
The supplement of “Sandwich Batch Normalization”

Xinyu Gong Wuyang Chen Tianlong Chen Zhangyang Wang
Department of Electrical and Computer Engineering, the University of Texas at Austin

{xinyu.gong, wuyang.chen, tianlong.chen, atlaswang}@utexas.edu

1. Implementation details
In Figure 1, we show the pseudo algorithms for Batch

Normalization (BN) [3], Sandwich Batch Normalization
(SaBN) and Sandwich Auxiliary Batch Normalization
(SaAuxBN).

def BatchNorm(x, gamma, beta, running_mean, running_var, eps=1e-5,

momentum=0.1):

x: input features with shape [N,C,H,W]

gamma, beta: scale factors with shape [1,C,1,1]

mean, var = tf.nn.moments(x, [0, 2, 3], keep dims = True)

running_mean = (1 - momentum) * running_mean + momentum * mean

running_var = (1 - momentum) * running_var + momentum * var

x = (x - running_mean) / tf.sqrt(running_var + eps)

return x * gamma + beta

def SaBatchNorm(x, sa_gamma, sa_beta, gammas, betas, index,

running_mean, running_var, eps=1e-5, momentum=0.1):

x: input features with shape [N,C,H,W]

sa_gamma, sa_beta: shared scale factor with shape [1,C,1,1]

gammas, betas: a list of scale factors with shape [1,C,1,1]

mean, var = tf.nn.moments(x, [0, 2, 3], keep_dims = True)

running_mean = (1 - momentum) * running_mean + momentum * mean

running_var = (1 - momentum) * running_var + momentum * var

x = (x - running_mean) / tf.sqrt(running_var + eps)

x = x * sa_gamma + sa_beta

return x * gammas[index] + betas[index]

def SaAuxBatchNorm(x, sa_gamma, sa_beta, gammas, betas, index,

running_means, running_vars, eps=1e-5, momentum=0.1):

x: input features with shape [N,C,H,W]

sa_gamma, sa_beta: shared scale factors with shape [1,C,1,1]

gammas, betas: a list of scale factors with shape [1,C,1,1]

mean, var = tf.nn.moments(x, [0, 2, 3], keep dims = True)

running_means[index] = (1 - momentum) * running_means[index]

+ momentum * mean

running_vars[index] = (1 - momentum) * running_vars[index]

+ momentum * var

x = (x - running_means[index]) / tf.sqrt(running_vars[index]

+ eps)

x = x * sa_gamma + sa_beta

return x * gammas[index] + betas[index]

Figure 1: Pseudo Python code of BN [3], SaBN and AuxSaBN with TensorFlow [1]. We highlight the main difference
between our approaches with vanilla BN.

2. Additional Analysis in Neural Architecture
Search

2.1. Architecture Evolving during Neural Architec-
ture Search

Darts bn

(a) The softmaxed architecture parameters on each edge in DARTS
during searching.

Darts ccbn

(b) The softmaxed architecture parameters on each edge in
DARTS-CCBN during searching.

Darts sabn

(c) The softmaxed architecture parameters on each edge in
DARTS-SaBN during searching.

Figure 2: The evolving trend of architecture parameters.

The evolution of architecture parameters for each
method are presented in Fig. 3.

2.2. Gradient Analysis
We further analyze the gradient magnitude in neural ar-

chitecture search task. The gradients are taken on the convo-
lution layer in the residual block of NAS-Bench-201 super-
net [2]. We visualize the the standard deviation of gradient
L2-norm across different architectures in Fig. 4, indicat-
ing that the model with SaBN has more balanced gradient
magnitude.

node_0
(input)

node_1

nor_conv_3x3

node_2

nor_conv_3x3

node_3
(output)

skip_connectnor_conv_3x3

nor_conv_3x3

nor_conv_3x3

(a) DARTS’ searched architecture (c) DARTS-SaBN’s searched architecture(c) DARTS-CCBN’s searched architecture

Figure 3: The derived architectures. The architectures
searched by DARTS are dominated by “skip_connect”
and the architecture of DARTS-CCBN is full of both
“skip_connect” and “none”. In contrast, DARTS-SaBN
highly prefers “nor_conv_3x3”.

Figure 4: The standard deviation of gradient magnitude
among different architectures. X-axis denotes the layer
depth in the supernet.

3. Additional Analysis on Adversarial Robust-
ness

We analyze the gradient magnitude of the network in ad-
versarial robustness task for SaBN and CCBN. The gradi-
ent is taken from the last convolution layer in each network
stage. We compare the gradient magnitude difference be-
tween clean and adversarial branch via standard deviation
of gradient L2-norm. For gradient of clean branch, the clean
examples are used as input, while adversarial examples are
used as input for the calculation of gradient on adversarial
branch. The results are shown in Fig. 5. We can see that
model with SaBN has more balanced gradient magnitude
between adversarial branch and clean branch.

Figure 5: The gradient L2-norm standard deviation be-
tween clean branch and adversarial branch. X-axis de-
notes the depth in the supernet.

4. Visualization of Style Transfer
The visual results of style transfer are shown in Fig. 6.

Compared with AdaIN and ILM-IN, SaBN generates more
visual-appealing images.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] Xuanyi Dong and Yi Yang. Nas-bench-102: Extending
the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020.

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

SaAdaIN (ours)AdaINContent ILM+IN

Figure 6: The visual results of style transfer. An ideally stylized output should be semantically similar to the content image,
while naturally incorporate the style information from the referenced style image.

