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1. Supplementary Material Outline
The supplementary material is organized as follows: in

the present file, the following topics are covered:

• MovingFashion additional details (Sec. 2): Addi-
tional details on the collection and creation of the Mov-
ingFashion dataset;

• SEAM Match-RCNN computational complexity
(Sec. 3): Computational complexity of SEAM Match-
RCNN;

• Additional experiments (Sec. 4): Additional results,
certifying the superiority of SEAM Match-RCNN
w.r.t. state-of-the-art single image street-to-shop ap-
proaches and their natural extensions, dealing with
multiple street images as input. This is complementary
to Table 2 and Table 6 of the main paper, where SEAM
Match-RCNN is compared against the native multi-
image approaches NVAN [4], VKD [5], MGH [8],
Asymnet [1] and extensions of the Match-RCNN [2];

• Future perspectives (Sec. 5): Future perspectives of
our work, motivating further research on the video-to-
shop challenge and on our new dataset MovingFashion
in particular.

The videos.zip file1 contains videos (mp4 codec)
where the analysis of attention scores computed on some
MovingFashion sequences is reported. This gives an in-
terpretation of high and low attention values, corroborating
what was written in Sec. 5.3 of the main paper: high atten-
tion comes when clothing items are captured without (auto)
occlusions on full body shots or when they are zoomed,
showing their entire shape, possibly portraying discrimina-
tive details (sharp logos for example).

*indicates equal contribution
1publicly available here https://bit.ly/3uKmjhh

2. MovingFashion Additional Details
2.1. Image and video collection

In this section we give further details on the process of
data collection and annotation of Moving Fashion.

Regarding the data collected from the Net-A-Porter web-
site, the data labeling was a long, yet linear process, the only
issue being the removal of classes not in the DeepFashion2
taxonomy, in particular shoes (deserving of a specific fash-
ion taxonomy) and jewelry (due to the lack of a shared and
widely accepted aesthetical taxonomy). For the remaining
classes, the association to the specific DF2 taxonomy was
direct.

Plenty more work was required for the data downloaded
from Instagram. In order to to download the data, the In-
staloader2 tool was employed. We manually selected a list
of hashtags and profiles with a lot of content, i.e. a lot of
videos paired with fashion products for sale. Through the
use of the tool, we downloaded posts containing videos only
based on the previously mentioned hashtags and profiles.
The layout of these videos was standard for the vast major-
ity of them: the frame was divided vertically in two parts,
one with just a still picture of the shop product and one with
the video itself.

We manually annotated these videos by following these
steps:

• We checked that the product actually appears in the
video, since in some cases the item never appears or
appears very briefly in the frame; sometimes the item
is in a different color than the one in the shop image.

• We drew a bounding box around the area of the shop
item(s), taking care to include as few other items as
possible.

2https://instaloader.github.io/



Method MovingFashion Regular-MovingFashion Hard-MovingFashion
T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20

SFM-First 0.20 0.43 0.52 0.63 0.21 0.44 0.53 0.64 0.16 0.41 0.52 0.62
SFM-1qrt 0.25 0.53 0.66 0.77 0.29 0.58 0.71 0.82 0.15 0.37 0.51 0.63
SFM-Median 0.23 0.48 0.61 0.75 0.26 0.53 0.66 0.79 0.17 0.33 0.47 0.65
SFM-3qrt 0.21 0.47 0.60 0.72 0.24 0.53 0.66 0.77 0.13 0.29 0.42 0.57
SFM-Last 0.11 0.31 0.41 0.53 0.14 0.35 0.46 0.58 0.05 0.18 0.27 0.36
EPHN-First (2020) [7] 0.15 0.34 0.44 0.53 0.16 0.36 0.46 0.55 0.11 0.27 0.37 0.47
EPHN-1qrt 0.24 0.45 0.55 0.65 0.28 0.51 0.62 0.72 0.13 0.24 0.32 0.42
EPHN-Median 0.27 0.49 0.58 0.66 0.32 0.57 0.67 0.74 0.10 0.24 0.32 0.42
EPHN-3qrt 0.24 0.47 0.55 0.65 0.29 0.55 0.64 0.74 0.09 0.21 0.29 0.40
EPHN-Last 0.17 0.33 0.41 0.49 0.20 0.39 0.47 0.56 0.07 0.15 0.19 0.27
KPM-First (2019) [6] 0.19 0.40 0.51 0.61 0.22 0.45 0.56 0.67 0.09 0.26 0.33 0.45
KPM-1qrt 0.27 0.48 0.60 0.71 0.32 0.56 0.69 0.80 0.12 0.24 0.33 0.45
KPM-Median 0.24 0.48 0.59 0.69 0.27 0.55 0.67 0.78 0.12 0.25 0.35 0.43
KPM-3qrt 0.23 0.46 0.56 0.69 0.27 0.53 0.65 0.76 0.10 0.22 0.28 0.39
KPM-Last 0.16 0.35 0.45 0.55 0.20 0.41 0.53 0.65 0.05 0.14 0.19 0.23
SEAM Match-RCNN 0.49 0.80 0.89 0.94 0.55 0.86 0.94 0.97 0.30 0.62 0.76 0.87

Table 1. SEAM Match-RCNN retrieval results on MovingFashion compared with Single-frame approaches. Note: T-K means Top-K
Accuracy.

Method MovingFashion Regular-MovingFashion Hard-MovingFashion
T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20 T-1 T-5 T-10 T-20

Max Confidence 0.29 0.59 0.72 0.83 0.31 0.63 0.76 0.86 0.21 0.46 0.60 0.71
Max Matching 0.26 0.60 0.74 0.85 0.29 0.65 0.79 0.89 0.17 0.44 0.58 0.74
Average Match-RCNN [1] 0.39 0.73 0.84 0.91 0.43 0.79 0.88 0.94 0.24 0.56 0.70 0.81
Average Descriptor 0.37 0.72 0.86 0.93 0.42 0.78 0.90 0.95 0.21 0.57 0.75 0.85
EPHN-MaxConf (2020) [7] 0.22 0.43 0.55 0.65 0.26 0.50 0.61 0.71 0.10 0.22 0.34 0.44
EPHN-MaxMatching 0.35 0.59 0.67 0.74 0.42 0.68 0.76 0.81 0.14 0.32 0.41 0.52
EPHN-AvgMatching 0.31 0.55 0.64 0.73 0.37 0.64 0.73 0.81 0.11 0.28 0.37 0.48
EPHN-AvgDescriptor 0.22 0.43 0.52 0.61 0.26 0.49 0.58 0.68 0.10 0.24 0.33 0.43
KPM-MaxConf (2019) [6] 0.25 0.47 0.57 0.68 0.30 0.54 0.65 0.77 0.11 0.25 0.32 0.43
KPM-MaxMatching 0.30 0.54 0.66 0.75 0.36 0.61 0.73 0.82 0.13 0.32 0.42 0.53
KPM-AvgMatching 0.34 0.58 0.68 0.77 0.40 0.68 0.78 0.86 0.15 0.28 0.38 0.48
KPM-AvgDescriptor 0.34 0.58 0.69 0.77 0.40 0.68 0.78 0.86 0.15 0.28 0.38 0.48
SEAM Match-RCNN 0.49 0.80 0.89 0.94 0.55 0.86 0.94 0.97 0.30 0.62 0.76 0.87

Table 2. SEAM Match-RCNN retrieval results on MovingFashion compared with Multi-frame approaches. Note: T-K means Top-K
Accuracy.

• We drew another bounding box around the area of the
video.

Using these annotations we crop the street videos and shop
images. This results in pairings, where in some cases we
have more than one shop item associated with a street video.

Next, we dealt with duplicates of shop products. In some
cases the same product is showcased in multiple videos by
different users, but fortunately, the shop image used in such
videos is the same. We leveraged this fact to perform a du-
plicate search for all the shop images. Products that were
found to be duplicates were merged, creating pairings where

for one shop product multiple videos are associated. To
perform this search, for each product we searched for du-
plicates using a pre-existing tool3 that employs Perceptual
Hash. However we found out that in order to have a very
high recall, this process also includes a lot of false positives.
To perform a more thorough search, we tried an Image Reg-
istration technique using the RANSAC algorithm between
each shop image and the duplicate candidates found us-
ing the tool. We tried to estimate a Similarity Transform,

3https://github.com/umbertogriffo/
fast-near-duplicate-image-search



Method MultiDeepFashion2
T-1 T-5 T-10 T-20

Max Confidence 0.19 0.44 0.54 0.66
Max Matching 0.14 0.45 0.61 0.75
Average Match-RCNN [1] 0.22 0.49 0.63 0.74
Average Descriptor 0.20 0.48 0.60 0.71

EPHN-MaxConf (2020) [7] 0.11 0.19 0.24 0.29
EPHN-MaxMatching 0.11 0.21 0.26 0.33
EPHN-AvgMatching 0.16 0.29 0.34 0.41
EPHN-AvgDescriptor 0.12 0.22 0.27 0.33

KPM-MaxConf (2019) [6] 0.09 0.20 0.25 0.30
KPM-MaxMatching 0.08 0.16 0.21 0.28
KPM-AvgMatching 0.10 0.20 0.25 0.32
KPM-AvgDescriptor 0.13 0.25 0.33 0.40

SEAM Match-RCNN 0.28 0.54 0.66 0.76

Table 3. SEAM Match-RCNN retrieval results on MultiDeep-
Fashion2 compared with Multi-frame approaches. Note: T-K
means Top-K Accuracy.

to account for translations and scaling (as is the case for
these images). We then put a threshold on average pixel
difference to separate between duplicates and non dupli-
cates. Since no Python libraries that implement RANSAC
are available, it was performed using a custom script.

To make sure that MovingFashion respects the privacy of
social media users, we have rendered any face in the videos
blurred using a publicly available, face blurring tool4.

2.2. Tracklet generation

As described in the paper, for all data, noisy tracklet an-
notations are available. In order to create them:

• Our SEAM Match-RCNN is trained on the data using
only video-image pairing annotations. This results in a
model where the Single-frame Matching Head can be
effectively used for precisely tracking each item.

• We use the trained model to build a set of tracklets for
each video.

• We manually go over each video and select the track-
lets that contain the paired shop item, merging them if
they are disjointed (this happens when an item is oc-
cluded completely or disappears from the frame and
two separate tracklets are built).

The resulting tracklets are then saved. While for our
approach, no tracklet annotations are used during training,
they are used for all the comparative approaches. They are
considered as equivalent to ours (the detector and the tracker
are the same). It can be argued that they are actually bet-
ter than ours as they are produced after the last epoch of
training, while for our approach we start with a tracker that

4https://github.com/ORB-HD/deface

has not been trained yet. For the Person Re-ID approaches,
the annotations are used to crop out part of the image ac-
cording to the extracted bounding box. For detection based
approaches, the bounding boxes are used as ground truth
bounding boxes. The testing tracklets are used by all ap-
proaches for evaluation. During the SEAM Match-RCNN
evaluation, they are used to select the tracklet among the
ones produced automatically by the tracking procedure.

3. SEAM Match-RCNN computational com-
plexity

In this Section we discuss the computational complex-
ity of our proposed SEAM Match-RCNN. In particular we
focus on the difference between the Single-frame Matching
Head and the Multi-frame Matching Head.

3.1. Single-frame Matching Head

Let TF be the time taken for computing features by us-
ing the f function and TM the time taken for computing
matching between two feature vectors using m.

Given a street image and a shop image, the cost of com-
puting a matching between them, assuming that the de-
tection from the street image has already been chosen in
some way (for example by comparing it with a ground truth
bounding box) is 2×TF+TM (features computed for both
street and shop are compared).

3.2. Multi-frame Matching Head

When extending to Multi-frame matching, the cost of
tracking has to be taken into consideration. Obviously the
time taken for feature computation increases linearly with
the number of frames sampled from the video.

As f̃ and m̃ are structured in the same way as f and m,
we can assert that TF and TM also apply to them. Given a
street video sequence from which we sample T frames, the
cost of building all the possible tracklets (using the tracking
procedure, Sec 4-1 of the main paper) is related to the num-
ber of detections in each frame K (to simplify notation we
assume that there are exactly K detections in each frame).
First of all, Single-frame Matching Head features are com-
puted, the time cost is TF ×K × T .

As a reminder, the tracking procedure consists of itera-
tively repeating the choice of pivot and propagation. The
choice of the pivot is performed by choosing the most con-
fident detection, so its cost is negligible as it is already in-
cluded in the detection. The propagation consists of doing
comparisons between the pivot features and all of the de-
tection features in a frame. For a Single-frame the time
necessary for the propagation step is TM × K (a match-
ing for each detection). This procedure is repeated for all
frames resulting in TM × K × T . This results in a sin-
gle tracklet, that is excluded from the set of detections for



the following iterations. As the iteration is repeated un-
til there are no more detections, we can assume that re-
peating the propagation K times results in a final cost of
TM ×K2 × T . For the whole tracking procedure, the total
time is (TF ×K × T ) + (TM ×K2 × T ).

After tracklets are built, we can assume that the correct
tracklet is chosen, for example by using the Intersection
over Union with the ground truth tracklets (analogous to
selecting the correct bounding box in the Match-RCNN).
Given a sequence of detection of length T (length of the
video sequence), the cost of computing Multi-frame Match-
ing features is again TF × T . Then self-attetion with the
Non-Local Block is performed, resulting in a time cost of
T 2 × TSA (TSA is the cost of computing self-attention
between a pair of element in the sequence, usually a simple
operation like a dot product). The attention score is then
computed for each frame, with a cost of T ×TA (TA is the
cost of computing the attention score, in our case a simple
linear layer). Finally a weighted average pooling is per-
formed and matching is computed between the aggregated
descriptor and the shop feature vector (TF + TM ). The
final cost for aggregation is (TF × T ) + (T 2 × TSA) +
(T × TA) + (TF + TM).

3.3. Discussion

It is expected that the extension from Single-frame to
Multi-frame will come with an increased cost, in relation
to the number of frames. The tracking procedure is a nec-
essary step for any possible Multi-frame approach, as de-
tections from each frame need to be grouped in some way.
The matching component increases quadratically with the
maximum number of detections in each frame and linearly
with the number of frames sampled from the sequence.

The aggregation has a term that increases quadratically
with the number of frames. For both of these, we have to
take into consideration that we usually work with 10 sam-
ples and there are rarely many different people and clothing
items in a video, so even with a quadratic complexity, the
total effective time is relatively small. In our experiments,
we never go over 2 seconds for the whole procedure, with
the majority of the videos taking about 1 second to process.

4. Additional experiments

In Table 1, we show the results of Single-frame baselines
built on top of the Match-RCNN (the main building block
of our SEAM Match-RCNN). In particular, SFM-1qrt uses
the frame at the first quartile of all the available frames of
that sequence, SFM-median uses the median frame and so
on. SFM stands for Single-frame match and is a short term
for Match-RCNN.

The correspondent baselines are shown, adopting the
Deep Kronecker-Product Matching (KPM) [6] and the Easy

Positive Triplet Mining approach (EPHN) [7]. The ra-
tionale of this choice was to focus on Single-frame Re-
Identification approaches and compare them to the Match-
RCNN. This was done to enlarge the spectrum of possi-
ble comparative approaches, which have open-source code
available. The idea of considering Re-ID approaches
against street-to-shop techniques was also presented in the
DPRNet paper [9].

The inferiority of these baselines with respect of the
Multi-frame of Table 2 in the main paper, and in particular
with SEAM Match-RCNN, is evident and fully understand-
able.

Notably, in almost all of the MovingFashion partitions
(apart the regular one with EPHN), the ·-1qrt baseline gives
the higher results, which seems to be in accord with the best
practices in social media video editing, that is, that videos
have to deliver their main message within approximately 6
seconds [3].

As additional Multi-frame approaches, Table 2 shows
Max Confidence, Max Matching and Average Matching
scores when considering the KPM [6] and the EPHN [7]
as Single-frame method ingredients, in the same way that
Match-RCNN was used to calculate Max Confidence, Max
Matching and Average Matching from Table 2 of the main
paper.

Even in this case, SEAM Match-RCNN gives the best
performance, showing an overall superiority of Match-
RCNN as a Single-frame tool to aggregate visual clothing
information.

The same applies when it comes to MultiDeepFashion2
where we investigate only Multi-frame policies (Max Con-
fidence, Matching, Avg Matching and Descriptor), since
Single-frame policies do not have much sense, as the
Single-frames are not part of a single sequence. Even in this
case, SEAM Match-RCNN is the best alternative (Table 3).

As additional qualitative results, on Fig. 1 results of
SEAM Match-RCNN for the Hard-MovingFashion dataset
are shown. Two types of considerations can be drawn: the
first one is the variability of the videos, which here can be
appreciated with more examples. Second, the retrieval re-
sults on the right display that SEAM Match-RCNN is capa-
ble of finding similar images, among a shop gallery that in
some cases contains highly similar items (see for example
the light gray trousers).

On Fig. 2 results of SEAM Match-RCNN for the
Regular-MovingFashion dataset are shown. Here, on street
frames which exhibit more regularities, the shop items are
vice versa more insidious than the TikTok ones, since they
exhibit a lower variability, see for example the black female
dresses of row 6. The same rationale holds for the white
shirts and the black paints.

Finally, on Fig. 3 retrieval results on MultiDeepFashion2
are shown. Looking at the retrieval results, one can notice



that shop items are way less regular/neutral than the ones on
the MovingFashion (which anyway represent a more gen-
uine excerpt of an e-commerce website): at the same time,
street frames are often zoomed captures of the object of in-
terest, in general offering a retrieval challenge different than
the one on MovingFashion. The strong results obtained by
SEAM Match-RCNN prove its versatility in working on a
broader set of scenarios.

5. Future perspectives
With SEAM Match-RCNN we showed how the contribu-

tion of multiple frames can boost the retrieval accuracy by
33% on MultiDeepFashion2 w.r.t Single-frame approaches
and by 69% on the MovingFashion dataset. We also ob-
tained new, state-of-the-art results on all of the benchmarks.
Still, much progress has to be made in order to present a new
product to the market: looking at the results, the probability
of finding the correct shop match within the top 20 ranked
shop images is 87% on TikTok/Instagram videos. In order
to connect all the dots available within the data, one has to
exploit all of the details of the clothing items shown in some
of the frames, something which we are currently not able to
perform (in fact, we are discarding them with low attention),
because they cannot be mapped to the general layout of the
clothing item. Therefore, we should probably consider 3D
atlases and have a common reference there.

This setup can be attractive for many scenarios, for ex-
ample: 1) a casual user can match a video snippet of a
nice outfit he/she has captured with a gallery of products
(e.g. Zalando, Amazon, etc.); 2) a fast fashion company can
measure the similarity of clothing items contained in a viral
video, or fashion show, with the items of its catalogue, de-
ciding which item to promote the most; 3) Youtube videos
can be automatically processed by video sharing platforms
to build valuable statistics of popular outfits and discover
emerging trends.
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Figure 1. Qualitative retrieval results of SEAM Match-RCNN for the Hard-MovingFashion dataset. On the left, we show 3 frames sampled
from the 10 frames used for aggregation. On the right the shop images retrieved starting from the closest match (left). The correct matches
are represented with a green border.



Figure 2. Qualitative retrieval results of SEAM Match-RCNN for the Regular-MovingFashion dataset. On the left, we show 3 frames
sampled from the 10 frames used for aggregation. On the right the shop images retrieved starting from the closest match (left). The correct
matches are represented with a green border.



Figure 3. Qualitative retrieval results of SEAM Match-RCNN for the MultiDeepFashion2 dataset. On the left, we show 3 frames sampled
from the 10 frames used for aggregation. On the right the shop images retrieved starting from the closest match (left). The correct matches
are represented with a green border.


