
Multi-Domain Incremental Learning for Semantic Segmentation
Supplementary Material

Prachi Garg1 Rohit Saluja1 Vineeth N Balasubramanian2 Chetan Arora3

Anbumani Subramanian1 C.V. Jawahar1
1CVIT - IIIT Hyderabad, India 2IIT Hyderabad, India 3IIT Delhi, India

1prachigarg2398@gmail.com, 1rohit.saluja@research.iiit.ac.in, 2vineethnb@iith.ac.in,
3chetan@cse.iitd.ac.in, 1{anbumani, jawahar}@iiit.ac.in

In this supplementary material, we discuss more details
of our implementation as well as additional results and anal-
ysis which could not be included in the main paper owing
to space constraints.

A1. Ordering of domains
In this section, we explore more sequences of domain

ordering. We show results on BDD → CS and BDD →
CS → IDD in Table A1, on IDD → CS and IDD →
CS → BDD in Table A2. It is evident that there is a sig-
nificant drop in performance as the model is fine-tuned in
a naive manner. Our method has been designed keeping
in mind a good stability-plasticity trade-off, and our model
performs better than the FE and FT baselines.

A2. Implementation Details
A2.1. Architecture

We perform all experiments on the ERFNet [5] archi-
tecture as it allows the dynamic addition of our modules
seamlessly. This is shown in Figure A2. It uses a modi-
fied ResNet such that the standard 3×3 convolutional layer
is factorized into a stack of one 3 × 1 and one 1 × 3 con-
volutional layers. The convolutional layer before the first
residual block in the encoder is domain-shared. We use a
DS-BN layer before the first residual block in the encoder.
The DAU units are applied across the entire depth of the
network. Input image resolution for all datasets is resized
to 1024 × 512. Training on all experiments is performed
using a batch size of 6, momentum of 0.9 and weight decay
of 1e−4 for 150 epochs.

A2.2. Training Details

For our proposed model, we train the domain-specific
weights Wt using the standard learning rate of 5e-4 and
shared weights Ws using a dlr learning rate that is 100x
lower, i.e., 5e-6. After hyperparameter tuning, we find that

a regularization factor of λKLD = 0.1 works best. We com-
pute class balancing weights for each dataset and use the
respective weights for evaluation and validation. We now
discuss training protocols used for our baselines and com-
parisons.
Fine-tuning. (Section 4 in the main paper) This acts as a
standard IL baseline and forms our lower bound (Tables 1
and 2). To train the fine-tuning baseline, we add a randomly
initialized decoder head and fine-tune the shared encoder
and new decoder on the new dataset.
Multi-task (Joint Training). This baseline (Section 4, Ta-
bles 1 and 2 of main paper) helps us compare our incre-
mental settings against offline training. We train this model
simultaneously on all the domains. We have a single shared
encoder (with default ERFNet backbone) and multiple de-
coder heads, one for each domain. Training is done on the
datasets in alternate batches. Gradients in the shared en-
coder are updated for all batches, while gradients in decoder
are updated only on batches of their respective domains.
Learning rate for shared weights is the standard learning
rate divided by the number of domains.
RAP-FT model in Step 1. To train our proposed model in
step 1, we attach the domain-specific RAPs and domain-
specific BN layers to standard ERFNet and fine-tune all
model parameters (Ws, Wt) at the same standard learn-
ing rate of 5e-6. The Wts were randomly initialized while
theWs-es were initialized from an Imagenet pre-trained en-
coder. This refers to the 71.82% value in Table 1 of main
paper.
Training protocol used for comparison with existing
residual adapters (Table 6 of main paper). We compare
our method against the parallel residual adapter (RAP-I), se-
ries residual adapters (RAS-I) and reparametrized convolu-
tions for multi-task learning (RCM-I) methods. In all these
comparisons, the shared weights are frozen to Imagenet pre-
training. Since the shared weights are not trainable in any of
these models, mIoU on all previous domains remains con-



IL Step Step 1 Step 2: DA 6= DB ,YA 6= YB Step 3
BDD BDD → CS BDD → CS → IDD

Methods BDD ↑ ∆m% ↓ BDD ↑ CS ↑ ∆m% ↓ BDD ↑ CS ↑ IDD ↑ ∆m% ↓
Single-task 54.1 54.1 72.55 54.1 72.55 61.97
Multi-task 54.1 57.69 69.42 1.16% (↑) 58.13 69.37 59.37 0.38%
FT 54.1 0.0 25.4 70.43 27.99% 24.15 40.73 60.8 33.70%
FE 54.1 0.0 54.1 55.75 11.58% 54.1 55.75 46.56 16.01%
Ours 52.1 3.70 46.03 67.20 11.14 49.3 59.17 56.1 12.26%

Table A1: BDD → CS → IDD

IL Step Step 1 Step 2: DA 6= DB ,YA 6= YB Step 3
IDD IDD → CS IDD → CS → BDD

Methods IDD ↑ ∆m% ↓ IDD ↑ CS ↑ ∆m% ↓ IDD ↑ CS ↑ BDD ↑ ∆m% ↓
Single-task 61.97 61.97 72.55 61.97 72.55 54.1
Multi-task 61.97 60.85 71.11 1.90% 59.37 69.37 58.13 0.38%
FT 61.97 0.0 23.78 71.18 31.76% 25.65 44.77 53.72 32.53%
FE 61.97 0.0 61.97 58.25 9.86% 61.97 58.25 44.96 12.20%
Ours 62.60 1.02 (↑) 55.91 70.34 6.41% 52.24 60.39 51.03 12.71%

Table A2: IDD → CS → BDD

stant and the models can be trained independently of each
other, unlike our method where each subsequent IL step is
to be initialized from the previous IL step. 1 × 1 convo-
lutional domain-specific adapter layers are added in series
with existing residual layers, at each layer for RAS-I and
at each block for RCM-I model. We use random initializa-
tion for these RAS and RCM adapter layers while the Ws

parameters are frozen to Imagenet pre-trained initialization.
The topology of RAP, RAS and RCM blocks in our experi-
ments is illustrated in A3.
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Figure A1: Parameter growth analysis in our experiments.
The RAP, RAS and RCM residual adapters have the same
percentage of parameter growth (21.2%).

A3. Choice of Residual Adapter
In this section, we explain why we chose the parallel

residual adapter (RAP) from [4] instead of the series resid-

ual adapter (RAS) proposed in [3] or the reparametrized
convolution module (RCM) formalized in [2]. These works
originally proposed to train the domain-specific adapters on
each new domain in IL step t, while the shared convolutions
Ws remain frozen to an Imagenet pre-trained initialization.
In Table A3, we show experiments on the different types of
residual adapters, RCM, RAS and RAP trained using our
proposed optimization strategy.

In each of these models, we train both Ws and Wt only
on the domain-specific loss LCEt

using our initWt
and

dlr optimization strategy rather than freezing the shared
weights Ws. It can be seen that the parallel residual adapter
(RAP) is the best suited to our optimization and we select
this adapter over RCM and RAS. As it is added to an exist-
ing residual unit’s layer in parallel, RAP adapters can eas-
ily be added to off-the-shelf segmentation models with a
ResNet based backbone. For fair comparison, we use DS-
BN layers in all these models.

A4. Parameter Growth Analysis

In Figure A1, we show the increase in number of param-
eters with each incremental task for the different models.
The single-task model has a 100% growth in parameters.
Our model outperforms baselines and comparative methods
with only a 21.2% growth in parameters at each incremental
step.



IL Step Step 1 Step 2: DA 6= DB ,YA = YB Step 2: DA 6= DB ,YA 6= YB Step 3: DA 6= DB ,YA 6= YB
CS CS → BDD CS → IDD CS → BDD → IDD

Methods CS ↑ ∆m% ↓ CS ↑ BDD ↑ ∆m% ↓ CS ↑ IDD ↑ ∆m% ↓ CS ↑ BDD ↑ IDD ↑ ∆m% ↓
Single-task 72.55 NA 72.55 54.1 NA 72.55 61.97 NA 72.55 54.1 61.97 NA
RCM-FT-dlr 68.04 6.22% 55.88 53.76 11.80% 50.38 55.17 20.77% 46.84 37.78 55.54 25.33%
RAS-FT-dlr 71.19 1.87% 48.89 56.12 14.44% 43.13 57.7 23.72% 33.09 37.6 58.56 30.13%
RAP-FT-dlr (ours) 71.82 1.01% 57.30 57.15 7.69% 57.39 59.72 12.26% 50.79 48.86 58.9 14.88%

Table A3: Comparison of RAP, RAS and RCM models where shared weights Ws are fine-tuned using our proposed opti-
mization strategy.
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mIoU (↑) ∆m%(↓)

Single-Task 97.6 81.7 91.0 53.3 55.6 61.1 62.3 71.6 91.3 62.6 93.3 75.7 54.8 93.0 69.9 79.7 65.3 48.5 70.1 72.55

C
S→

B
D

D
C

ity
sc

ap
es FT 92.3 58.8 82.7 26.2 22.9 43.6 0.1 37.8 84.7 37.5 75.4 33.4 5.5 86.6 31.1 26.3 13.0 2.2 0.6 40.05 23.66

RAP-I [4] 96.5 74.4 87.1 40.2 43.3 47.7 51.0 61.7 89.1 54.4 89.5 65.8 37.5 88.9 30.7 43.7 15.2 30.0 63.9 58.43 16.90
Ours 96.9 77.6 88.3 45.0 48.2 56.4 48.7 62.3 88.4 53.9 88.0 68.8 45.7 91.1 62.6 64.5 59.8 30.6 62.4 65.21 3.55

C
S→

ID
D

C
ity

sc
ap

es FT 86.9 45.4 76.0 18.0 14.3 37.4 0.0 19.5 83.7 31.9 41.2 56.9 16.1 79.5 14.4 25.0 4.1 12.1 36.9 36.81 24.96
RAP-I [4] 96.5 74.4 87.1 40.2 43.3 47.7 51.0 61.7 89.1 54.4 89.5 65.8 37.5 88.9 30.7 43.7 15.2 30.0 63.9 58.43 18.61

Ours 96.6 77.5 88.4 40.1 47.0 56.3 48.6 61.2 89.5 48.2 86.1 70.4 47.6 90.6 57.6 64.0 60.1 32.9 64.4 64.58 7.80

C
S→

B
D

D
→

ID
D

C
ity

sc
ap

es FT 85.93 46.5 70.3 20.5 15.9 25.4 0.0 20.3 82.9 33.6 17.9 40.8 1.4 76.1 8.7 21.3 5.5 0.25 5.8 30.49 33.62
RAP-I [4] 96.5 74.4 87.1 40.2 43.3 47.7 51.0 61.7 89.1 54.4 89.5 65.8 37.5 88.9 30.7 43.7 15.2 30.0 63.9 58.43 17.02

Ours 96.2 74.5 87.4 30.4 41.6 50.4 32.9 49.2 87.9 47.1 85.3 67.9 38.9 90.5 54.2 64.9 52.2 12.6 60.6 59.19 10.39

B
D

D

FT 69.4 24.3 67.2 8.3 19.7 34.5 0.3 23.6 78.1 33.7 82.9 41.9 0.02 59.2 13.9 36.9 0.0 2.4 12.8 32.05 33.62
RAP-I [4] 91.8 52.8 80.6 20.4 32.9 42.8 46.8 42.9 82.4 43.3 93.3 53.2 0.0 86.0 33.1 45.1 0.0 21.9 11.1 46.34 17.02

Ours 92.5 59.4 82.7 22.2 40.0 48.0 32.9 39.2 83.0 43.1 93.3 57.4 18.8 85.3 40.5 51.0 0.0 19.5 34.7 49.66 10.39

Table A4: Numerical evaluation of catastrophic forgetting in our incremental learning settings in terms of class-wise IoU.
We show evaluation only on the validation sets of previous domains after incrementally learning on the subsequent domains.
Thus, in CS → BDD setting, we show forgetting on CS after learning on BDD. In CS → IDD, we show performance on
CS after learning on IDD. In CS → BDD → IDD, we show performance on both CS and BDD after learning on IDD.
While mIoU is computed on each domain, ∆m% is the overall IL performance score computed on all the domains the model
has learned so far.

A5. Class-wise Accuracy and Qualitative Anal-
ysis

In continuation to CS → BDD results, section 4 of
main paper, we present detailed class-wise performance
analysis. Classes like traffic light and traffic sign are visu-
ally different in German (CS) and American (BDD) roads
due to infrastructural differences in the appearance and lo-
cation of these objects [6]. The fine-tuning model com-
pletely forgets on traffic lights, Figure 4 (a) main paper.
Our model mitigates forgetting in all 19 classes, and re-
tains performance by a significantly large margin (≥ 30%)
on safety-critical classes such as traffic light, traffic sign,
person, rider, truck, bus and bicycle. Importantly, we ob-
serve that our proposed model has surpassed the single-task
model performance on BDD by 1.63%. We hypothesize
that this forward transfer is achieved since our model cap-

tures the domain-specific characteristics of the dataset dis-
tributions of CS and BDD in the domain-specific parame-
ters. Since the label spaces of the two domains are over-
lapping, domain interference is thus avoided. This helps
in achieving forward transfer wherein BDD has benefited
from the knowledge already learned for CS in the previous
step. Classes like rider, bicycle, motorcycle and train have
only a few hundred instance occurrences in the entire BDD
dataset as compared to other classes like cars and poles,
which occur at an average of 10 instances per image ([6]).
As such, the BDD dataset doesn’t have enough instances to
train well on these classes. The CS model when fine-tuned
on BDD hence performs poorly on rider, motorcycle and
bicycle (Figure 4(b), main paper). Our proposed method
outperforms even the single-task baseline on these classes:
person (1.36%), rider (16.52%), motorcycle (4.78%) and bi-



cycle (14.93%). These observations show that our model
has achieved a forward knowledge transfer for these classes
without having access to the old dataset.

We show more qualitative analysis in the form of T-SNE
plots in Figure A7. Table A4 shows the class-wise evalua-
tion of our proposed method, compared with the fine-tuning
baseline and the RAP-I method which uses shared weights
frozen from a model pre-trained on Imagenet. Note that
the RAP-I model has frozen shared weights and domain-
specific weights of previous domains were also frozen.
Hence, there is no change in performance of any previously
learned domain in RAP-I model. But it exhibits poor plas-
ticity towards new domain (please see Table 6 in the main
paper). The overall score ∆m% is indicative of the perfor-
mance of the model on new as well as previous domains.
Our model consistently improves performance on safety-
critical classes like person, rider, car, truck, motorcycle, bi-
cycle, bus and train by a large margin. Please see Figure
A4, where we compare output segmentation maps from our
proposed model with those of the fine-tuning and RAP-I-
vanilla methods on CS dataset after incrementally learning
CS → BDD. It is evident that our results show significant
improvement over the RAP-I-vanilla and fine-tuning meth-
ods and are closer to the ground truth maps. Our model
is able to achieve a forward knowledge transfer from CS
to BDD for the classes rider, bicycle, motorcycle, person
(which were abundant in CS but have fewer instances in
BDD). The above inference is validated in the output seg-
mentation maps in Figure A5. In Figure A6, we show con-
fusion matrices for the Cityscapes validation set after learn-
ing on BDD and IDD in step 2. It can be observed that our
model is more confident in its prediction of safety-critical
classes as compared to the fine-tuning baseline for the same.



(a) Original residual unit in ERFNet
Relu

BN Relu BNRelu Relu

Figure A2: Residual unit of the ERFNet encoder [5]. The 3× 3 convolutional layer in the original ResNet [1] is replaced by
a stack of 3× 1 and 1× 3 layers with a ReLU in between.

Figure A3: Modified residual adapter units as used in our experiments in Sec 5. The green layers are the shared layers w1,
w2 in our DAU. Domain-specific layers in blue. The RAP, RAS and RCM layers are all 1 × 1 convolutional layers. They
are specific to their respective domains, we have shown domain-specific layers for a single domain for simplicity. (a) RAP:
[4] This is detailed illustration of our DAU unit. (b) RAS: [3] This is the series residual adapter. (c) RCM: [2] This series
residual adapter is designed for multi-task incremental learning on tasks like human parts detection, edge detection, etc. We
compare our method against the RAS and RCM adapters. Domain-specific Batch Normalization is used in all three adapters
for a fair comparison.



Validation Image Ground Truth OursFine-Tuning RAP-I

Figure A4: Semantic segmentation of sample scenes extracted from the Cityscapes validation set after the CS model has
been incrementally trained on BDD dataset (after CS → BDD). This shows the performance on previous domain after the
subsequent incremental step. The fine-tuning model undergoes catastrophic forgetting and performs poorly. Our model is
able to mitigate forgetting by a large extent as seen in these samples.



Validation Image Ground Truth Ours Single-Task 

Figure A5: Semantic segmentation of sample scenes extracted from the BDD validation set after the CS model has been
incrementally trained on BDD dataset (after CS → BDD). Note that our model performs better than the single-task baseline
for the classes rider, person, motorcycle, bicycle. This is called forward transfer in incremental learning. In the 1st row, our
model is able to clearly identify the rider on top of a bicycle whereas, the single-task baseline marks that as a person. In the
second row, the single-task model marks a motorcycle as bicycle while our model is able to correctly identify the motorcycle.
Similarly, persons and riders are more clearly segmented by our model.



Ours Fine-Tune

Ours Fine-Tune

(a) CS to BDD

(b) CS to IDD

Figure A6: Confusion matrices plotted for CS validation set (a) After incrementally learning from CS → BDD, (b) After
incrementally learning from CS → IDD.



(a) Fine-tuning (b) Ours
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Figure A7: T-SNE plots, similar to Figure 5 of main paper
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