRL and FDL, with γ = 100%. Top table - CIFAR-100. Bottom table - CIFAR-10. Rows correspond
to different network architectures - three types of DenseNets. The best results within each row are in green, the best results within each
diversification approach are in blue.

CIFAR-100

architecture baseline Joint NCL FDL OSCRL
α= - .1 .25 .5 .02 .05 .07 .1 .02 .05 .1 .2 .02 .05 .1 .2

DN-64-6 60.9 61.8 60.9 62.8 61.2 59.8 62.5 50.0 63.5 63.6 62.8 64.2 62.0 62.2 62.4 64.2
DN-82-8 65.1 65.6 67.3 65.1 64.2 64.6 66.3 50.0 67.1 67.0 66.8 65.9 65.5 65.8 66.1 69.4

DN-100-12 65.4 68.3 68.0 69.6 69.9 68.3 63.3 50.0 66.3 67.7 66.0 66.5 67.8 69.0 68.1 68.7

CIFAR-10

architecture baseline Joint NCL FDL OSCRL
α= - .25 .5 .75 .02 .05 .02 .05 .1 .2 .05 .1 .15 .2

DN-64-6 73.8 73.5 74.0 75.8 72.7 73.7 72.7 72.6 73.0 73.5 75.4 75.8 77.9 77.5
DN-82-8 72.3 71.2 73.7 75.6 72.3 72.3 72.4 72.3 72.3 72.4 76.9 77.0 76.6 75.8

DN-100-12 71.2 71.6 73.3 75.5 71.1 72.6 71.9 71.6 71.5 72.2 76.9 78.2 78.2 78.4

Table 2. OSCRL improves robustness to adversarial attacks Accuracy of ensembles on CIFAR-10 under various attacks (rows). The
ensembles include 3 DenseNets(82-8-8) models trained with OSCRL, using different α’s (columns). Best results in green.

α

Attack Param 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
FGSM ϵ = 0.02 69.0 73.4 74.3 75.8 76.9 76.5 76.4 76.5

ϵ = 0.04 48.5 55.9 59.2 60.8 62.9 63.2 62.4 63.5
BIM ϵ = 0.01 75.0 75.0 76.9 77.0 77.9 77.4 77.2 77.1

ϵ = 0.02 46.4 50.1 54.6 56.9 58.1 57.8 58.8 58.6
PGD ϵ = 0.01 79.9 79.3 81.3 80.9 81.8 81.1 81.0 80.9

ϵ = 0.02 55.5 57.1 61.2 62.7 64.1 63.4 64.3 64.4
No Attack 95.5 95.4 95.1 94.7 94.5 94.3 94.4 93.6

parameters from [7]. OSCRL ensembles consistently im-
prove the robustness to adversarial attacks, while negligibly
degrading the accuracy on ”no attack”, even for a relatively
high baseline (α = 0) performance. Notice the optimal di-
versification factor α increases with the severity of attacks.

2.2.3 Person Re-Identification

To perform a fair comparison, for all compared diversifica-
tion methods, we used the same ResNet50 models trained
using an SGD optimizer with the following parameters:
batch-size of 32, number of epochs 60, starting learning rate
of 0.05 with the decay by a factor of 10 every 20 epochs.

Table 3 shows TTR for different FTRs, for various en-
semble diversification methods. It can be seen that for all
the FTR values, the FDL yields the best result, outperform-
ing the baseline by up to 30%. The OSCRL is the 2nd best
approach. Note that FDL outperforms all other methods
with a single α value (0.05), which yields the best accu-
racy for all FTRs. For other methods, the optimal α value

depends on the FTR target.
In addition we define the non-target agreement rate,

RANK − 1non, which measures the chance that, when re-
moving the correct identity from the gallery, the ensemble
models will agree on a wrong top identity. In general, the
lower this rate, the lower the chances to accept wrong non-
target probe, regardless of the individual match scores.

2.2.4 Face Recognition

All the ensembles were comprised of IR-SE50 nets (a
combination of IR-50 and SENet [2]) and trained with a
Stochastic Gradient Descent optimizer. We used the fol-
lowing parameters: batch-size of 240, 20 epochs, starting
learning rate 0.1 with weight decay of 5e-4 on parameters
that are not part of batch normalization. All models were
trained on p3.8xlarge AWS instances (which include 4 Tesla
V100-SXM2 GPUs).

Table 4 shows TTR for different FTRs, for various en-
semble diversification methods. FDL and OSCRL outper-



Table 3. Re-ID on Market-1501 [12] benchmark: Re-identification accuracy (TTR) at different FTR targets for the 5 ensemble diversifi-
cation approaches. The best results are in green, 2nd best in blue.

method Baseline NCL Joint FDL OSCRL
α = 0 0.01 0.05 0.1 0.2 0.5% 0.9% 0.05 0.2 0.5 0.7

FTR=1% 16.9% 20.1% 21.1% 20.2% 19.4% 19.2% 19.6% 22.2% 20.3% 20.0% 18.9%
FTR=10% 56.3% 54.7% 53.8% 55.5% 53.8% 55.6% 53.9% 61.3% 56.9% 56.6% 60.9%
FTR=20% 71.6% 69.0% 68.9% 71.2% 69.7% 69.8% 70.6% 76.8% 72.9% 72.9% 75.6%
FTR=30% 78.3% 76.4% 76.5% 78.3% 76.6% 77.7% 78.0% 83.5% 80.1% 79.5% 80.0%

RANK-1non 55.8% 32.1% 31.0% 39.2% 52.6% 51.9% 51.6% 42.1% 40.1% 32.3% 27.4%

Table 4. Face recognition on LFW [3] benchmark: Face recognition accuracy at FTR={0.5%, 1%} for 5 ensemble diversification
approaches (independently trained models (baseline), NCL, Joint training, FDL, and OSCRL) for various α. Cells with the best result for
each approach are colored in blue, and the best overall result in green.

method baseline NCL Joint FDL OSCRL
α= 0 .05 .1 .25 .5 .75 .9 .01 .05 .1 .1 .25 .5 .75 .9

TTR@FTR=1% 98.26 98.42 98.27 98.07 98.17 98.07 98.17 98.57 98.48 98.49 98.50 98.47 98.46 97.96 97.48
TTR@FTR=.5% 83.33 85.71 84.11 83.38 83.67 83.38 83.70 85.04 84.64 84.48 83.06 85.61 84.57 83.98 86.41
RANK − 1 99.83 99.82 99.83 99.84 99.81 99.84 99.81 99.81 99.82 99.80 99.83 99.83 99.81 99.79 99.71

form other methods and the relatively high baseline. The
RANK−1 score is the chance for the ensemble to agree on
the correct top identity when the target exists in gallery. All
models seem to achieve comparable performance. Addi-
tionally, the OSCRL model with high α shows some trade-
off between TTR@FTR%5 and RANK − 1 values.
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