
A. Method Details

Algorithm 1 Training procedure to compute S= and S �=

Require: k ∈ N≥2 , D = {Vi}ki=1

S= ← {}, S �= ← {}
for all i ∈ {1, . . . , k} do

Train fi on D \ Vi

for all (x,y) ∈ D do
// generate explanations on all dataset
φ

(i)
x ← Φ(fi,x)

end for
end for
for all i ∈ {1, . . . , k} do

for all (x,y) ∈ Vi do
for all j ∈ {1, . . . , k | i �= j} do

// fj was trained on x, fi was not
δ
(i,j)
x ← d(φ

(i)
x ,φ

(j)
x )

if fi(x) = y and fj(x) = y then
// both model are correct
S= ← S= ∪ {δ(i,j)x }

else if fi(x) = y or fj(x) = y then
// only one model is correct
S �= ← S �= ∪ {δ(i,j)x }

end if
end for

end for
end for
Return S=,S �=

B. Explanation methods
In the following section, the formulation of the different

methods used is given. As a reminder, we focus on a clas-
sification model f : Rd → RC where C is the number of
classes. We assume fc(x) the logit score (before softmax)
for class c. An explanation method provides an attribution
φ ∈ Rd for each input feature from a model and an input of
interest. Each value then corresponds to the importance of
this feature for the model results.

Saliency Map (SA) is a visualization techniques based
on the gradient of a class score relative to the input, indicat-
ing in an infinitesimal neighborhood, which pixels must be
modified to most affect the score of the class of interest.

ΦSA(x) =
���∂fc(x)

∂x

���

Gradient � Input (GI) is based on the gradient of a
class score relative to the input, element-wise with the input,
it was introduced to improve the sharpness of the attribution
maps. A theoretical analysis conducted by [3] showed that
Gradient � Input is equivalent to �-LRP and DeepLIFT

methods under certain conditions: using a baseline of zero,
and with all biases to zero.

ΦGI(x) = x�
���∂fc(x)

∂x

���

Integrated Gradients (IG) consists of summing the gra-
dient values along the path from a baseline state to the current
value. The baseline is defined by the user and often chosen
to be zero. This integral can be approximated with a set of m
points at regular intervals between the baseline and the point
of interest. In order to approximate from a finite number
of steps, we use a Trapezoidal rule and not a left-Riemann
summation, which allows for more accurate results and im-
proved performance (see [50] for a comparison). The final
result depends on both the choice of the baseline x0 and the
number of points to estimate the integral. In the context of
these experiments, we use zero as the baseline and m = 60.

ΦIG(x) = (x− x0)

� 1

0

∂fc(x0 + α(x− x0))

∂x
dα

SmoothGrad (SG) is also a gradient-based explanation
method, which, as the name suggests, averages the gradi-
ent at several points corresponding to small perturbations
(drawn i.i.d from a normal distribution of standard devia-
tion σ) around the point of interest. The smoothing effect
induced by the average help reducing the visual noise, and
hence improve the explanations. In practice, Smoothgrad
is obtained by averaging after sampling m points. In the
context of these experiments, we took m = 60 and σ = 0.2
as suggested in the original paper.

ΦSG(x) = E
ε ∼ N (0,Iσ2)

�∂fc(x+ ε)

∂x

�

Grad-CAM (GC) can be used on Convolutional Neural
Network (CNN), it uses the gradient and the feature maps
A(k) of the last convolution layer. More precisely, to obtain
the localization map for a class, we need to compute the
weights α(k)

c associated to each of the feature map activation
A(k), with k the number of filters and Z the number of fea-
tures in each feature map we define α(k)

c = 1
Z

�
i

�
j

∂fc(x)

∂A
(k)
ij

and
ΦGC = max(0,

�

k

α(k)
c A(k))

Notice that the size of the explanation depends on the size
(height, width) of the last feature map, a bilinear interpola-
tion is performed in order to find the same dimensions as the
input.

Grad-CAM++ (G+) is an extension of Grad-CAM com-
bining the positive partial derivatives of feature maps of a
convolutional layer with a weighted special class score. The



weights α(k)
c associated to each feature map is computed as

follow :

αc
k =

�

i

�

j

[

∂2fc(x)

(∂A
(k)
ij )2

2 ∂2fc(x)
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∂3fc(x)

(∂A
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]

RISE (RI) is a black-box method that consist of probing
the model with randomly masked versions of the input image
to deduce the importance of each pixel using the correspond-
ing outputs. The binary masks m ∼ M are generated in
a subspace of the input space, then upsampled with a bilin-
ear interpolation (once upsampled the masks are no longer
binary).

For ImageNet the number of masks was m = 4000, for
all the other datasets m = 1000.

ΦRI(x) =
1

E(M)N

N�

i=0

fc(x�mi)mi

C. Fidelity

Various fidelity metrics have been proposed that essen-
tially measure the correlation between input variables and
the drop in score when these variables are set to a baseline
state [40, 60, 38, 35]. In this work, we use µF from [6]:

µF = Corr
S⊆{1,...,d}

|S|=k

��

i∈S

Φ(f ,x)i,f(x)− f(x[xi=x̄i,i∈S])

�

(7)
Where f is a predictor, Φ an explanation function, S a
subset indices of x and x̄ a baseline reference. The choice
of a proper baseline is still an active area of research [52].

D. Considered measures for ReCo

As mentioned in when introducing ReCo, one would be
tempted to use directly a distance between distributions, we
briefly explain why we did not make this choice. In addition,
we detail an alternative measure, also based on balanced
accuracy, which gives consistent results.

A first intuition to measure the shift between the S= and
S �= histograms would be to consider the usual measures,
such as Kullback-Leibler (KL) divergence.

However, these distances are problematic in that the order
of the distributions actually matters more than the distance
between them, and these two measures can give a good score
even when the explanations are inconsistent Similarly, con-
sidering the 1-Wasserstein measure, we could construct an
inconsistent case by exploiting the invariance to the direction
of transport. For these reasons, we have therefore chosen a

Table 4. 1-Lipschitz model architecture for Cifar10.

Conv2D(48)
PReLU
AvgPooling2D((2, 2))
Dropout(0.2)
Conv2D(96)
PReLU
AvgPooling2D((2, 2))
Dropout(0.2)
Conv2D(96)
AvgPooling2D((2, 2))
Flatten
Dense(10)

classification measure, based on maximizing balanced accu-
racy. Nevertheless, one could also (observing similar results)
use the area under the curve (AUC) of the balanced accuracy,
such as :

ReCoAUC =
1

|S|
�

γ∈S
TPR(γ) + TNR(γ)− 1

E. Models
As mentioned in the paper, the models used are all (with

the exception of 1-Lipschitz networks) ResNet-18, with vari-
ations in size and number of filters used. Preserving the
increase of filters at each depth by the original factor (x2),
we took care to define for each dataset, a base filters value, as
the number of filters for the first convolution layer. Another
difference concerns the dropout rates used, indeed we had
dropout to improve the performance of the tested models.
Moreover, it should be remembered that there is no differ-
ence in architecture between the normally trained models
and the degraded models.

We report here the architecture of the models for each of
the datasets:
Fashion-MNIST base filters 26, Dropout 0.4 (92%, ±1%)
EuroSAT base filters 46, Dropout 0.25 (95%, ±1%)
Cifar10 base filters 32, Dropout 0.25 (78%, ±4%)
ImageNet ResNet50 (88%, ±3%)

E.1. Lipschitz models

The 1-Lipschitz models use spectral regularization on
the Dense and Convolutions layers. The architecture is as
described in Table 4.

E.2. Randomization test

For the randomisation of the model weights, we added
noise drawn from a normal distribution ε ∼ N (0, 0.5) to
each convolution layer, with the intensity of the degradation
impacting on the number of parameters affected by this
noise.



F. Distances tests

F.1. Spatial correlation

The first test concerns the spatial distance between two
areas of interest for an explanation. It is desired that the
spatial distance between areas of interest be expressed by the
distance used. As a results, two different but spatially close
explanations should have a low distance. The test consists
in generating several masks representing a point of interest,
starting from a left corner of an image of size (32 x 32)
and moving towards the right corner by interpolating 100
different masks. The distance between the first image and
each interpolation is then measured (see Fig. 6).
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Figure 6. Distances with moving interest point. The first line shows
the successive interpolations between the baseline image (left), and
the target image (right). The second line shows the evolution of the
distance between each interpolation and the baseline image.

The different distances evaluated pass this sanity check,
i.e. a monotonous growth of the distance, image of the
spatial distance of the two points of interest.

F.2. Noise test

The second test concerns the progressive addition of noise.
It is desired that the progressive addition of noise to an
original image will affect the distance between the original
noise-free image and the noisy image. Formally, with x the
original image, and ε ∼ N (0, Iσ2) an isotropic Gaussian
noise, we wish the distance d to show a monotonic positive
correlation corr(dist(x, x+ ε), ε).

In order to validate this prerogative, a Gaussian noise
with a progressive intensity σ is added to an original image,
and the distance between each of the noisy images and the
original image is measured. For each value of σ the operation
is repeated 50 times.

Over the different distances tested, they all pass the sanity
test : there is a monotonous positive correlation (as seen in
Fig. 7). Although SSIM and �2 have a higher variance.

One will nevertheless note the instability of the Dice score
in cases where the areas of interest have a low surface area,
as well as a significant computation cost for the Wasserstein
distance. For all these reasons, we chose to stay in line with
previous work using the absolute value of Spearman rank
correlation.
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Figure 7. Distances with noisy images. The first line shows original
noise-free image (left) and noisy copies computed by increasing σ.
The second line shows the distances between each noisy image and
the baseline image.

G. Additional results

Metrics IG SG SA GI GC G+ RI

µF 0.11 0.31 0.23 0.10 0.91 0.89 0.84
MeGe 0.58 0.46 0.45 0.55 0.72 0.82 0.56
ReCo 0.11 0.15 0.15 0.09 0.64 0.49 0.52

Table 5. Fidelity, Consistency and Generalizability score for
ResNet-18 models on Cifar10. Higher is better. The first and
second best results are respectively in bold and underlined.

Metrics IG SG SA GI GC G+ RI

MeGe 0.40 0.42 0.41 0.41 0.67 0.67 0.39
ReCo 0.31 0.18 0.18 0.23 0.59 0.64 0.34

Table 6. Consistency and Generalizability score for ResNet-18
models on Eurosat. Higher is better. The first and second best
results are respectively in bold and underlined.

Metrics IG SG SA GI GC G+ RI

MeGe 0.90 0.36 0.30 0.90 0.77 0.84 0.52
ReCo 0.37 0.13 0.10 0.37 0.52 0.32 0.37

Table 7. Consistency and Generalizability score for ResNet-18
models on Fashion-MNIST. Higher is better. The first and second
best results are respectively in bold and underlined.



Figure 8. Eurosat MeGe and ReCo scores for normally trained
models (first point from the left), as well as for progressively ran-
domized models and models trained with switched labels.

Figure 9. Fashion-MNIST MeGe and ReCo scores for normally
trained models (first point from the left), as well as for progressively
randomized models and models trained with switched labels.

Figure 10. S= and S �= for ResNet (left column) and 1-Lipschitz
models (right column) on Cifar10. As explained in this paper, a
clear separation between the S= and S �= histograms is a sign of
consistent explanations.


